1
|
German B, Alaiwi SA, Ho KL, Nanda JS, Fonseca MA, Burkhart DL, Sheahan AV, Bergom HE, Morel KL, Beltran H, Hwang JH, Freedman ML, Lawrenson K, Ellis L. MYBL2 Drives Prostate Cancer Plasticity: Inhibiting Its Transcriptional Target CDK2 for RB1-Deficient Neuroendocrine Prostate Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:2295-2307. [PMID: 39113611 PMCID: PMC11368174 DOI: 10.1158/2767-9764.crc-24-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
Phenotypic plasticity is a recognized mechanism driving therapeutic resistance in patients with prostate cancer. Although underlying molecular causations driving phenotypic plasticity have been identified, therapeutic success is yet to be achieved. To identify putative master regulator transcription factors (MR-TF) driving phenotypic plasticity in prostate cancer, this work utilized a multiomic approach using genetically engineered mouse models of prostate cancer combined with patient data to identify MYB proto-oncogene like 2 (MYBL2) as a significantly enriched transcription factor in prostate cancer exhibiting phenotypic plasticity. Genetic inhibition of Mybl2 using independent murine prostate cancer cell lines representing phenotypic plasticity demonstrated Mybl2 loss significantly decreased in vivo growth as well as cell fitness and repressed gene expression signatures involved in pluripotency and stemness. Because MYBL2 is currently not druggable, a MYBL2 gene signature was employed to identify cyclin-dependent kinase-2 (CDK2) as a potential therapeutic target. CDK2 inhibition phenocopied genetic loss of Mybl2 and significantly decreased in vivo tumor growth associated with enrichment of DNA damage. Together, this work demonstrates MYBL2 as an important MR-TF driving phenotypic plasticity in prostate cancer. Furthermore, high MYBL2 activity identifies prostate cancer that would be responsive to CDK2 inhibition. SIGNIFICANCE Prostate cancers that escape therapy targeting the androgen receptor signaling pathways via phenotypic plasticity are currently untreatable. Our study identifies MYBL2 as a MR-TF in phenotypic plastic prostate cancer and implicates CDK2 inhibition as a novel therapeutic target for this most lethal subtype of prostate cancer.
Collapse
Affiliation(s)
- Beatriz German
- Department of Surgery, Center for Prostate Disease Research, Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
- Walter Reed National Military Medical Center, Bethesda, Maryland.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland.
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Sarah A. Alaiwi
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut.
| | - Kun-Lin Ho
- Department of Surgery, Center for Prostate Disease Research, Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
- Walter Reed National Military Medical Center, Bethesda, Maryland.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland.
| | - Jagpreet S. Nanda
- Department of Urology, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California.
| | - Marcos A. Fonseca
- Department of Obstetrics and Gynecology and the Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Deborah L. Burkhart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Anjali V. Sheahan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Hannah E. Bergom
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota.
| | - Katherine L. Morel
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia.
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Justin H. Hwang
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota.
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Kate Lawrenson
- Department of Obstetrics and Gynecology and the Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California.
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Leigh Ellis
- Department of Surgery, Center for Prostate Disease Research, Murtha Cancer Center Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
- Walter Reed National Military Medical Center, Bethesda, Maryland.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland.
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
2
|
Werwein E, Biyanee A, Klempnauer KH. Intramolecular interaction of B-MYB is regulated through Ser-577 phosphorylation. FEBS Lett 2020; 594:4266-4279. [PMID: 32979888 DOI: 10.1002/1873-3468.13940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/11/2020] [Accepted: 09/08/2020] [Indexed: 02/02/2023]
Abstract
The transcription factor B-MYB is an important regulator of cell cycle-related processes that is activated by step-wise phosphorylation of multiple sites by cyclin-dependent kinases (CDKs) and conformational changes induced by the peptidylprolyl cis/trans isomerase Pin1. Here, we show that a conserved amino acid sequence around Ser-577 in the C-terminal part of B-MYB is able to interact with the B-MYB DNA-binding domain. Phosphorylation of Ser-577 disrupts this interaction and is regulated by the interplay of CDKs and the phosphatase CDC14B. Deletion of sequences surrounding Ser-577 hyperactivates the transactivation potential of B-MYB, decreases its proteolytic stability, and causes cell cycle defects. Overall, we show for the first time that B-MYB can undergo an intramolecular interaction that is controlled by the phosphorylation state of Ser-577.
