1
|
Richbourg NR, Irakoze N, Kim H, Peyton SR. Outlook and opportunities for engineered environments of breast cancer dormancy. SCIENCE ADVANCES 2024; 10:eadl0165. [PMID: 38457510 PMCID: PMC10923521 DOI: 10.1126/sciadv.adl0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Dormant, disseminated breast cancer cells resist treatment and may relapse into malignant metastases after decades of quiescence. Identifying how and why these dormant breast cancer cells are triggered into outgrowth is a key unsolved step in treating latent, metastatic breast cancer. However, our understanding of breast cancer dormancy in vivo is limited by technical challenges and ethical concerns with triggering the activation of dormant breast cancer. In vitro models avoid many of these challenges by simulating breast cancer dormancy and activation in well-controlled, bench-top conditions, creating opportunities for fundamental insights into breast cancer biology that complement what can be achieved through animal and clinical studies. In this review, we address clinical and preclinical approaches to treating breast cancer dormancy, how precisely controlled artificial environments reveal key interactions that regulate breast cancer dormancy, and how future generations of biomaterials could answer further questions about breast cancer dormancy.
Collapse
Affiliation(s)
- Nathan R. Richbourg
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Ninette Irakoze
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Hyuna Kim
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst Amherst, MA 01003, USA
| |
Collapse
|
2
|
Azzam HN, El-Derany MO, Wahdan SA, Faheim RM, Helal GK, El-Demerdash E. The role of mitochondrial/metabolic axis in development of tamoxifen resistance in breast cancer. Hum Cell 2023; 36:1877-1886. [PMID: 37646973 PMCID: PMC10587280 DOI: 10.1007/s13577-023-00977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Only a few investigations, to our knowledge, have examined the bioenergetics of Tamoxifen (TMX) resistant individuals and reported altered mitochondrial activity and metabolic profile. The primary cause of TMX resistance is firmly suggested to be metabolic changes. Metabolic variations and hypoxia have also been linked in a bidirectional manner. Increased hypoxic levels correlate with early recurrence and proliferation and have a negative therapeutic impact on breast cancer (BC) patients. Hypoxia, carcinogenesis, and patient death are all correlated, resulting in more aggressive traits, a higher chance of metastasis, and TMX resistance. Consequently, we sought to investigate the possible role of the metabolic/hypoxial axis Long non-coding RNA (LncRNA) Taurine up-regulated 1 (TUG-1), Micro-RNA 186-5p (miR-186), Sirtuin-3 (SIRT3), Peroxisome Proliferator Activator Receptor alpha (PPAR-α), and Hypoxia-Inducible Factor-1 (HIF-1) in the development of TMX resistance in BC patients and to correlate this axis with tumor progression. Interestingly, this will be the first time to explore epigenetic regulation of this axis in BC.
Collapse
Affiliation(s)
- Hany N Azzam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reham M Faheim
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gouda K Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- Preclinical & Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
Hirota A, Clément JE, Tanikawa S, Nonoyama T, Komatsuzaki T, Gong JP, Tanaka S, Imajo M. ERK MAP Kinase Signaling Regulates RAR Signaling to Confer Retinoid Resistance on Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14235890. [PMID: 36497371 PMCID: PMC9739577 DOI: 10.3390/cancers14235890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Retinoic acid (RA) and its synthetic derivatives, retinoids, have been established as promising anticancer agents based on their ability to regulate cell proliferation and survival. Clinical trials, however, have revealed that cancer cells often acquire resistance to retinoid therapy. Therefore, elucidation of underlying mechanisms of retinoid resistance has been considered key to developing more effective use of retinoids in cancer treatment. In this study, we show that constitutive activation of ERK MAP kinase signaling, which is often caused by oncogenic mutations in RAS or RAF genes, suppresses RA receptor (RAR) signaling in breast cancer cells. We show that activation of the ERK pathway suppresses, whereas its inhibition promotes, RA-induced transcriptional activation of RAR and the resultant upregulation of RAR-target genes in breast cancer cells. Importantly, ERK inhibition potentiates the tumor-suppressive activity of RA in breast cancer cells. Moreover, we also reveal that suppression of RAR signaling and activation of ERK signaling are associated with poor prognoses in breast cancer patients and represent hallmarks of specific subtypes of breast cancers, such as basal-like, HER2-enriched and luminal B. These results indicate that ERK-dependent suppression of RAR activity underlies retinoid resistance and is associated with cancer subtypes and patient prognosis in breast cancers.
Collapse
Affiliation(s)
- Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Jean-Emmanuel Clément
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Satoshi Tanikawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Tamiki Komatsuzaki
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Shinya Tanaka
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Correspondence: ; Tel.: +81-11-706-9683
| |
Collapse
|
4
|
Ramírez-Tortosa CL, Alonso-Calderón R, Gálvez-Navas JM, Pérez-Ramírez C, Quiles JL, Sánchez-Rovira P, Jiménez-Morales A, Ramírez-Tortosa MC. Hypoxia-Inducible Factor-1 Alpha Expression Is Predictive of Pathological Complete Response in Patients with Breast Cancer Receiving Neoadjuvant Chemotherapy. Cancers (Basel) 2022; 14:cancers14215393. [PMID: 36358811 PMCID: PMC9656699 DOI: 10.3390/cancers14215393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Standard neoadjuvant chemotherapy, based on taxanes and anthracyclines, makes conservative treatment of breast cancer possible and it allows for the evaluation of the tumor response in terms of achieving pathological complete response. Whereas hypoxia participates in carcinogenesis, resulting in less differenced tumor cells and poorer prognosis, HIF-1α could be predictive of the tumor response to treatment. Nonetheless, very few studies have evaluated the predictive value of HIF-1α in breast cancer in patients receiving neoadjuvant chemotherapy. Abstract To demonstrate the value of hypoxia-inducible factor-1α (HIF-1α) in predicting response in patients with breast cancer receiving standard neoadjuvant chemotherapy (NAC). Methods: Ninety-five women enrolled in two prospective studies underwent biopsies for the histopathological diagnosis of breast carcinoma before receiving NAC, based on anthracyclines and taxanes. For expression of HIF-1α, EGFR, pAKT and pMAPK, tumor samples were analyzed by immunohistochemistry in tissues microarrays. Standard statistical methods (Pearson chi-square test, Fisher exact test, Kruskal–Wallis test, Mann–Whitney test and Kaplan–Meier method) were used to study the association of HIF-1α with tumor response, survival and other clinicopathologic variables/biomarkers. Results: HIF-1α expression was positive in 35 (39.7%) cases and was significantly associated to complete pathological response (pCR) (p = 0.014). HIF-1α expression was correlated positively with tumor grade (p = 0.015) and Ki-67 expression (p = 0.001) and negativity with progesterone receptors (PR) (p = 0.04) and luminal A phenotype expression (p = 0.005). No correlation was found between HIF-1α expression and EGFR, pAKT and pMAPK. In terms of survival, HIF-1α expression was associated with a significantly shorter disease-free survival (p = 0.013), being identified as an independent prognostic factor in multivariate analysis. Conclusions: Overexpression of HIF-1α is a predictor of pCR and shorter DFS; it would be valuable to confirm these results in prospective studies.
Collapse
Affiliation(s)
- César L. Ramírez-Tortosa
- Pathological Anatomy Service, University Hospital San Cecilio, Parque Tecnológico de la Salud (PTS), Avda. del Conocimiento, 18016 Granada, Spain
| | - Rubén Alonso-Calderón
- Medical Oncology Service, Complejo Hospitalario de Jaén, Avda. del Ejército Español 10, 23007 Jaén, Spain
| | - José María Gálvez-Navas
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, Universidad de Granada, 18011 Granada, Spain
- Correspondence:
| | - Cristina Pérez-Ramírez
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, Universidad de Granada, 18011 Granada, Spain
| | - José Luis Quiles
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18011 Granada, Spain
| | - Pedro Sánchez-Rovira
- Medical Oncology Service, Complejo Hospitalario de Jaén, Avda. del Ejército Español 10, 23007 Jaén, Spain
| | - Alberto Jiménez-Morales
- Pharmacogenetics Unit, Pharmacy Service, University Hospital Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18004 Granada, Spain
| | - MCarmen Ramírez-Tortosa
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, Universidad de Granada, 18011 Granada, Spain
| |
Collapse
|
5
|
Tondo-Steele K, McLean K. The “Sweet Spot” of Targeting Tumor Metabolism in Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14194696. [PMID: 36230617 PMCID: PMC9562887 DOI: 10.3390/cancers14194696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this review is to explore the metabolomic environment of epithelial ovarian cancer that contributes to chemoresistance and to use this knowledge to identify possible targets for therapeutic intervention. The Warburg effect describes increased glucose uptake and lactate production in cancer cells. In ovarian cancer, we require a better understanding of how cancer cells reprogram their glycogen metabolism to overcome their nutrient deficient environment and become chemoresistant. Glucose metabolism in ovarian cancer cells has been proposed to be influenced by altered fatty acid metabolism, oxidative phosphorylation, and acidification of the tumor microenvironment. We investigate several markers of altered metabolism in ovarian cancer including hypoxia-induced factor 1, VEGF, leptin, insulin-like growth factors, and glucose transporters. We also discuss the signaling pathways involved with these biomarkers including PI3K/AKT/mTOR, JAK/STAT and OXPHOS. This review outlines potential metabolic targets to overcome chemoresistance in ovarian cancer. Continued research of the metabolic changes in ovarian cancer is needed to identify and target these alterations to improve treatment approaches.
