1
|
Nuzhat N, Van Schil K, Liakopoulos S, Bauwens M, Rey AD, Käseberg S, Jäger M, Willer JR, Winter J, Truong HM, Gruartmoner N, Van Heetvelde M, Wolf J, Merget R, Grasshoff-Derr S, Van Dorpe J, Hoorens A, Stöhr H, Mansard L, Roux AF, Langmann T, Dannhausen K, Rosenkranz D, Wissing KM, Van Lint M, Rossmann H, Häuser F, Nürnberg P, Thiele H, Zechner U, Pearring JN, De Baere E, Bolz HJ. CEP162 deficiency causes human retinal degeneration and reveals a dual role in ciliogenesis and neurogenesis. J Clin Invest 2023; 133:e161156. [PMID: 36862503 PMCID: PMC10104899 DOI: 10.1172/jci161156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Defects in primary or motile cilia result in a variety of human pathologies, and retinal degeneration is frequently associated with these so-called ciliopathies. We found that homozygosity for a truncating variant in CEP162, a centrosome and microtubule-associated protein required for transition zone assembly during ciliogenesis and neuronal differentiation in the retina, caused late-onset retinitis pigmentosa in 2 unrelated families. The mutant CEP162-E646R*5 protein was expressed and properly localized to the mitotic spindle, but it was missing from the basal body in primary and photoreceptor cilia. This impaired recruitment of transition zone components to the basal body and corresponded to complete loss of CEP162 function at the ciliary compartment, reflected by delayed formation of dysmorphic cilia. In contrast, shRNA knockdown of Cep162 in the developing mouse retina increased cell death, which was rescued by expression of CEP162-E646R*5, indicating that the mutant retains its role for retinal neurogenesis. Human retinal degeneration thus resulted from specific loss of the ciliary function of CEP162.
Collapse
Affiliation(s)
- Nafisa Nuzhat
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristof Van Schil
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sandra Liakopoulos
- Cologne Image Reading Center, Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany
- Department of Ophthalmology, Goethe University, Frankfurt, Germany
| | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Alfredo Dueñas Rey
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Stephan Käseberg
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Melanie Jäger
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
- Augenarztpraxis Bad Brückenau, Bad Brückenau, Germany
| | | | - Jennifer Winter
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
| | - Hanh M. Truong
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Nuria Gruartmoner
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Mattias Van Heetvelde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | - Jo Van Dorpe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Anne Hoorens
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Luke Mansard
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katharina Dannhausen
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Rosenkranz
- Senckenberg Centre for Human Genetics, Frankfurt am Main, Germany
| | | | - Michel Van Lint
- Department of Ophthalmology, Brussels University Hospital, Jette, Belgium
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany
- Senckenberg Centre for Human Genetics, Frankfurt am Main, Germany
| | - Jillian N. Pearring
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Ophthalmology and
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Hanno J. Bolz
- Senckenberg Centre for Human Genetics, Frankfurt am Main, Germany
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Bein K, Ganguly K, Martin TM, Concel VJ, Brant KA, Di YPP, Upadhyay S, Fabisiak JP, Vuga LJ, Kaminski N, Kostem E, Eskin E, Prows DR, Jang AS, Leikauf GD. Genetic determinants of ammonia-induced acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2020; 320:L41-L62. [PMID: 33050709 DOI: 10.1152/ajplung.00276.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this study, a genetically diverse panel of 43 mouse strains was exposed to ammonia, and genome-wide association mapping was performed employing a single-nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was used to help resolve the genetic determinants of ammonia-induced acute lung injury. The encoded proteins were prioritized based on molecular function, nonsynonymous SNP within a functional domain or SNP within the promoter region that altered expression. This integrative functional approach revealed 14 candidate genes that included Aatf, Avil, Cep162, Hrh4, Lama3, Plcb4, and Ube2cbp, which had significant SNP associations, and Aff1, Bcar3, Cntn4, Kcnq5, Prdm10, Ptcd3, and Snx19, which had suggestive SNP associations. Of these genes, Bcar3, Cep162, Hrh4, Kcnq5, and Lama3 are particularly noteworthy and had pathophysiological roles that could be associated with acute lung injury in several ways.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Koustav Ganguly