Collapse
Affiliation(s)
- Eugen Werwein
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Abhiruchi Biyanee
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | | |
Collapse
|
3
|
Cibis H, Biyanee A, Dörner W, Mootz HD, Klempnauer KH. Characterization of the zinc finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. Sci Rep 2020; 10:8390. [PMID: 32439918 PMCID: PMC7242444 DOI: 10.1038/s41598-020-65443-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/28/2020] [Indexed: 11/09/2022] Open
Abstract
B-MYB, a highly conserved member of the MYB transcription factor family, is expressed ubiquitously in proliferating cells and plays key roles in important cell cycle-related processes, such as control of G2/M-phase transcription, cytokinesis, G1/S-phase progression and DNA-damage reponse. Deregulation of B-MYB function is characteristic of several types of tumor cells, underlining its oncogenic potential. To gain a better understanding of the functions of B-MYB we have employed affinity purification coupled to mass spectrometry to discover novel B-MYB interacting proteins. Here we have identified the zinc-finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. ZMYM4 is a poorly studied protein whose initial characterization reported here shows that it is highly SUMOylated and that its interaction with B-MYB is stimulated upon induction of DNA damage. Unlike knockdown of B-MYB, which causes G2/M arrest and defective cytokinesis in HEK293 cells, knockdown of ZMYM2 or ZMYM4 have no obvious effects on the cell cycle of these cells. By contrast, knockdown of ZMYM2 strongly impaired the G1/S-phase progression of HepG2 cells, suggesting that ZMYM2, like B-MYB, is required for entry into S-phase in these cells. Overall, our work identifies two novel B-MYB binding partners with possible functions in the DNA-damage response and the G1/S-transition.
Collapse
Affiliation(s)
- Hannah Cibis
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Abhiruchi Biyanee
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Wolfgang Dörner
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Henning D Mootz
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany.
| |
Collapse
|
4
|
Ward C, Volpe G, Cauchy P, Ptasinska A, Almaghrabi R, Blakemore D, Nafria M, Kestner D, Frampton J, Murphy G, Buganim Y, Kaji K, García P. Fine-Tuning Mybl2 Is Required for Proper Mesenchymal-to-Epithelial Transition during Somatic Reprogramming. Cell Rep 2020; 24:1496-1511.e8. [PMID: 30089261 PMCID: PMC6092268 DOI: 10.1016/j.celrep.2018.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/18/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
During somatic reprogramming, Yamanaka’s pioneer factors regulate a complex sequence of molecular events leading to the activation of a network of pluripotency factors, ultimately resulting in the acquisition and maintenance of a pluripotent state. Here, we show that, contrary to the pluripotency factors studied so far, overexpression of Mybl2 inhibits somatic reprogramming. Our results demonstrate that Mybl2 levels are crucial to the dynamics of the reprogramming process. Mybl2 overexpression changes chromatin conformation, affecting the accessibility of pioneer factors to the chromatin and promoting accessibility for early immediate response genes known to be reprogramming blockers. These changes in the chromatin landscape ultimately lead to a deregulation of key genes that are important for the mesenchymal-to-epithelial transition. This work defines Mybl2 level as a gatekeeper for the initiation of reprogramming, providing further insights into the tight regulation and required coordination of molecular events that are necessary for changes in cell fate identity during the reprogramming process. Deletion and overexpression of MYBL2 pluripotency factor inhibit somatic reprogramming Mybl2 overexpression affects the accessibility of pioneer factors to the chromatin Mybl2 overexpression promotes accessibility of reprogramming blockers to the chromatin High Mybl2 levels deregulate key genes for proper MET, a requirement for reprogramming
Collapse
Affiliation(s)
- Carl Ward
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Giacomo Volpe
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Department of Molecular and Cellular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ruba Almaghrabi
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniel Blakemore
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Monica Nafria
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Doris Kestner
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jon Frampton
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - George Murphy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yosef Buganim
- The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Paloma García
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
5
|
Jia Y, Gao Y, Li J, Chang Z, Yan J, Qin Y. Prognostic implications of MYBL2 in resected Chinese gastric adenocarcinoma patients. Onco Targets Ther 2019; 12:1129-1135. [PMID: 30809094 PMCID: PMC6376880 DOI: 10.2147/ott.s188820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background and aim Gastric cancer (GC), a malignant tumor worldwide, is mostly diagnosed at an advanced stage. We selected the oncogene encoding transcription factors MYBL2 to investigate the connection between MYBL2 expression and GC prognosis. Materials and methods MYBL2 mRNA and protein expression were measured by real-time PCR and immunohistochemistry, respectively. The relationship between MYBL2 protein expression and survival time was estimated by the Kaplan-Meier analysis. Cox proportional hazards model was used to evaluate the prognostic impact of MYBL2 expression. Results The overexpression of MYBL2 was related to tumor cell differentiation, Lauren type, and metastasis of lymph nodes (P<0.05). In the MYBL2 overexpression group, the median disease free survival was even poorer (P=0.000) and it comes to median overall survival (P=0.000). The study showed that MYBL2 expression was an independent hazard for disease free survival (P=0.004). Conclusion The results of this study suggest that MYBL2 could indicate a promisingly prognostic biomarker for GC patients.