Collapse
|
6
|
Azzam HN, El-Derany MO, Wahdan SA, Faheim RM, Helal GK, El-Demerdash E. Metabolic/hypoxial axis predicts tamoxifen resistance in breast cancer. Sci Rep 2022; 12:16118. [PMID: 36167713 PMCID: PMC9515205 DOI: 10.1038/s41598-022-19977-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
We sought in our cross-sectional study to investigate the role of metabolic/hypoxial axis in the development of tamoxifen (TMX) resistance in BC patients. Quantification of plasma LncRNA Taurine upregulated-1 (TUG-1), miRNA 186-5p (miR-186), serum Sirtuin-3 (SIRT3), Peroxisome Proliferator Activator Receptor alpha (PPAR-1 α) and Hypoxia Inducible Factor-1 (HIF-1α) was done in a cohort of patients divided into TMX-sensitive and TMX-resistant candidates. Multiple logistic regression and Receiver Operating Characteristic curve were developed for significant predictors. Plasma TUG-1 and miR-186 were significantly elevated in TMX resistant patients. Serum proteins SIRT3, PPAR-1 α and HIF-1α were deficient in TMX resistant patients compared to TMX sensitive patients, respectively. miR-186 was associated with respiratory symptoms, while, HIF-1α was associated with metastases in TMX resistant patients. Strong correlations were found between all parameters. A predictive model was constructed with TUG-1 and HIF-1α to estimate TMX resistance in BC patients with 88.3% sensitivity and 91.6% specificity. Hypoxia and metabolic dysregulations play important role in the development of TMX resistance in BC patients. Correlation between hypoxia, carcinogenesis and patient’s mortality have led to more aggressive phenotypes, increased risk of metastasis and resistance to TMX.
Collapse
Affiliation(s)
- Hany N Azzam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reham M Faheim
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gouda K Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
7
|
Cheng W, Xiao X, Liao Y, Cao Q, Wang C, Li X, Jia Y. Conducive target range of breast cancer: Hypoxic tumor microenvironment. Front Oncol 2022; 12:978276. [PMID: 36226050 PMCID: PMC9550190 DOI: 10.3389/fonc.2022.978276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is a kind of malignant tumor disease that poses a serious threat to human health. Its biological characteristics of rapid proliferation and delayed angiogenesis, lead to intratumoral hypoxia as a common finding in breast cancer. HIF as a transcription factor, mediate a series of reactions in the hypoxic microenvironment, including metabolic reprogramming, tumor angiogenesis, tumor cell proliferation and metastasis and other important physiological and pathological processes, as well as gene instability under hypoxia. In addition, in the immune microenvironment of hypoxia, both innate and acquired immunity of tumor cells undergo subtle changes to support tumor and inhibit immune activity. Thus, the elucidation of tumor microenvironment hypoxia provides a promising target for the resistance and limited efficacy of current breast cancer therapies. We also summarize the hypoxic mechanisms of breast cancer treatment related drug resistance, as well as the current status and prospects of latest related drugs targeted HIF inhibitors.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingqing Cao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Xiaojiang Li, ; Yingjie Jia,
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Xiaojiang Li, ; Yingjie Jia,
| |
Collapse
|
8
|
Wang X, Wang S. Identification of key genes involved in tamoxifen-resistant breast cancer using bioinformatics analysis. Transl Cancer Res 2022; 10:5246-5257. [PMID: 35116374 PMCID: PMC8798269 DOI: 10.21037/tcr-21-1276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Background The purpose of the present study was to investigate the molecular mechanisms of tamoxifen resistance in breast cancer and to identify potential targets for antitamoxifen resistance. Methods Differentially expressed genes (DEGs) in tamoxifen-resistant and tamoxifen-sensitive breast cancer cells were assessed using the GSE67916 dataset acquired from the Gene Expression Omnibus database. Gene ontology (GO) and pathway enrichment analyses were applied to investigate the functions and pathways of the DEGs. Subsequently, the protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING), and subnetworks were further analyzed by Molecular Complex Detection (MCODE). The PPI network and subnetworks were visualized using Cytoscape software. Results In total, 438 DEGs were identified, of which 300 were upregulated and 138 were downregulated. The DEGs were significantly enriched in the protein binding, cellular response to estradiol stimulus, and immune response GO terms while the most significant pathways included the mitogen-activated protein kinase (MAPK) signaling pathway in cancer. The PPI network of DEGs was constructed with 288 nodes and 629 edges, and 2 subnetworks were screened out from the entire network. Conclusions A number of significant hub DEGs were identified based on their degree of connectivity in the PPI network, , included MAPK1 (node degree 36), ESR1 (node degree 27), SMARCA4 (node degree 27), RANBP2 (node degree 25), and PRKCA (node degree 21). These critical hub genes were found to be related to tamoxifen resistance in breast cancer. The results of this study further the understanding of tamoxifen resistance at the molecular level and identify potential therapeutic targets for tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Outpatient and Emergency, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shixia Wang
- Department of Outpatient and Emergency, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
9
|
Bisht VS, Giri K, Kumar D, Ambatipudi K. Oxygen and metabolic reprogramming in the tumor microenvironment influences metastasis homing. Cancer Biol Ther 2021; 22:493-512. [PMID: 34696706 DOI: 10.1080/15384047.2021.1992233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Tumor metastasis is the leading cause of cancer mortality, often characterized by abnormal cell growth and invasion to distant organs. The cancer invasion due to epithelial to mesenchymal transition is affected by metabolic and oxygen availability in the tumor-associated micro-environment. A precise alteration in oxygen and metabolic signaling between healthy and metastatic cells is a substantial probe for understanding tumor progression and metastasis. Molecular heterogeneity in the tumor microenvironment help to sustain the metastatic cell growth during their survival shift from low to high metabolic-oxygen-rich sites and reinforces the metastatic events. This review highlighted the crucial role of oxygen and metabolites in metastatic progression and exemplified the role of metabolic rewiring and oxygen availability in cancer cell adaptation. Furthermore, we have also addressed potential applications of altered oxygen and metabolic networking with tumor type that could be a signature pattern to assess tumor growth and chemotherapeutics efficacy in managing cancer metastasis.
Collapse
Affiliation(s)
- Vinod S Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepak Kumar
- Department of Cancer Biology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific & Innovative Research, New Delhi, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
10
|
Zhang Y, Zhang H, Wang M, Schmid T, Xin Z, Kozhuharova L, Yu WK, Huang Y, Cai F, Biskup E. Hypoxia in Breast Cancer-Scientific Translation to Therapeutic and Diagnostic Clinical Applications. Front Oncol 2021; 11:652266. [PMID: 33777815 PMCID: PMC7991906 DOI: 10.3389/fonc.2021.652266] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer has been the leading cause of female cancer deaths for decades. Intratumoral hypoxia, mainly caused by structural and functional abnormalities in microvasculature, is often associated with a more aggressive phenotype, increased risk of metastasis and resistance to anti-malignancy treatments. The response of cancer cells to hypoxia is ascribed to hypoxia-inducible factors (HIFs) that activate the transcription of a large battery of genes encoding proteins promoting primary tumor vascularization and growth, stromal cell recruitment, extracellular matrix remodeling, cell motility, local tissue invasion, metastasis, and maintenance of the cancer stem cell properties. In this review, we summarized the role of hypoxia specifically in breast cancer, discuss the prognostic and predictive value of hypoxia factors, potential links of hypoxia and endocrine resistance, cancer hypoxia measurements, further involved mechanisms, clinical application of hypoxia-related treatments and open questions.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyi Zhang
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Minghong Wang
- Department of Health Management, Shanghai Public Health Clinical Center, Shanghai, China
| | - Thomas Schmid
- Department of Medical Oncology, St. Claraspital, Basel, Switzerland
| | - Zhaochen Xin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Wai-Kin Yu
- Cellomics International Limited, Hong Kong, China
| | - Yuan Huang
- Cellomics International Limited, Hong Kong, China
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ewelina Biskup
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Division of Internal Medicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| |
Collapse
|
11
|
Leal MF, Haynes BP, MacNeill FA, Dodson A, Dowsett M. Comparison of protein expression between formalin-fixed core-cut biopsies and surgical excision specimens using a novel multiplex approach. Breast Cancer Res Treat 2019; 175:317-326. [PMID: 30796652 PMCID: PMC6533418 DOI: 10.1007/s10549-019-05163-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE We evaluated whether multiplex protein quantification using antibody bar-coding with photocleavable oligonucleotides (NanoString) can be applied to evaluate protein expression in breast cancer FFPE specimens. We also assessed whether diagnostic core-cuts fixed immediately at time of procedures and surgical excision sections from routinely fixed breast cancers are affected by the same fixation related differences noted using immunohistochemistry (IHC). METHODS The expression of 26 proteins was analysed using NanoString technology in 16 pairs of FFPE breast cancer core-cuts and surgical excisions. The measurements yielded were compared with those by IHC on Ki67, PgR and HER2 biomarkers and pAKT and pERK1/2 phosphorylated proteins. RESULTS When considered irrespective of sample type, expression measured by the two methods was strongly correlated for all markers (p < 0.001; ρ = 0.69-0.88). When core-cuts and excisions were evaluated separately, the correlations between NanoString and IHC were weaker but significant except for pAKT in excisions. Surgical excisions showed lower levels of 8/12 phosphoproteins and higher levels of 4/13 non-phosphorylated proteins in comparison to core-cuts (p < 0.01). Reduced p4EBP1, pAMPKa, pRPS6 and pRAF1 immunogenicity in excisions was correlated with tumour size and mastectomy specimens showed lower p4EBP1 and pRPS6 expression than lumpectomy (p < 0.05). CONCLUSIONS Our study supports the validity of the new multiplex approach to protein analysis but indicates that, as with IHC, caution is necessary for the analysis in excisions particularly of phosphoproteins. The specimen type, tumour size and surgery type may lead to biases in the quantitative analysis of many proteins of biologic and clinical interest in excision specimens.
Collapse
Affiliation(s)
- Mariana Ferreira Leal
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, The Royal Marsden NHS Foundation Trust, 4th Floor Wallace Wing, 203 Fulham Road, London, SW3 6JJ, UK.
- Breast Cancer Now Research Centre, The Institute of Cancer Research, Fulham Road, London, SW3 6JB, UK.
| | - Ben P Haynes
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, The Royal Marsden NHS Foundation Trust, 4th Floor Wallace Wing, 203 Fulham Road, London, SW3 6JJ, UK
| | - Fiona A MacNeill
- Breast Unit, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Andrew Dodson
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, The Royal Marsden NHS Foundation Trust, 4th Floor Wallace Wing, 203 Fulham Road, London, SW3 6JJ, UK
| | - Mitch Dowsett
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, The Royal Marsden NHS Foundation Trust, 4th Floor Wallace Wing, 203 Fulham Road, London, SW3 6JJ, UK
- Breast Cancer Now Research Centre, The Institute of Cancer Research, Fulham Road, London, SW3 6JB, UK
| |
Collapse
|
12
|
Stires H, Heckler MM, Fu X, Li Z, Grasso CS, Quist MJ, Lewis JA, Klimach U, Zwart A, Mahajan A, Győrffy B, Cavalli LR, Riggins RB. Integrated molecular analysis of Tamoxifen-resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic vulnerabilities. Mol Cell Endocrinol 2018; 471:105-117. [PMID: 28935545 PMCID: PMC5858970 DOI: 10.1016/j.mce.2017.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/26/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022]
Abstract
Invasive lobular breast cancer (ILC) is an understudied malignancy with distinct clinical, pathological, and molecular features that distinguish it from the more common invasive ductal carcinoma (IDC). Mounting evidence suggests that estrogen receptor-alpha positive (ER+) ILC has a poor response to Tamoxifen (TAM), but the mechanistic drivers of this are undefined. In the current work, we comprehensively characterize the SUM44/LCCTam ILC cell model system through integrated analysis of gene expression, copy number, and mutation, with the goal of identifying actionable alterations relevant to clinical ILC that can be co-targeted along with ER to improve treatment outcomes. We show that TAM has several distinct effects on the transcriptome of LCCTam cells, that this resistant cell model has acquired copy number alterations and mutations that impinge on MAPK and metabotropic glutamate receptor (GRM/mGluR) signaling networks, and that pharmacological inhibition of either improves or restores the growth-inhibitory actions of endocrine therapy.
Collapse
Affiliation(s)
- Hillary Stires
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Mary M Heckler
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zhao Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Joseph A Lewis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Uwe Klimach
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Alan Zwart
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Akanksha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Luciane R Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
13
|
Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. Int J Mol Sci 2018; 19:ijms19072011. [PMID: 29996493 PMCID: PMC6073901 DOI: 10.3390/ijms19072011] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway acts in both physiological and pathological conditions, including embryonic development and tumorigenesis. In cancer progression, diverse mechanisms are involved in Notch-mediated biological responses, including angiogenesis and epithelial-mesenchymal-transition (EMT). During EMT, the activation of cellular programs facilitated by transcriptional repressors results in epithelial cells losing their differentiated features, like cell–cell adhesion and apical–basal polarity, whereas they gain motility. As it concerns cancer epithelial cells, EMT may be consequent to the evolution of genetic/epigenetic instability, or triggered by factors that can act within the tumor microenvironment. Following a description of the Notch signaling pathway and its major regulatory nodes, we focus on studies that have given insights into the functional interaction between Notch signaling and either hypoxia or estrogen in breast cancer cells, with a particular focus on EMT. Furthermore, we describe the role of hypoxia signaling in breast cancer cells and discuss recent evidence regarding a functional interaction between HIF-1α and GPER in both breast cancer cells and cancer-associated fibroblasts (CAFs). On the basis of these studies, we propose that a functional network between HIF-1α, GPER and Notch may integrate tumor microenvironmental cues to induce robust EMT in cancer cells. Further investigations are required in order to better understand how hypoxia and estrogen signaling may converge on Notch-mediated EMT within the context of the stroma and tumor cells interaction. However, the data discussed here may anticipate the potential benefits of further pharmacological strategies targeting breast cancer progression.
Collapse
|
14
|
Mishra R, Alanazi S, Yuan L, Solomon T, Thaker TM, Jura N, Garrett JT. Activating HER3 mutations in breast cancer. Oncotarget 2018; 9:27773-27788. [PMID: 29963236 PMCID: PMC6021238 DOI: 10.18632/oncotarget.25576] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/19/2018] [Indexed: 12/24/2022] Open
Abstract
Recent studies have highlighted a role of HER3 in ER and HER2-driven breast cancers. We sought to investigate the role of patient-derived HER3 mutations in ER+ and HER2+ breast cancer cells using ectopic expression of HER3 mutants. We found that HER3T355I mutant is activating with increased cell proliferation in ER+ T47D and MCF-7 breast cancer cells lacking HER2 over-expression. Immunoblotting and receptor tyrosine kinase array results indicated that T47D and MCF-7 cells expressing HER3T355I had increased p-HER4 and p-HER1 expression. Our data showed that HER3T355I induced cell proliferation is via HER4/HER1-dependent ERK1/2 and cyclinD1 mediated pathways in ER+ cells. ERα expression is upregulated in ER+ cells expressing HER3T355I mutant. We noted crosstalk between ERα and HER3 in T47D cells. Several HER3 mutants (F94L, G284R, D297Y, T355I, and E1261A) acquired a gain-of-function phenotype in MCF10AHER2 cells and were resistant to lapatinib. These mutants increased HER2-HER3 heterodimerization. Knocking down HER3 from ovarian and colorectal cancers with endogenous HER3 mutations abrogated cancer cell proliferation. Overall, this study provides the first systematic assessment of how mutations in HER3 affect response of ER+ and HER2+ breast cancers to clinically relevant inhibitors and finds that HER3 mutations can be activating independent of HER2 over-expression.