Collapse
Affiliation(s)
- Yongxu Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China,
| | - Yaping Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China,
| | - Jing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China,
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China,
| | - Jie Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China,
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China,
| |
Collapse
|
6
|
Fan X, Wang Y, Jiang T, Cai W, Jin Y, Niu Y, Zhu H, Bu Y. B-Myb Mediates Proliferation and Migration of Non-Small-Cell Lung Cancer via Suppressing IGFBP3. Int J Mol Sci 2018; 19:ijms19051479. [PMID: 29772705 PMCID: PMC5983693 DOI: 10.3390/ijms19051479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/06/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
B-Myb has been shown to play an important oncogenic role in several types of human cancers, including non-small-cell lung cancer (NSCLC). We previously found that B-Myb is aberrantly upregulated in NSCLC, and overexpression of B-Myb can significantly promote NSCLC cell growth and motility. In the present study, we have further investigated the therapeutic potential of B-Myb in NSCLC. Kaplan–Meier and Cox proportional hazards analysis indicated that high expression of B-Myb is significantly associated with poor prognosis in NSCLC patients. A loss-of-function study demonstrated that depletion of B-Myb resulted in significant inhibition of cell growth and delayed cell cycle progression in NSCLC cells. Notably, B-Myb depletion also decreased NSCLC cell migration and invasion ability as well as colony-forming ability. Moreover, an in vivo study demonstrated that B-Myb depletion caused significant inhibition of tumor growth in a NSCLC xenograft nude mouse model. A molecular mechanistic study by RNA-seq analysis revealed that B-Myb depletion led to deregulation of various downstream genes, including insulin-like growth factor binding protein 3 (IGFBP3). Overexpression of IGFBP3 suppressed the B-Myb-induced proliferation and migration, whereas knockdown of IGFBP3 significantly rescued the inhibited cell proliferation and motility caused by B-Myb siRNA (small interfering RNA). Expression and luciferase reporter assays revealed that B-Myb could directly suppress the expression of IGFBP3. Taken together, our results suggest that B-Myb functions as a tumor-promoting gene via suppressing IGFBP3 and could serve as a novel therapeutic target in NSCLC.
Collapse
MESH Headings
- Animals
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Cycle/genetics
- Cell Cycle Proteins/genetics
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Insulin-Like Growth Factor Binding Protein 3/genetics
- Insulin-Like Growth Factor Binding Protein 3/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Mice
- Neoplasm Staging
- Prognosis
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- Trans-Activators/genetics
Collapse
Affiliation(s)
- Xiaoyan Fan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, ChongQing Medical University, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
- Department of Pathology, College of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, China.
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, ChongQing Medical University, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Tinghui Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, ChongQing Medical University, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Wei Cai
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, ChongQing Medical University, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Yuelei Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, ChongQing Medical University, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
- Department of Cell Biology, College of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, China.
| | - Yulong Niu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Huifang Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, ChongQing Medical University, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, ChongQing Medical University, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Lohavanichbutr P, Sakoda LC, Amos CI, Arnold SM, Christiani DC, Davies MPA, Field JK, Haura EB, Hung RJ, Kohno T, Landi MT, Liu G, Liu Y, Marcus MW, O'Kane GM, Schabath MB, Shiraishi K, Slone SA, Tardón A, Yang P, Yoshida K, Zhang R, Zong X, Goodman GE, Weiss NS, Chen C. Common TDP1 Polymorphisms in Relation to Survival among Small Cell Lung Cancer Patients: A Multicenter Study from the International Lung Cancer Consortium. Clin Cancer Res 2017; 23:7550-7557. [PMID: 28974547 DOI: 10.1158/1078-0432.ccr-17-1401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/12/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022]
Abstract
Purpose: DNA topoisomerase inhibitors are commonly used for treating small-cell lung cancer (SCLC). Tyrosyl-DNA phosphodiesterase (TDP1) repairs DNA damage caused by this class of drugs and may therefore influence treatment outcome. In this study, we investigated whether common TDP1 single-nucleotide polymorphisms (SNP) are associated with overall survival among SCLC patients.Experimental Design: Two TDP1 SNPs (rs942190 and rs2401863) were analyzed in 890 patients from 10 studies in the International Lung Cancer Consortium (ILCCO). The Kaplan-Meier method and Cox regression analyses were used to evaluate genotype associations with overall mortality at 36 months postdiagnosis, adjusting for age, sex, race, and tumor stage.Results: Patients homozygous for the minor allele (GG) of rs942190 had poorer survival compared with those carrying AA alleles, with a HR of 1.36 [95% confidence interval (CI): 1.08-1.72, P = 0.01), but no association with survival was observed for patients carrying the AG genotype (HR = 1.04, 95% CI, 0.84-1.29, P = 0.72). For rs2401863, patients homozygous for the minor allele (CC) tended to have better survival than patients carrying AA alleles (HR = 0.79; 95% CI, 0.61-1.02, P = 0.07). Results from the Genotype Tissue Expression (GTEx) Project, the Encyclopedia of DNA Elements (ENCODE), and the ePOSSUM web application support the potential function of rs942190.Conclusions: We found the rs942190 GG genotype to be associated with relatively poor survival among SCLC patients. Further investigation is needed to confirm the result and to determine whether this genotype may be a predictive marker for treatment efficacy of DNA topoisomerase inhibitors. Clin Cancer Res; 23(24); 7550-7. ©2017 AACR.