Collapse
Affiliation(s)
- Rosalin Mishra
- James L. Winkle College of Pharmacy, University of Ohio, Cincinnati, Ohio, USA
| | - Samar Alanazi
- James L. Winkle College of Pharmacy, University of Ohio, Cincinnati, Ohio, USA
| | - Long Yuan
- James L. Winkle College of Pharmacy, University of Ohio, Cincinnati, Ohio, USA
| | - Thomas Solomon
- James L. Winkle College of Pharmacy, University of Ohio, Cincinnati, Ohio, USA
| | - Tarjani M. Thaker
- Department of Cellular and Molecular Pharmacology, Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Natalia Jura
- Department of Cellular and Molecular Pharmacology, Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Joan T. Garrett
- James L. Winkle College of Pharmacy, University of Ohio, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Padró M, Louie RJ, Lananna BV, Krieg AJ, Timmerman LA, Chan DA. Genome-independent hypoxic repression of estrogen receptor alpha in breast cancer cells. BMC Cancer 2017; 17:203. [PMID: 28320353 PMCID: PMC5358051 DOI: 10.1186/s12885-017-3140-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/15/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND About 75-80% of breast tumors express the estrogen receptor alpha (ER-α) and are treated with endocrine-target therapeutics, making this the premier therapeutic modality in the breast cancer clinic. However, acquired resistance is common and about 20% of resistant tumors loose ER-α expression via unknown mechanisms. Inhibition of ER-α loss could improve endocrine therapeutic efficacy, benefiting a significant number of patients. Here we test whether tumor hypoxia might commonly produce ER-α loss. METHODS Using standard molecular and cellular biological assays and a work station/incubator with controllable oxygen levels, we analyze the effects of hypoxia on ER-α protein, mRNA, and transcriptional activity in a panel of independently-derived ER-α positive cell lines. These lines were chosen to represent the diverse genetic backgrounds and mutations commonly present in ER-α positive tumors. Using shRNA-mediated knockdown and overexpression studies we also elucidate the role of hypoxia-inducible factor 1-alpha (HIF-1α) in the hypoxia-induced decrease in ER-α abundance. RESULTS We present the first comprehensive overview of the effects of bona fide low environmental oxygen (hypoxia) and HIF-1α activity on ER-α abundance and transcriptional activity. We find that stabilized HIF-1α induces rapid loss of ER-α protein in all members of our diverse panel of breast cancer cell lines, which involves proteolysis rather than transcriptional repression. Reduced ER-α severely attenuates ER-α directed transcription, and inhibits cell proliferation without overt signs of cell death in the cell lines tested, despite their varying genomic backgrounds. CONCLUSIONS These studies reveal a common hypoxia response that produces reduced ER-α expression and cell cycle stalling, and demonstrate a common role for HIF-1α in ER-α loss. We hypothesize that inhibitors of HIF-1α or the proteasome might stabilize ER-α expression in breast tumors in vivo, and work in combination with endocrine therapies to reduce resistance. Our data also suggests that disease re-occurrence in patients with ER-α positive tumors may arise from tumor cells chronically resident in hypoxic environments. We hypothesize that these non-proliferating cells may survive undetected until conditions change to oxygenate the environment, or cells eventually switch to proliferation via other signaling pathways.
Collapse
Affiliation(s)
- Mercè Padró
- Department of Radiation Oncology, University of California, San Francisco, CA 94115 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| | - Raymond J. Louie
- Department of Radiation Oncology, University of California, San Francisco, CA 94115 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| | - Brian V. Lananna
- Department of Radiation Oncology, University of California, San Francisco, CA 94115 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| | - Adam J. Krieg
- Department of Obstetrics and Gynecology, Kansas University Medical Center, Kansas City, KS 66160 USA
| | - Luika A. Timmerman
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| | - Denise A. Chan
- Department of Radiation Oncology, University of California, San Francisco, CA 94115 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| |
Collapse
|
16
|
Yan L, Cao X, Zeng S, Li Z, Lian Z, Wang J, Lv F, Wang Y, Li Y. Associations of proteins relevant to MAPK signaling pathway (p38MAPK-1,HIF-1 and HO-1) with coronary lesion characteristics and prognosis of peri-menopausal women. Lipids Health Dis 2016; 15:187. [PMID: 27821168 PMCID: PMC5100280 DOI: 10.1186/s12944-016-0356-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/27/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The present study was intended to explore whether three proteins within MAPK signaling pathway (i.e. p38MAPK-1, HIF-1 and HO-1) were correlated with peri-menopausal women's coronary lesion features and prognosis. METHODS Altogether 1449 peri-menopausal women were divided into non-coronary artery disease (CAD) group (n = 860) and CAD group (n = 589), including 167 pre-menopausal CAD populations and 422 post-menopausal CAD populations. General information about CAD risk parameters were gathered, including age, family history of CAD or hypertension or diabetes mellitus, bilirubin, cholesterol, triglyceride, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) and so on. Coronary angiography results were judged, and CAD score was calculated with application of Genisin scoring method. Besides, detection of MAPK-1 levels was implemented with Strept Avidin-Biotin Complex (SABC) method, while HIF-1 and HO-1 expressions in the serum were determined utilizing ELISA detection kit. Correlations among protein expressions, characteristics of coronary lesions and prognosis of CAD populations were finally evaluated. RESULTS Hypertension, hyperlipoidemia, diabetes and smoking history were more prevalent among postmenopausal CAD women than premenopausal CAD women (P < 0.05). Furthermore, postmenopausal women seemed to be significantly associated with multiple (i.e. double and triple) vessel lesions and severe lesion types (type B and C), when compared with premenopausal CAD group (P < 0.05). Similarly, remarkably elevated expressions of p38MAPK-1, HIF-1 and HO-1 were found within postmenopausal CAD populations in comparison to premenopausal ones (P < 0.05). The internal CysC, hs-CRP, TG and LDL-C concentrations all accorded with the following tendency: postmenopausal CAD women > premenopausal CAD women > non-CAD women. Moreover, p38MAPK-1, HIF-1 and HO-1 expressions were up-regulated with increasing number of vessel lesions and severity of coronary lesions among peri-menopausal women. Besides, among both pre-menopausal and post-menopausal CAD groups, positive correlations could be observed between MAPK-1 and TG (r s = 0.271; r s = 0.476), between HIF-1α and LDL-C (r s = 0.077; r s = 0.470), as well as between HO-1 and CysC (r s = 0.492; r s = 0.190) or hs-CRP (r s = 0.569; r s = 0.542) (all P < 0.05). MAPK-1, HIF-1α and HO-1 were also, respectively, positively correlated with CysC (r s = 0.415), hs-CRP (r s = 0.137), and TG (r s = 0.142), regarding post-menopausal CAD women (all P < 0.05). Finally, only SBP and TG were regarded as independent risk factors for CAD prognosis (i.e. high Genisin score) among premenopausal women (OR = 1.02, 95%CI: 1.01-1.18, P = 0.043; OR = 1.82, 95%CI: 1.01-3.33, P = 0.047). CONCLUSIONS Expressions of p38MAPK-1, HIF-1 and HO-1 could serve as predictive roles for coronary lesions among peri-menopausal women.
Collapse
Affiliation(s)
- Liqiu Yan
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| | - Xufen Cao
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China.
| | - Saitian Zeng
- Department of Gynecology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei Province, China
| | - Zhe Li
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| | - Zheng Lian
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| | - Jiawang Wang
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| | - Fengfeng Lv
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| | - Yunfei Wang
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| | - Yanshen Li
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| |
Collapse
|
17
|
Li X, Jiang Y, Meisenhelder J, Yang W, Hawke DH, Zheng Y, Xia Y, Aldape K, He J, Hunter T, Wang L, Lu Z. Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis. Mol Cell 2016; 61:705-719. [PMID: 26942675 DOI: 10.1016/j.molcel.2016.02.009] [Citation(s) in RCA: 332] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/19/2015] [Accepted: 02/05/2016] [Indexed: 12/31/2022]
Abstract
It is unclear how the Warburg effect that exemplifies enhanced glycolysis in the cytosol is coordinated with suppressed mitochondrial pyruvate metabolism. We demonstrate here that hypoxia, EGFR activation, and expression of K-Ras G12V and B-Raf V600E induce mitochondrial translocation of phosphoglycerate kinase 1 (PGK1); this is mediated by ERK-dependent PGK1 S203 phosphorylation and subsequent PIN1-mediated cis-trans isomerization. Mitochondrial PGK1 acts as a protein kinase to phosphorylate pyruvate dehydrogenase kinase 1 (PDHK1) at T338, which activates PDHK1 to phosphorylate and inhibit the pyruvate dehydrogenase (PDH) complex. This reduces mitochondrial pyruvate utilization, suppresses reactive oxygen species production, increases lactate production, and promotes brain tumorigenesis. Furthermore, PGK1 S203 and PDHK1 T338 phosphorylation levels correlate with PDH S293 inactivating phosphorylation levels and poor prognosis in glioblastoma patients. This work highlights that PGK1 acts as a protein kinase in coordinating glycolysis and the tricarboxylic acid (TCA) cycle, which is instrumental in cancer metabolism and tumorigenesis.