Collapse
Affiliation(s)
- Pawadee Lohavanichbutr
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Lori C Sakoda
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Susanne M Arnold
- Division of Medical Oncology, University of Kentucky Markey Cancer Center, Lexington, Kentucky
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Michael P A Davies
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Research Institute, Tokyo, Japan
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Geoffrey Liu
- Department of Medical Oncology, Princess Margaret Cancer Center and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yi Liu
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Michael W Marcus
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Grainne M O'Kane
- Department of Medical Oncology, Princess Margaret Cancer Center and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Research Institute, Tokyo, Japan
| | - Stacey A Slone
- Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky Markey Cancer Center, Lexington, Kentucky
| | - Adonina Tardón
- CIBER Epidemiology and Public Health (CIBER-ESP), Health Research Institute Carlos III, Madrid, Spain.,University Institute of Oncology, University of Oviedo, Oviedo, Asturias, Spain
| | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kazushi Yoshida
- Division of Genome Biology, National Cancer Research Institute, Tokyo, Japan
| | - Ruyang Zhang
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Xuchen Zong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Gary E Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Noel S Weiss
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Chu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington.,Department of Otolaryngology: Head and Neck Surgery, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis 2017. [PMID: 28640249 PMCID: PMC5520903 DOI: 10.1038/cddis.2017.244] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Limitless cell proliferation, evasion from apoptosis, dedifferentiation, metastatic spread and therapy resistance: all these properties of a cancer cell contribute to its malignant phenotype and affect patient outcome. MYBL2 (alias B-Myb) is a transcription factor of the MYB transcription factor family and a physiological regulator of cell cycle progression, cell survival and cell differentiation. When deregulated in cancer cells, MYBL2 mediates the deregulation of these properties. In fact, MYBL2 is overexpressed and associated with poor patient outcome in numerous cancer entities. MYBL2 and players of its downstream transcriptional network can be used as prognostic and/or predictive biomarkers as well as potential therapeutic targets to offer less toxic and more specific anti-cancer therapies in future. In this review, we summarize current knowledge on the physiological roles of MYBL2 and highlight the impact of its deregulation on cancer initiation and progression.
Collapse
|
9
|
Jin Y, Zhu H, Cai W, Fan X, Wang Y, Niu Y, Song F, Bu Y. B-Myb Is Up-Regulated and Promotes Cell Growth and Motility in Non-Small Cell Lung Cancer. Int J Mol Sci 2017; 18:ijms18060860. [PMID: 28555007 PMCID: PMC5485926 DOI: 10.3390/ijms18060860] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/26/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
B-Myb is a transcription factor that is overexpressed and plays an oncogenic role in several types of human cancers. However, its potential implication in lung cancer remains elusive. In the present study, we have for the first time investigated the expression profile of B-Myb and its functional impact in lung cancer. Expression analysis by quantificational real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry demonstrated that B-Myb expression is aberrantly overexpressed in non-small cell lung cancer (NSCLC), and positively correlated with pathologic grade and clinical stage of NSCLC. A gain-of-function study revealed that overexpression of B-Myb significantly increases lung cancer cell growth, colony formation, migration, and invasion. Conversely, a loss-of-function study showed that knockdown of B-Myb decreases cell growth, migration, and invasion. B-Myb overexpression also promoted tumor growth in vivo in a NSCLC xenograft nude mouse model. A molecular mechanistic study by RNA-sequencing (RNA-seq) analysis showed that B-Myb overexpression causes up-regulation of various downstream genes (e.g., COL11A1, COL6A1, FN1, MMP2, NID1, FLT4, INSR, and CCNA1) and activation of multiple critical pathways (e.g., extracellular signal-regulated kinases (ERK) and phosphorylated-protein kinase B (Akt) signaling pathways) involved in cell proliferation, tumorigenesis, and metastasis. Collectively, our results indicate a tumor-promoting role for B-Myb in NSCLC and thus imply its potential as a target for the diagnosis and/or treatment of NSCLC.