Collapse
Affiliation(s)
- Xinjian Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuhui Jiang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Weiwei Yang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David H Hawke
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Kenneth Aldape
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie He
- Laboratory of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 10002, China
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Liwei Wang
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Yehia L, Boulos F, Jabbour M, Mahfoud Z, Fakhruddin N, El-Sabban M. Expression of HIF-1α and Markers of Angiogenesis Are Not Significantly Different in Triple Negative Breast Cancer Compared to Other Breast Cancer Molecular Subtypes: Implications for Future Therapy. PLoS One 2015; 10:e0129356. [PMID: 26046764 PMCID: PMC4457831 DOI: 10.1371/journal.pone.0129356] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/07/2015] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Triple negative breast cancer lacks estrogen, progesterone and epidermal growth factor receptors rendering it refractory to available targetedtherapies. TNBC is associated with central fibrosis and necrosis, both indicators of tumor hypoxia. Hypoxia inducible factor 1α is up-regulated under hypoxia and its expression is associated with induction of angiogenesis resulting in proliferation, aggressive tumor phenotype and metastasis. In this study we evaluate the potential use of HIF-1α as aTNBC-specific marker. METHODS 62 TNBC, 64 HER2+, and 64 hormone-receptors positive breast cancer cases were evaluated for central fibrosis and necrosis, HIF-1α, HIF-1β, VEGFR3, CD31 expression and microvessel density. RNA extraction from paraffin-embedded samples, followed by quantitative real-time polymerase chain reaction (qRT-PCR) evaluation of HIF-1α and VEGF transcripts was performed on 54 cases (18 from each subtype). RESULTS HIF-1α protein was expressed in 35.5% TNBC, 45.3% HER2+and 25.0% ER+/PR+ (p = 0.055; χ2 test). PCRanalysis of subgroup of breast cancers, 84.2% expressed HIF-1α protein and its transcripts, while only 66.7% expressed VEGF transcripts simultaneously with the HIF-1α protein and its transcripts. Central fibrosis and necrosis was highest in TNBC (p = 0.015; χ2 test), while MVD was comparable among all groups (p = 0.928; χ2 test). VEGFR3 was highest in TNBC expressing HIF-1α. HIF-1β protein was expressed in 32.0% of HIF-1α(+), and in (44.3%) of HIF-1α(-) breast cancer cases (p = 0.033; χ2 test). Moreover, HIF-1α expression in cases with central fibrosis and necrosis was highest in the HER2+ followed by the TNBC (p = 0.156; χ2 test). CONCLUSIONS A proportion of TNBC express HIF-1α but not in a significantly different manner from other breast cancer subtypes. The potential of anti-HIF-1α targeted therapy is therefore not a candidate for exclusive use in TNBC, but should be considered in all breast cancers, especially in the setting of clinically aggressive or refractory disease.
Collapse
Affiliation(s)
- Lamis Yehia
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44195, United States of America
| | - Fouad Boulos
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mark Jabbour
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ziyad Mahfoud
- Department of Public Health, Weill Cornell Medical College, Doha, Qatar
| | - Najla Fakhruddin
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Pathology, Hammoud Hospital University Medical Center, Sidon, Lebanon
- * E-mail: (NF); (ME)
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
- * E-mail: (NF); (ME)
| |
Collapse
|
19
|
Akil H, Abbaci A, Lalloué F, Bessette B, Costes LMM, Domballe L, Charreau S, Guilloteau K, Karayan-Tapon L, Bernard FX, Morel F, Jauberteau MO, Lecron JC. IL22/IL-22R pathway induces cell survival in human glioblastoma cells. PLoS One 2015; 10:e0119872. [PMID: 25793261 PMCID: PMC4368808 DOI: 10.1371/journal.pone.0119872] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
Abstract
Interleukin-22 (IL-22) is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1) and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM). Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.
Collapse
Affiliation(s)
- Hussein Akil
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Amazigh Abbaci
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Fabrice Lalloué
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Barbara Bessette
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Léa M. M. Costes
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Linda Domballe
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Sandrine Charreau
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
| | - Karline Guilloteau
- INSERM U1084, Université de Poitiers, Poitiers, France
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- INSERM U1084, Université de Poitiers, Poitiers, France
- Laboratoire de Cancérologie Biologique, CHU de Poitiers, Poitiers, France
| | - François-Xavier Bernard
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
- BIOalternatives, Gençay, France
| | - Franck Morel
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
| | - Marie-Odile Jauberteau
- Laboratoire Homéostasie Cellulaire et Pathologies (LHCP-EA 3842), Faculté de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | - Jean-Claude Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC-EA 4331), Université de Poitiers, Poitiers, France
- Service Immunologie et inflammation, CHU de Poitiers, Poitiers, France
| |
Collapse
|
20
|
Murray JI, West NR, Murphy LC, Watson PH. Intratumoural inflammation and endocrine resistance in breast cancer. Endocr Relat Cancer 2015; 22:R51-67. [PMID: 25404688 DOI: 10.1530/erc-14-0096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is becoming clear that inflammation-associated mechanisms can affect progression of breast cancer and modulate responses to treatment. Estrogen receptor alpha (ERα (ESR1)) is the principal biomarker and therapeutic target for endocrine therapies in breast cancer. Over 70% of patients are ESR1-positive at diagnosis and are candidates for endocrine therapy. However, ESR1-positive tumours can become resistant to endocrine therapy. Multiple mechanisms of endocrine resistance have been proposed, including suppression of ESR1. This review discusses the relationship between intratumoural inflammation and endocrine resistance with a particular focus on inflammation-mediated suppression of ESR1.
Collapse
Affiliation(s)
- Jill I Murray
- Deeley Research CentreBritish Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada V8R 6V5Translational Gastroenterology UnitNuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UKDepartment of Biochemistry and Medical Genetics and the Manitoba Institute of Cell BiologyUniversity of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, CanadaDepartment of Biochemistry and MicrobiologyUniversity of Victoria, Victoria, British Columbia, CanadaDepartment of Pathology and Laboratory MedicineUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Nathan R West
- Deeley Research CentreBritish Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada V8R 6V5Translational Gastroenterology UnitNuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UKDepartment of Biochemistry and Medical Genetics and the Manitoba Institute of Cell BiologyUniversity of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, CanadaDepartment of Biochemistry and MicrobiologyUniversity of Victoria, Victoria, British Columbia, CanadaDepartment of Pathology and Laboratory MedicineUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Leigh C Murphy
- Deeley Research CentreBritish Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada V8R 6V5Translational Gastroenterology UnitNuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UKDepartment of Biochemistry and Medical Genetics and the Manitoba Institute of Cell BiologyUniversity of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, CanadaDepartment of Biochemistry and MicrobiologyUniversity of Victoria, Victoria, British Columbia, CanadaDepartment of Pathology and Laboratory MedicineUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Peter H Watson
- Deeley Research CentreBritish Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada V8R 6V5Translational Gastroenterology UnitNuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UKDepartment of Biochemistry and Medical Genetics and the Manitoba Institute of Cell BiologyUniversity of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, CanadaDepartment of Biochemistry and MicrobiologyUniversity of Victoria, Victoria, British Columbia, CanadaDepartment of Pathology and Laboratory MedicineUniversity of British Columbia, Vancouver, British Columbia, Canada Deeley Research CentreBritish Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada V8R 6V5Translational Gastroenterology UnitNuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UKDepartment of Biochemistry and Medical Genetics and the Manitoba Institute of Cell BiologyUniversity of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, CanadaDepartment of Biochemistry and MicrobiologyUniversity of Victoria, Victoria, British Columbia, CanadaDepartment of Pathology and Laboratory MedicineUniversity of British Columbia, Vancouver, British Columbia, Canada Deeley Research CentreBritish Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia, Canada V8R 6V5Translational Gastroenterology UnitNuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UKDepartment of Biochemistry and Medical Genetics and the Manitoba Institute of Cell BiologyUniversity of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, CanadaDepartment of Biochemistry and MicrobiologyUniversity of Victoria, Victoria, British Columbia, CanadaDepartment of Pathology and Laboratory MedicineUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Massarweh S, Moss J, Wang C, Romond E, Slone S, Weiss H, Karabakhtsian RG, Napier D, Black EP. Impact of adding the multikinase inhibitor sorafenib to endocrine therapy in metastatic estrogen receptor-positive breast cancer. Future Oncol 2014; 10:2435-48. [PMID: 24826798 PMCID: PMC5527710 DOI: 10.2217/fon.14.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Targeting growth factor and survival pathways may delay endocrine-resistance in estrogen receptor-positive breast cancer. MATERIALS & METHODS A pilot Phase II study adding sorafenib to endocrine therapy in 11 patients with metastatic estrogen receptor-positive breast cancer was conducted. Primary end point was response by RECIST after 3 months of sorafenib. Secondary end points included safety, time to progression and biomarker modulation. The study closed early owing to slow accrual. RESULTS Eight out of 11 patients had progressive disease on study entry and three had stable disease. Of the ten evaluable patients, seven experienced stable disease (70%) and three experienced progressive diseas (30%), with a median time to progression of 6.1 months (8.4 months in the seven patients on tamoxifen). The serum samples demonstrated a significant reduction in VEGF receptor 2 and PDGF receptor-α. Microarray analysis identified 32 suppressed genes, no induced genes and 29 enriched Kyoto Encyclopedia of Genes and Genomes pathways. CONCLUSION The strategy of adding a targeted agent to endocrine therapy upon resistance may be worthwhile testing in larger studies.