Collapse
Affiliation(s)
- Yuelei Jin
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Huifang Zhu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Wei Cai
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaoyan Fan
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Yulong Niu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Fangzhou Song
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Henrich SM, Usadel C, Werwein E, Burdova K, Janscak P, Ferrari S, Hess D, Klempnauer KH. Interplay with the Mre11-Rad50-Nbs1 complex and phosphorylation by GSK3β implicate human B-Myb in DNA-damage signaling. Sci Rep 2017; 7:41663. [PMID: 28128338 PMCID: PMC5269693 DOI: 10.1038/srep41663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
B-Myb, a highly conserved member of the Myb transcription factor family, is expressed ubiquitously in proliferating cells and controls the cell cycle dependent transcription of G2/M-phase genes. Deregulation of B-Myb has been implicated in oncogenesis and loss of genomic stability. We have identified B-Myb as a novel interaction partner of the Mre11-Rad50-Nbs1 (MRN) complex, a key player in the repair of DNA double strand breaks. We show that B-Myb directly interacts with the Nbs1 subunit of the MRN complex and is recruited transiently to DNA-damage sites. In response to DNA-damage B-Myb is phosphorylated by protein kinase GSK3β and released from the MRN complex. A B-Myb mutant that cannot be phosphorylated by GSK3β disturbs the regulation of pro-mitotic B-Myb target genes and leads to inappropriate mitotic entry in response to DNA-damage. Overall, our work suggests a novel function of B-Myb in the cellular DNA-damage signalling.
Collapse
Affiliation(s)
- Sarah Marie Henrich
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
- Graduate School of Chemistry (GSC-MS), Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Clemens Usadel
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Eugen Werwein
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Kamila Burdova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic
| | - Pavel Janscak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 143 00 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstr.190, CH-8057 Zürich, Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstr.190, CH-8057 Zürich, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, CH-4058 Basel, Switzerland
| | - Karl-Heinz Klempnauer
- Institut for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| |
Collapse
|
11
|
Abstract
Cellular senescence is a stable cell cycle arrest, caused by insults, such as: telomere erosion, oncogene activation, irradiation, DNA damage, oxidative stress, and viral infection. Extrinsic stimuli such as cell culture stress can also trigger this growth arrest. Senescence is thought to have evolved as an example of antagonistic pleiotropy, as it acts as a tumor suppressor mechanism during the reproductive age, but can promote organismal aging by disrupting tissue renewal, repair, and regeneration later in life. The mechanisms underlying the senescence growth arrest are broadly considered to involve p16(INK4A) -pRB and p53-p21(CIP1/WAF1/SDI1) tumor suppressor pathways; but it is not known what makes the senescence arrest stable and what the critical downstream targets are, as they are likely to be key to the establishment and maintenance of the senescent state. MYB-related protein B (B-MYB/MYBL2), a member of the myeloblastosis family of transcription factors, has recently emerged as a potential candidate for regulating entry into senescence. Here, we review the evidence which indicates that loss of B-MYB expression has an important role in causing senescence growth arrest. We discuss how B-MYB acts, as the gatekeeper, to coordinate transit through the cell cycle, in conjunction with the multivulval class B (MuvB) complex and FOXM1 transcription factors. We also evaluate the evidence connecting B-MYB to the mTOR nutrient signaling pathway and suggest that inhibition of this pathway leading to an extension of healthspan may involve activation of B-MYB.
Collapse
Affiliation(s)
- Sophia N. Mowla
- Department of Neurodegenerative Disease and MRC Prion Unit; UCL Institute of Neurology; Queen Square London WC1N 3BG UK
| | - Eric W.-F. Lam
- Division of Cancer; Department of Surgery and Cancer; Imperial Centre for Translational and Experimental Medicine; Imperial College London; Hammersmith Hospital; Du Cane Road London W12 0NN UK
| | - Parmjit S. Jat
- Department of Neurodegenerative Disease and MRC Prion Unit; UCL Institute of Neurology; Queen Square London WC1N 3BG UK
| |
Collapse
|
12
|
Werwein E, Dzuganova M, Usadel C, Klempnauer KH. B-Myb switches from Cyclin/Cdk-dependent to Jnk- and p38 kinase-dependent phosphorylation and associates with SC35 bodies after UV stress. Cell Death Dis 2013; 4:e511. [PMID: 23449447 PMCID: PMC3734824 DOI: 10.1038/cddis.2013.36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
B-Myb is a highly conserved member of the Myb transcription factor family that has essential roles in cell-cycle progression. Recent work has suggested that B-Myb is also involved in the cellular DNA-damage response. Here, we have investigated the fate of B-Myb in UV-irradiated cells. UV stress leads to the appearance of phosphorylated B-Myb in nuclear SC35 speckles during transcriptional shutdown. Furthermore, we show that UV irradiation leads to a change of the phosphorylation pattern of B-Myb, which is caused by a switch from Cyclin/Cdk-dependent to Jnk and p38 kinase-dependent phosphorylation. Taken together, we have identified Jnk and p38 kinase as novel regulators of B-Myb and established the localization of phosphorylated B-Myb in SC35 speckles as a potential novel regulatory mechanism for B-Myb in UV irradiated cells.
Collapse
Affiliation(s)
- E Werwein
- Institut für Biochemie, Wilhelm-Klemm-Straße 2, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
13
|
Werwein E, Schmedt T, Hoffmann H, Usadel C, Obermann N, Singer JD, Klempnauer KH. B-Myb promotes S-phase independently of its sequence-specific DNA binding activity and interacts with polymerase delta-interacting protein 1 (Pdip1). Cell Cycle 2012; 11:4047-58. [PMID: 23032261 DOI: 10.4161/cc.22386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
B-Myb is a highly conserved member of the Myb transcription factor family, which plays an essential role in cell cycle progression by regulating the transcription of genes at the G 2/M-phase boundary. The role of B-Myb in other parts of the cell cycle is less well-understood. By employing siRNA-mediated silencing of B-Myb expression, we found that B-Myb is required for efficient entry into S-phase. Surprisingly, a B-Myb mutant that lacks sequence-specific DNA-binding activity and is unable to activate transcription of B-Myb target genes is able to rescue the S-phase defect observed after B-Myb knockdown. Moreover, we have identified polymerase delta-interacting protein 1 (Pdip1), a BTB domain protein known to bind to the DNA replication and repair factor PCNA as a novel B-Myb interaction partner. We have shown that Pdip1 is able to interact with B-Myb and PCNA simultaneously. In addition, we found that a fraction of endogenous B-Myb can be co-precipitated via PCNA, suggesting that B-Myb might be involved in processes related to DNA replication or repair. Taken together, our work suggests a novel role for B-Myb in S-phase that appears to be independent of its sequence-specific DNA-binding activity and its ability to stimulate the expression of bona fide B-Myb target genes.
Collapse
Affiliation(s)
- Eugen Werwein
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Tu Z, Aird KM, Bitler BG, Nicodemus JP, Beeharry N, Xia B, Yen TJ, Zhang R. Oncogenic RAS regulates BRIP1 expression to induce dissociation of BRCA1 from chromatin, inhibit DNA repair, and promote senescence. Dev Cell 2011; 21:1077-91. [PMID: 22137763 DOI: 10.1016/j.devcel.2011.10.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 06/29/2011] [Accepted: 10/11/2011] [Indexed: 12/16/2022]
Abstract
Here, we report a cell-intrinsic mechanism by which oncogenic RAS promotes senescence while predisposing cells to senescence bypass by allowing for secondary hits. We show that oncogenic RAS inactivates the BRCA1 DNA repair complex by dissociating BRCA1 from chromatin. This event precedes senescence-associated cell cycle exit and coincides with the accumulation of DNA damage. Downregulation of BRIP1, a physiological partner of BRCA1 in the DNA repair pathway, triggers BRCA1 chromatin dissociation. Conversely, ectopic BRIP1 rescues BRCA1 chromatin dissociation and suppresses RAS-induced senescence and the DNA damage response. Significantly, cells undergoing senescence do not exhibit a BRCA1-dependent DNA repair response when exposed to DNA damage. Overall, our study provides a molecular basis by which oncogenic RAS promotes senescence. Because DNA damage has the potential to produce additional "hits" that promote senescence bypass, our findings may also suggest one way a small minority of cells might bypass senescence and contribute to cancer development.
Collapse
Affiliation(s)
- Zhigang Tu
- Women's Cancer Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Calvisi DF, Simile MM, Ladu S, Frau M, Evert M, Tomasi ML, Demartis MI, Daino L, Seddaiu MA, Brozzetti S, Feo F, Pascale RM. Activation of v-Myb avian myeloblastosis viral oncogene homolog-like2 (MYBL2)-LIN9 complex contributes to human hepatocarcinogenesis and identifies a subset of hepatocellular carcinoma with mutant p53. Hepatology 2011; 53:1226-36. [PMID: 21480327 DOI: 10.1002/hep.24174] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
UNLABELLED Up-regulation of the v-Myb avian myeloblastosis viral oncogene homolog-like2 B-Myb (MYBL2) gene occurs in human hepatocellular carcinoma (HCC) and is associated with faster progression of rodent hepatocarcinogenesis. We evaluated, in distinct human HCC prognostic subtypes (as defined by patient survival length), activation of MYBL2 and MYBL2-related genes, and relationships of p53 status with MYBL2 activity. Highest total and phosphorylated protein levels of MYBL2, E2F1-DP1, inactivated retinoblastoma protein (pRB), and cyclin B1 occurred in HCC with poorer outcome (HCCP), compared to HCC with better outcome (HCCB). In HCCP, highest LIN9-MYBL2 complex (LINC) and lowest inactive LIN9-p130 complex levels occurred. MYBL2 positively correlated with HCC genomic instability, proliferation, and microvessel density, and negatively with apoptosis. Higher MYBL2/LINC activation in HCC with mutated p53 was in contrast with LINC inactivation in HCC harboring wildtype p53. Small interfering RNA (siRNA)-mediated MYBL2/LINC silencing reduced proliferation, induced apoptosis, and DNA damage at similar levels in HCC cell lines, irrespective of p53 status. However, association of MYBL2/LINC silencing with doxorubicin-induced DNA damage caused stronger growth restraint in p53(-/-) Huh7 and Hep3B cells than in p53(+/+) Huh6 and HepG2 cells. Doxorubicin triggered LIN9 dissociation from MYBL2 in p53(+/+) cell lines and increased MYBL2-LIN9 complexes in p53(-/-) cells. Doxorubicin-induced MYBL2 dissociation from LIN9 led to p21(WAF1) up-regulation in p53(+/+) but not in p53(-/-) cell lines. Suppression of p53 or p21(WAF1) genes abolished DNA damage response, enhanced apoptosis, and inhibited growth in doxorubicin-treated cells harboring p53(+/+) . CONCLUSION We show that MYBL2 activation is crucial for human HCC progression. In particular, our data indicate that MYBL2-LIN9 complex integrity contributes to survival of DNA damaged p53(-/-) cells. Thus, MYBL2 inhibition could represent a valuable adjuvant for treatments against human HCC with mutated p53.