Collapse
Affiliation(s)
- Suleiman Massarweh
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jessica Moss
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Edward Romond
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Stacey Slone
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Heidi Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | | | - Dana Napier
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Esther P Black
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
22
|
Heckler MM, Thakor H, Schafer CC, Riggins RB. ERK/MAPK regulates ERRγ expression, transcriptional activity and receptor-mediated tamoxifen resistance in ER+ breast cancer. FEBS J 2014; 281:2431-42. [PMID: 24684682 PMCID: PMC4079056 DOI: 10.1111/febs.12797] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/27/2014] [Accepted: 03/26/2014] [Indexed: 12/17/2022]
Abstract
Selective estrogen receptor modulators such as tamoxifen (TAM) significantly improve breast cancer-specific survival for women with estrogen receptor-positive (ER+) disease. However, resistance to TAM remains a major clinical problem. The resistant phenotype is usually not driven by loss or mutation of the estrogen receptor; instead, changes in multiple proliferative and/or survival pathways over-ride the inhibitory effects of TAM. Estrogen-related receptor γ (ERRγ) is an orphan member of the nuclear receptor superfamily that promotes TAM resistance in ER+ breast cancer cells. This study sought to clarify the mechanism(s) by which this orphan nuclear receptor is regulated, and hence affects TAM resistance. mRNA and protein expression/phosphorylation were monitored by RT-PCR and western blotting, respectively. Site-directed mutagenesis was used to disrupt consensus extracellular signal-regulated kinase (ERK) target sites. Cell proliferation and cell-cycle progression were measured by flow cytometric methods. ERRγ transcriptional activity was assessed by dual-luciferase promoter-reporter assays. We show that ERRγ protein levels are affected by the activation state of ERK/mitogen-activated protein kinase, and mutation of consensus ERK target sites impairs ERRγ-driven transcriptional activity and TAM resistance. These findings shed new light on the functional significance of ERRγ in ER+ breast cancer, and are the first to demonstrate a role for kinase regulation of this orphan nuclear receptor.
Collapse
MESH Headings
- Antineoplastic Agents, Hormonal/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- MAP Kinase Signaling System
- MCF-7 Cells
- Mutagenesis, Site-Directed
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptors, Estrogen/chemistry
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Selective Estrogen Receptor Modulators/pharmacology
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Mary Mazzotta Heckler
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Rd NW, E412 NRB, Washington, DC 20057
| | - Hemang Thakor
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Rd NW, E412 NRB, Washington, DC 20057
| | - Cara C. Schafer
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Rd NW, E412 NRB, Washington, DC 20057
| | - Rebecca B. Riggins
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Rd NW, E412 NRB, Washington, DC 20057
| |
Collapse
|
23
|
Riggins RB. The pERK of being a target: Kinase regulation of the orphan nuclear receptor ERRγ. RECEPTORS & CLINICAL INVESTIGATION 2014; 1:e207. [PMID: 26005698 PMCID: PMC4440692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Estrogen-related receptors (ERRs) are orphan members of the nuclear receptor superfamily that are important regulators of mitochondrial metabolism with emerging roles in cancer. In the absence of an endogenous ligand, ERRs are reliant upon other regulatory mechanisms that include protein/protein interactions and post-translational modification, though the cellular and clinical significance of this latter mechanism is unclear. We recently published a study in which we establish estrogen-related receptor gamma (ERRγ) as a target for extracellular signal-regulated kinase (ERK), and show that regulation of ERRγ by ERK has important consequences for the function of this receptor in cellular models of estrogen receptor-positive (ER+) breast cancer. In this Research Highlight, we discuss the implications of these findings from a molecular and clinical perspective.
Collapse
Affiliation(s)
- Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 USA
| |
Collapse
|
24
|
Abstract
There are areas of limited oxygen availability in most solid tumours, including breast cancer. Hypoxia in solid tumours is mainly a consequence of poor perfusion. Structural and functional abnormalities of newly formed tumour vessels cause spatial and temporal heterogeneity of tissue perfusion. The two principal mediators of hypoxia response, HIF-1 and HIF-2, are known to be stabilized at different oxygen levels and to have different temporal responses to hypoxia. Recently, stromal HIF-1 and HIF-2 have been suggested to have opposing roles in breast cancer progression. There is an established link between intralesional, severe hypoxia near areas of necrosis with high levels of HIF-1 and poor prognosis in breast cancer. However, the biological effects of moderate hypoxia and the hypoxic response of stromal cells are currently topics of intense investigation.
Collapse
Affiliation(s)
- H Rundqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
25
|
Abstract
The metabolic properties of cancer cells diverge significantly from those of normal cells. Energy production in cancer cells is abnormally dependent on aerobic glycolysis. In addition to the dependency on glycolysis, cancer cells have other atypical metabolic characteristics such as increased fatty acid synthesis and increased rates of glutamine metabolism. Emerging evidence shows that many features characteristic to cancer cells, such as dysregulated Warburg-like glucose metabolism, fatty acid synthesis and glutaminolysis are linked to therapeutic resistance in cancer treatment. Therefore, targeting cellular metabolism may improve the response to cancer therapeutics and the combination of chemotherapeutic drugs with cellular metabolism inhibitors may represent a promising strategy to overcome drug resistance in cancer therapy. Recently, several review articles have summarized the anticancer targets in the metabolic pathways and metabolic inhibitor-induced cell death pathways, however, the dysregulated metabolism in therapeutic resistance, which is a highly clinical relevant area in cancer metabolism research, has not been specifically addressed. From this unique angle, this review article will discuss the relationship between dysregulated cellular metabolism and cancer drug resistance and how targeting of metabolic enzymes, such as glucose transporters, hexokinase, pyruvate kinase M2, lactate dehydrogenase A, pyruvate dehydrogenase kinase, fatty acid synthase and glutaminase can enhance the efficacy of common therapeutic agents or overcome resistance to chemotherapy or radiotherapy.
Collapse
|
26
|
Harrison H, Rogerson L, Gregson HJ, Brennan KR, Clarke RB, Landberg G. Contrasting Hypoxic Effects on Breast Cancer Stem Cell Hierarchy Is Dependent on ER-α Status. Cancer Res 2012; 73:1420-33. [DOI: 10.1158/0008-5472.can-12-2505] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Vaapil M, Helczynska K, Villadsen R, Petersen OW, Johansson E, Beckman S, Larsson C, Påhlman S, Jögi A. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells. PLoS One 2012; 7:e46543. [PMID: 23029547 PMCID: PMC3460905 DOI: 10.1371/journal.pone.0046543] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/31/2012] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis. METHODS Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot. RESULTS In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1α levels and multiple cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix. Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with mammary epithelial polarization e.g. α6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia. We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures. Acinar morphogenesis was associated with global histone deacetylation whereas the hypoxic breast epithelial cells showed sustained global histone acetylation, which is generally associated with active transcription and an undifferentiated proliferative state.