Collapse
Affiliation(s)
- Diego F Calvisi
- Department of Clinical and Experimental Medicine and Oncology, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mannefeld M, Klassen E, Gaubatz S. B-MYB is required for recovery from the DNA damage-induced G2 checkpoint in p53 mutant cells. Cancer Res 2009; 69:4073-80. [PMID: 19383908 DOI: 10.1158/0008-5472.can-08-4156] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In response to DNA damage, several signaling pathways that arrest the cell cycle in G(1) and G(2) are activated. The down-regulation of mitotic genes contributes to the stable maintenance of the G(2) arrest. The human LINC or DREAM complex, together with the B-MYB transcription factor, plays an essential role in the expression of G(2)-M genes. Here, we show that DNA damage results in the p53-dependent binding of p130 and E2F4 to LINC and the dissociation of B-MYB from LINC. We find that B-MYB fails to dissociate from LINC in p53 mutant cells, that this contributes to increased G(2)-M gene expression in response to DNA damage in these cells, and, importantly, that B-MYB is required for recovery from the G(2) DNA damage checkpoint in p53-negative cells. Reanalysis of microarray expression data sets revealed that high levels of B-MYB correlate with a p53 mutant status and an advanced tumor stage in primary human breast cancer. Taken together, these data suggest that B-MYB/LINC plays an important role in the DNA damage response downstream of p53.
Collapse
Affiliation(s)
- Mirijam Mannefeld
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
17
|
Isolation and functional assessment of common, polymorphic variants of the B-MYB proto-oncogene associated with a reduced cancer risk. Oncogene 2007; 27:2929-33. [PMID: 18026132 DOI: 10.1038/sj.onc.1210947] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The B-MYB proto-oncogene is a transcription factor belonging to the MYB family that is frequently overexpressed or amplified in different types of human malignancies. While it is suspected that B-MYB plays a role in human cancer, there is still no direct evidence of its causative role. Looking for mutations of the B-MYB gene in human cell lines and primary cancer samples, we frequently isolated two nonsynonymous B-MYB polymorphic variants (rs2070235 and rs11556379). Compared to the wild-type protein, the B-MYB isoforms display altered conformation, impaired regulation of target genes and decreased antiapoptotic activity, suggesting that they are hypomorphic variants of the major allele. Importantly, the B-MYB polymorphisms are common; rs2070235 and rs11556379 are found, depending on the ethnic background, in 10-50% of human subjects. We postulated that, if B-MYB activity is important for transformation, the presence of common, hypomorphic variants might modify cancer risk. Indeed, the B-MYB polymorphisms are underrepresented in 419 cancer patients compared to 230 controls (odds ratio 0.53; (95%) confidence interval 0.385-0.755; P=0.001). This data imply that a large fraction of the human population is carrier of B-MYB alleles that might be associated with a reduced risk of developing neoplastic disease.
Collapse
|
18
|
Schwab R, Caccamo A, Bettuzzi S, Anderson J, Sala A. B-MYB is hypophosphorylated and resistant to degradation in neuroblastoma: implications for cell survival. Blood Cells Mol Dis 2007; 39:263-71. [PMID: 17588787 DOI: 10.1016/j.bcmd.2007.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 11/24/2022]
Abstract
B-MYB is an oncoprotein highly expressed and frequently amplified in human neoplasia. B-MYB is more expressed in neuroblastoma patients with adverse prognostic indicators, corroborating the hypothesis that it plays an important role in this pediatric malignancy. While attempting targeting strategies for therapeutic purposes, we found that the B-MYB protein was difficult to downregulate in neuroblastoma cells using siRNA approaches. This lead us to discover that the B-MYB protein half-life is increased in neuroblastoma compared to other normal or transformed human cell lines. The B-MYB protein is quickly destroyed and apoptosis is induced in Ewing sarcoma cells exposed to UV irradiation. In contrast, neuroblastoma cells are resistant to UV-induced apoptosis and B-MYB protein levels do not change in UV-treated cells. In further experiments, we show that the B-MYB protein extracted from neuroblastoma cells is hypophosphorylated. It was previously shown that B-MYB phosphorylation activates its transcriptional activity but also promotes its destruction. Overexpression of a non-phosphorylatable B-MYB mutant protects cells from UV-induced apoptosis, suggesting that its reduced phosphorylation, rather than causing its inactivation, facilitates B-MYB pro-survival activity. Thus, expression of stable, hypophosphorylated B-MYB in neuroblastoma may promote cell survival and induce aggressive tumour growth.
Collapse
Affiliation(s)
- Rebekka Schwab
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | |
Collapse
|
19
|
Manak JR, Wen H, Van T, Andrejka L, Lipsick JS. Loss of Drosophila Myb interrupts the progression of chromosome condensation. Nat Cell Biol 2007; 9:581-7. [PMID: 17450131 DOI: 10.1038/ncb1580] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 03/03/2007] [Indexed: 12/11/2022]
Abstract
Completion of chromosome condensation is required before segregation during the mitotic cell cycle to ensure the transmission of genetic material with high fidelity in a timely fashion. In many eukaryotes this condensation is regulated by phosphorylation of histone H3 on Ser 10 (H3S10). This phosphorylation normally begins in the late-replicating pericentric heterochromatin and then spreads to the earlier replicating euchromatin. Here, we show that these phases of condensation are genetically separable in that the absence of Drosophila Myb causes cells to arrest with H3S10 phosphorylation of heterochromatin but not euchromatin. In addition, we used mosaic analysis to demonstrate that although the Myb protein can be removed in a single cell cycle, the failure of chromosome condensation occurs only after many cell divisions in the absence of Myb protein. The Myb protein is normally located in euchromatic but not heterochromatic regions of the nucleus, suggesting that Myb may be essential for a modification of euchromatin that is required for the efficient spread of chromosome condensation.
Collapse
Affiliation(s)
- J Robert Manak
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5342, USA
| | | | | | | | | |
Collapse
|
20
|
Pilkinton M, Sandoval R, Song J, Ness SA, Colamonici OR. Mip/LIN-9 regulates the expression of B-Myb and the induction of cyclin A, cyclin B, and CDK1. J Biol Chem 2006; 282:168-75. [PMID: 17098733 DOI: 10.1074/jbc.m609924200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Members of the novel family of proteins that include Drosophila Mip130, Caenorhabditis elegans LIN-9, and mammalian LIN-9 intervene in different cellular functions such as regulation of transcription, differentiation, transformation, and cell cycle progression. Here we demonstrate that LIN-9, designated as Mip/LIN-9, interacts with B-Myb but not with c-Myb or A-Myb. Mip/LIN-9 regulates the expression of B-Myb in a post-transcriptional manner, and its depletion not only decreases the level of the B-Myb protein but also affects the expression of S phase and mitotic genes (i.e. cyclin A, CDK1, and cyclin B). The critical role of Mip/LIN-9 on the expression of S and G(2)/M genes is further supported by the finding that coexpression of Mip/LIN-9 and B-Myb results in the activation of cyclin A and cyclin B promoter-luciferase reporters, and both proteins are detected on the cyclin A and B promoters. Interestingly, although Mip/LIN-9 promoter occupancy peaks earlier than B-Myb, the highest levels of expression of cyclins A and B correlate with the maximum binding of B-Myb to these promoters. These data support the concept that Mip/LIN-9 is required for the expression of B-Myb, and both proteins collaborate in the control of the cell cycle progression via the regulation of S phase and mitotic cyclins.
Collapse
Affiliation(s)
- Mark Pilkinton
- Department of Pharmacology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
21
|
García P, Frampton J. The transcription factor B-Myb is essential for S-phase progression and genomic stability in diploid and polyploid megakaryocytes. J Cell Sci 2006; 119:1483-93. [PMID: 16551698 DOI: 10.1242/jcs.02870] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The cell-cycle-regulated Myb-family transcription factor B-Myb is crucial during S phase in many diploid cell types. We have examined the expression and function of B-Myb in megakaryocytic differentiation, during which cells progress from a diploid to a polyploid state. In contrast to terminal differentiation of most haematopoietic cells, during which B-myb is rapidly downregulated, differentiation of megakaryocytes is accompanied by continued B-myb RNA and protein expression. Overexpression of B-Myb in a megakaryoblastic cell line resulted in an increase in the number of cells entering S phase and, upon induction of differentiation, the fraction of cells actively endoreplicating increased. By contrast, reduction of B-Myb levels using short interfering (si)RNA resulted in a decline in S-phase progression during both normal and endoreplicative DNA synthesis. This effect correlated with aberrant localisation of initiation of DNA replication within the nucleus and an increased fraction of cells in mitosis. Chromosomal fragmentation and other aberrations, including shorter, thicker chromatids, end-to-end fusion, and loss of a chromatid, suggest that reduced B-Myb activity is also associated with structural chromosomal instability.
Collapse
Affiliation(s)
- Paloma García
- Institute for Biomedical Research, Birmingham University Medical School, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|