Collapse
Affiliation(s)
- Marica Vaapil
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
- CREATE Health, Lund University, Lund, Sweden
| | - Karolina Helczynska
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
- CREATE Health, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - René Villadsen
- Department of Cellular and Molecular Medicine, Centre for Biological Disease Analysis, and The Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole W. Petersen
- Department of Cellular and Molecular Medicine, Centre for Biological Disease Analysis, and The Danish Stem Cell Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisabet Johansson
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
- CREATE Health, Lund University, Lund, Sweden
| | - Siv Beckman
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
- CREATE Health, Lund University, Lund, Sweden
| | - Christer Larsson
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
| | - Sven Påhlman
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
- CREATE Health, Lund University, Lund, Sweden
| | - Annika Jögi
- Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö, Sweden
- CREATE Health, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Qi X, Zhi H, Lepp A, Wang P, Huang J, Basir Z, Chitambar CR, Myers CR, Chen G. p38γ mitogen-activated protein kinase (MAPK) confers breast cancer hormone sensitivity by switching estrogen receptor (ER) signaling from classical to nonclassical pathway via stimulating ER phosphorylation and c-Jun transcription. J Biol Chem 2012; 287:14681-91. [PMID: 22399296 DOI: 10.1074/jbc.m112.349357] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptor (ER) α promotes breast cancer growth by regulating gene expression through classical estrogen response element (ERE) binding and nonclassical (interaction with c-Jun at AP-1 sites) pathways. ER is the target for anti-estrogens such as tamoxifen (TAM). However, the potential for classical versus nonclassical ER signaling to influence hormone sensitivity is not known. Moreover, anti-estrogens frequently activate several signaling cascades besides the target ER, and the implications of these "off-target" signaling events have not been explored. Here, we report that p38γ MAPK is selectively activated by treatment with TAM. This results in both phosphorylation of ER at Ser-118 and stimulation of c-Jun transcription, thus switching ER signaling from the classical to the nonclassical pathway leading to increased hormone sensitivity. Unexpectedly, phosphorylation at Ser-118 is required for ER to bind both p38γ and c-Jun, thereby promoting ER relocation from ERE to AP-1 promoter sites. Thus, ER/Ser-118 phosphorylation serves as a central mechanism by which p38γ regulates signaling transduction of ER with its inhibitor TAM.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Exon-level transcriptome profiling in murine breast cancer reveals splicing changes specific to tumors with different metastatic abilities. PLoS One 2010; 5:e11981. [PMID: 20700505 PMCID: PMC2917353 DOI: 10.1371/journal.pone.0011981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/08/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Breast cancer is the second most frequent type of cancer affecting women. We are increasingly aware that changes in mRNA splicing are associated with various characteristics of cancer. The most deadly aspect of cancer is metastasis, the process by which cancer spreads from the primary tumor to distant organs. However, little is known specifically about the involvement of alternative splicing in the formation of macroscopic metastases. Our study investigates transcript isoform changes that characterize tumors of different abilities to form growing metastases. METHODS AND FINDINGS To identify alternative splicing events (ASEs) that are associated with the fully metastatic phenotype in breast cancer, we used Affymetrix Exon Microarrays to profile mRNA isoform variations genome-wide in weakly metastatic (168FARN and 4T07) and highly metastatic (4T1) mammary carcinomas. Statistical analysis identified significant expression changes in 7606 out of 155,994 (4%) exons and in 1725 out of 189,460 (1%) intronic regions, which affect 2623 out of 16,654 (16%) genes. These changes correspond to putative alternative isoforms-several of which are novel-that are differentially expressed between tumors of varying metastatic phenotypes. Gene pathway analysis showed that 1224 of genes expressing alternative isoforms were involved in cell growth, cell interactions, cell proliferation, cell migration and cell death and have been previously linked to cancers and genetic disorders. We chose ten predicted splice variants for RT-PCR validation, eight of which were successfully confirmed (MED24, MFI2, SRRT, CD44, CLK1 and HNRNPH1). These include three novel intron retentions in CD44, a gene in which isoform variations have been previously associated with the metastasis of several cancers. CONCLUSION Our findings reveal that various genes are differently spliced and/or expressed in association with the metastatic phenotype of tumor cells. Identification of metastasis-specific isoforms may contribute to the development of improved breast cancer stage identification and targeted therapies.
Collapse
|
30
|
Naderi A, Liu J. Inhibition of androgen receptor and Cdc25A phosphatase as a combination targeted therapy in molecular apocrine breast cancer. Cancer Lett 2010; 298:74-87. [PMID: 20605569 DOI: 10.1016/j.canlet.2010.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 05/17/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Molecular apocrine breast cancer is an estrogen receptor negative subtype characterized by the over-expression of steroid response genes. In this study we investigate the therapeutic effects of persistent ERK phosphorylation using a Cdc25A phosphatase inhibitor, PM-20 in combination with AR inhibition using flutamide in this subtype. Our findings demonstrate a significant synergy with this combination in reducing cell viability and growth. Furthermore, we show that the mechanism of this effect involves a cross-talk between the AR and ERK signalling pathways. Moreover, using a xenograft molecular apocrine model we demonstrate that the combination therapy results in a significantly better therapeutic response compared to monotherapy and control groups manifesting as reductions in tumor growth, proliferation index, and cellularity. This study demonstrates that the combined application of AR and Cdc25A inhibitors is a promising therapeutic strategy in molecular apocrine breast cancer.
Collapse
Affiliation(s)
- Ali Naderi
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Qld 4102, Australia.
| | | |
Collapse
|
31
|
A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks. Breast Cancer Res Treat 2009; 120:83-93. [DOI: 10.1007/s10549-009-0378-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 03/13/2009] [Indexed: 10/20/2022]
|
32
|
Brown JQ, Wilke LG, Geradts J, Kennedy SA, Palmer GM, Ramanujam N. Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo. Cancer Res 2009; 69:2919-26. [PMID: 19293184 DOI: 10.1158/0008-5472.can-08-3370] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We propose the use of a robust, biopsy needle-based, fiber-optic tool for routine clinical quantification of tumor oxygenation at the time of diagnostic biopsy for breast cancer. The purpose of this study was to show diffuse reflectance spectroscopy as a quantitative tool to measure oxygenation levels in the vascular compartment of breast cancers in vivo via an optical biopsy technique. Thirty-five patients undergoing surgical treatment for breast cancer were recruited for the study at Duke University Medical Center. Diffuse reflectance spectroscopy was performed on the tumors in situ before surgical resection, followed by needle-core biopsy of the optically measured tissue. Hemoglobin saturation and total hemoglobin content were quantified from 76 optical spectra-tissue biopsy pairs, consisting of 20 malignant, 23 benign, and 33 adipose tissues. Hemoglobin saturation in malignant tissues was significantly lower than nonmalignant tissues (P<0.002) and was negatively correlated with tumor size and pathologic tumor category (P<0.05). Hemoglobin saturation was positively correlated with total hemoglobin content in malignant tissues (P<0.02). HER2/neu-amplified tumors exhibited significantly higher total hemoglobin content (P<0.05) and significantly higher hemoglobin saturation (P<0.02), which is consistent with a model of increased angiogenesis and tumor perfusion promoted by HER2/neu amplification. Diffuse reflectance spectroscopy could aid in prognosis and prediction in breast cancer via quantitative assessment of tumor physiology at the time of diagnostic biopsy.
Collapse
Affiliation(s)
- J Quincy Brown
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Collier MEW, Li C, Ettelaie C. Influence of exogenous tissue factor on estrogen receptor alpha expression in breast cancer cells: involvement of beta1-integrin, PAR2, and mitogen-activated protein kinase activation. Mol Cancer Res 2009; 6:1807-18. [PMID: 19074826 DOI: 10.1158/1541-7786.mcr-08-0109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased expression of tissue factor (TF) has been associated with invasive forms of breast cancer. Conversely, the loss of estrogen receptor alpha (ERalpha) is associated with increased cell invasiveness. We have examined the influence of exogenous truncated recombinant TF (rTF) on ERalpha expression and cell invasiveness and investigated the mechanism of rTF signaling. The influence of rTF on ERalpha expression in MCF-7 and T47D cell lines was investigated using reverse transcription-PCR and ELISA. Cell invasion was measured using Boyden chamber-based invasion assays. Additionally, the interaction of fluorescein-labeled rTF with the surface of MCF-7 cells and particularly with beta(1)-integrin was examined. Treatment of cells with rTF resulted in the down-regulation of ERalpha mRNA and protein over 24 h, which required beta(1)-integrin and involved the mitogen-activated protein kinase pathway but did not require PAR2 activation. The addition of rTF reduced estradiol-mediated cell proliferation as well as increased cell invasiveness requiring both PAR2 and beta(1)-integrin activation. Fluorescein-labeled rTF was shown to bind to the surface of MCF-7 cells within 5 min and peaked at 15 min. The bound rTF colocalized with cellular beta(1)-integrin and was disrupted in the presence of excess unlabeled rTF and an anti-beta(1) polyclonal antibody. Finally, affinity purification of beta(1)-integrin using rTF-conjugated agarose showed a requirement for the presence of divalent cations but not factor VIIa. The results indicate that rTF is capable of down-regulating ERalpha expression in breast cancer cells, resulting in decreases in estrogen-mediated cell proliferation and increased invasiveness. Furthermore, the mechanisms by which rTF induces these changes involve both PAR2 and beta(1)-integrin.
Collapse
Affiliation(s)
- Mary E W Collier
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull, United Kingdom
| | | | | |
Collapse
|
34
|
Generali D, Buffa FM, Berruti A, Brizzi MP, Campo L, Bonardi S, Bersiga A, Allevi G, Milani M, Aguggini S, Papotti M, Dogliotti L, Bottini A, Harris AL, Fox SB. Phosphorylated ERα, HIF-1α, and MAPK Signaling As Predictors of Primary Endocrine Treatment Response and Resistance in Patients With Breast Cancer. J Clin Oncol 2009; 27:227-34. [DOI: 10.1200/jco.2007.13.7083] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose We aimed to identify signaling pathways involved in the response and resistance to aromatase inhibitor therapy in patients with breast cancer. Patients and Methods One hundred fourteen women with T2-4 N0-1, estrogen receptor (ER) α–positive tumors were randomly assigned to neoadjuvant letrozole or letrozole plus metronomic cyclophosphamide. Twenty-four tumor proteins involved in apoptosis, cell survival, hypoxia, angiogenesis, growth factor, and hormone signaling were assessed by immunohistochemistry in pretreatment samples (eg, caspase 3, phospho- mammalian target of rapamycin, hypoxia-inducible factor 1α [HIF-1α], vascular endothelial growth factor, mitogen-activated protein kinase [MAPK], phosphorylated epidermal growth factor receptor, phosphorylated ERα [pERα]). A multivariate generalized linear regression approach was applied using a penalized least-square minimization to perform variable selection and regularization. Ten-fold cross-validation and iterative leave-one-out were employed to validate and test the model, respectively. Tumor size, nodal status, age, tumor grade, histological type, and treatment were included in the analysis. Results Ninety-one patients (81%) attained a disease response, 48 achieved a complete clinical response (43%) whereas 22 did not respond (19%). Increased pERα and decreased p44/42 MAPK were significant factors for complete response to treatment in all leave-one-out iterations. Increased p44/42 MAPK and HIF-1α were significant factors for treatment resistance in all leave-one-out iterations. There was no significant interaction between these variables and treatment. Conclusion Activated ERα form was an independent factor for sensitivity to chemoendocrine treatment, whereas HIF-1α and p44/42 MAPK were independent factors for resistance. Although further confirmatory analyses are needed, these findings have clear potential implications for future strategies in the management of clinical trials with aromatase inhibitors in the breast cancer.
Collapse
Affiliation(s)
- Daniele Generali
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Francesca M. Buffa
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Alfredo Berruti
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Maria P. Brizzi
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Leticia Campo
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Simone Bonardi
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Alessandra Bersiga
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Giovanni Allevi
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Manuela Milani
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Sergio Aguggini
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Mauro Papotti
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Luigi Dogliotti
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Alberto Bottini
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Adrian L. Harris
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| | - Stephen B. Fox
- From the Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine; Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Unità di Patologia Mammaria –Breast Cancer Unit and Anatomia Patologica, Azienda Instituti Ospitalieri di Cremona, Cremona; Anatomia Patologica; Oncologia Medica, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Azienda Ospedaliera San Luigi di Orbassano, Orbassano, Italy; Peter
| |
Collapse
|
35
|
Weitsman GE, Weebadda W, Ung K, Murphy LC. Reactive oxygen species induce phosphorylation of serine 118 and 167 on estrogen receptor alpha. Breast Cancer Res Treat 2008; 118:269-79. [DOI: 10.1007/s10549-008-0221-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 10/02/2008] [Indexed: 11/30/2022]
|
36
|
Bayliss J, Hilger A, Vishnu P, Diehl K, El-Ashry D. Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response. Clin Cancer Res 2008; 13:7029-36. [PMID: 18056179 DOI: 10.1158/1078-0432.ccr-07-0587] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In breast cancer, the presence of estrogen receptor alpha (ER) denotes a better prognosis and response to antiestrogen therapy. Lack of ERalpha correlates with overexpression of epidermal growth factor receptor or c-erbB-2. We have shown that hyperactivation of mitogen-activated protein kinase (MAPK) directly represses ERalpha expression in a reversible manner. In this study, we determine if inhibition of MAPK in established ERalpha(-) breast cancer cell lines and tumors results in reexpression of ERalpha, and further, if reexpression of ERalpha in these ERalpha(-) tumors and cell lines could restore antiestrogen responses. EXPERIMENTAL DESIGN Established ERalpha(-) breast cancer cell lines, ERalpha(-) breast tumors, and tumor cell cultures obtained from ERalpha(-) tumors were used in this study. Inhibition of hyperactive MAPK was accomplished via the MAPK/ERK kinase 1/2 inhibitor U0126 or via upstream inhibition with Iressa or Herceptin. Western blotting or reverse transcription-PCR for ERalpha was used to assess the reexpression of ERalpha in cells treated with U0126. Growth assays with WST-1 were done to assess restoration of antiestrogen sensitivity in these cells. RESULTS Inhibition of MAPK activity in ERalpha(-) breast cancer cell lines results in reexpression of ERalpha; upstream inhibition via targeting epidermal growth factor receptor or c-erbB-2 is equally effective. Importantly, this reexpressed ERalpha can now mediate an antiestrogen response in a subset of these ERalpha(-) breast cancer cell lines. Treatment of ERalpha(-) tumor specimens with MAPK inhibitors results in restoration of ERalpha mRNA, and similarly in epithelial cultures from ERalpha(-) tumors, MAPK inhibition restores both ERalpha protein and antiestrogen response. CONCLUSIONS These data show both the possibility of restoring ERalpha expression and antiestrogen responses in ERalpha(-) breast cancer and suggest that there exist ERalpha(-) breast cancer patients who would benefit from a combined MAPK inhibition/hormonal therapy.
Collapse
Affiliation(s)
- Jill Bayliss
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0640, USA
| | | | | | | | | |
Collapse
|
37
|
Brennan DJ, Jirstrom K, Kronblad A, Millikan RC, Landberg G, Duffy MJ, Rydén L, Gallagher WM, O'Brien SL. CA IX is an independent prognostic marker in premenopausal breast cancer patients with one to three positive lymph nodes and a putative marker of radiation resistance. Clin Cancer Res 2007; 12:6421-31. [PMID: 17085655 DOI: 10.1158/1078-0432.ccr-06-0480] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hypoxia in breast cancer is associated with poor prognosis and down-regulation of the estrogen receptor. Carbonic anhydrase IX (CA IX) is a hypoxia-inducible gene that has been associated with poor outcome in many epithelial cancers. Previous studies of CA IX in breast cancer have been carried out on mixed cohorts of premenopausal and postmenopausal patients with locally advanced disease and varying treatment regimens. We examined the potential prognostic and predictive role of CA IX in premenopausal breast cancer patients. EXPERIMENTAL DESIGN Using tissue microarrays, we analyzed CA IX expression in 400 stage II breast cancers from premenopausal women. The patients had previously participated in a randomized control trial comparing 2 years of tamoxifen to no systemic adjuvant treatment. Median follow-up was 13.9 years. RESULTS CA IX expression correlated positively with tumor size, grade, hypoxia-inducible factor 1alpha, Ki-67, cyclin E, and cyclin A2 expression. CA IX expression correlated negatively with cyclin D1, estrogen receptor, and progesterone receptor. CA IX expression was associated with a reduced relapse-free survival (P=0.032), overall survival (P=0.022), and breast cancer-specific survival (P=0.005). Multivariate analysis revealed that CA IX was an independent prognostic marker in untreated patients with one to three positive lymph nodes (hazard ratio, 3.2; 95% confidence interval, 1.15-9.13; P=0.027). CONCLUSION CA IX is marker of poor prognosis in premenopausal breast cancer patients and it is an independent predictor of survival in patients with one to three positive lymph nodes. As all these patients received locoregional radiation therapy, CA IX may be associated with resistance to radiotherapy.
Collapse
Affiliation(s)
- Donal J Brennan
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin, and Department of Pathology and Laboratory Medicine, St. Vincent's University Hospital, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Weber GF, Gaertner FC, Erl W, Janssen KP, Blechert B, Holzmann B, Weighardt H, Essler M. IL-22-mediated tumor growth reduction correlates with inhibition of ERK1/2 and AKT phosphorylation and induction of cell cycle arrest in the G2-M phase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:8266-72. [PMID: 17114505 DOI: 10.4049/jimmunol.177.11.8266] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
IL-22 is a recently discovered cytokine of the IL-10 family that binds to a class II cytokine receptor composed of IL-22R1 and IL-10R2(c) and influences a variety of immune reactions. As IL-22 has also been shown to modulate cell cycle and proliferation mediators such as ERK1/2 and JNK, we studied the role of IL-22 in proliferation, apoptosis, and cell cycle regulation in EMT6 murine breast cancer cells in vitro and in vivo. In this study, we report that murine breast cancer cells express functional IL-22R as indicated by RT-PCR studies, immunoblotting, and STAT3 activation assays. Importantly, IL-22 exposure of EMT6 cells resulted in decreased levels of phosphorylated ERK1/2 and AKT protein kinases, indicating an inhibitory effect of IL-22 on signaling pathways promoting cell proliferation. Furthermore, IL-22 induced a cell cycle arrest of EMT6 cells in the G(2)-M phase. IL-22 reduced EMT6 cell numbers and the proliferation rate by approximately 50% as measured by [(3)H]thymidine incorporation. IL-22 treatment of EMT6 tumor-bearing mice lead to a decreased tumor size and a reduced tumor cell proliferation in vivo, as determined by 3'-deoxy-3'-fluorothymidine-positron emission tomography scans. Interestingly, IL-22 did not induce apoptosis, as determined in annexin V binding assay and caspase-3 activation assay and had no effect on angiogenesis in vivo. In conclusion, our results indicate that IL-22 reduced tumor growth by inhibiting signaling pathways such as ERK1/2 and AKT phosphorylation that promote tumor cell proliferation in EMT6 cells. Therefore, IL-22 may play a role in the control of tumor growth and tumor progression.
Collapse
Affiliation(s)
- Georg F Weber
- Chirurgische Klinik und Poliklinik der Technischen Universität München, Ismaningerstrasse 22, 81675 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|