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Unit of Integrated Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Timothy M Martin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent J Concel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kelly A Brant
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Y P Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Swapna Upadhyay
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Unit of Integrated Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - James P Fabisiak
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Louis J Vuga
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Naftali Kaminski
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Emrah Kostem
- Departments of Computer Science and Human Genetics, University of California, Los Angeles, California
| | - Eleazar Eskin
- Departments of Computer Science and Human Genetics, University of California, Los Angeles, California
| | - Daniel R Prows
- Division of Human Genetics, Cincinnati Children's Hospital and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Ann-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Stein MB, Ware EB, Mitchell C, Chen C, Borja S, Cai T, Dempsey CL, Fullerton CS, Gelernter J, Heeringa SG, Jain S, Kessler RC, Naifeh JA, Nock MK, Ripke S, Sun X, Beckham JC, Kimbrel NA, Ursano RJ, Smoller JW. Genomewide association studies of suicide attempts in US soldiers. Am J Med Genet B Neuropsychiatr Genet 2017; 174:786-797. [PMID: 28902444 PMCID: PMC5685938 DOI: 10.1002/ajmg.b.32594] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Suicide is a global public health problem with particular resonance for the US military. Genetic risk factors for suicidality are of interest as indicators of susceptibility and potential targets for intervention. We utilized population-based nonclinical cohorts of US military personnel (discovery: N = 473 cases and N = 9778 control subjects; replication: N = 135 cases and N = 6879 control subjects) and a clinical case-control sample of recent suicide attempters (N = 51 cases and N = 112 control subjects) to conduct GWAS of suicide attempts (SA). Genomewide association was evaluated within each ancestral group (European-, African-, Latino-American) and study using logistic regression models. Meta-analysis of the European ancestry discovery samples revealed a genomewide significant locus in association with SA near MRAP2 (melanocortin 2 receptor accessory protein 2) and CEP162 (centrosomal protein 162); 12 genomewide significant SNPs in the region; peak SNP rs12524136-T, OR = 2.88, p = 5.24E-10. These findings were not replicated in the European ancestry subsamples of the replication or suicide attempters samples. However, the association of the peak SNP remained significant in a meta-analysis of all studies and ancestral subgroups (OR = 2.18, 95%CI 1.70, 2.80). Polygenic risk score (PRS) analyses showed some association of SA with bipolar disorder. The association with SNPs encompassing MRAP2, a gene expressed in brain and adrenal cortex and involved in neural control of energy homeostasis, points to this locus as a plausible susceptibility gene for suicidality that should be further studied. Larger sample sizes will be needed to confirm and extend these findings.
Collapse
Affiliation(s)
- Murray B. Stein
- Department of PsychiatryUniversity of California San Diego and VA San Diego Healthcare SystemLa JollaCalifornia
- Department of Family Medicine and Public HealthUniversity of California San DiegoLa JollaCalifornia
| | - Erin B. Ware
- Institute for Social ResearchUniversity of MichiganAnn ArborMichigan
| | - Colter Mitchell
- Institute for Social ResearchUniversity of MichiganAnn ArborMichigan
| | - Chia‐Yen Chen
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic MedicineMassachusetts General HospitalBostonMassachusetts
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMassachusetts
| | - Susan Borja
- National Institute of Mental HealthBethesdaMaryland
| | - Tianxi Cai
- Harvard T.H. Chan School of Public HealthBostonMassachusetts
| | | | | | - Joel Gelernter
- Departments of Psychiatry, Genetics, and NeurobiologyYale UniversityNew HavenConnecticut
| | | | - Sonia Jain
- Department of Family Medicine and Public HealthUniversity of California San DiegoLa JollaCalifornia
| | - Ronald C. Kessler
- Department of Health Care PolicyHarvard Medical SchoolBostonMassachusetts
| | - James A. Naifeh
- Uniformed Services University of the Health SciencesBethesdaMaryland
| | - Matthew K. Nock
- Department of PsychologyHarvard UniversityCambridgeMassachusetts
| | - Stephan Ripke
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMassachusetts
| | - Xiaoying Sun
- Department of Family Medicine and Public HealthUniversity of California San DiegoLa JollaCalifornia
| | - Jean C. Beckham
- Durham Veterans Affairs Health Care System and Duke University Health SystemDurhamNorth Carolina
- VA MIRECCDurhamNorth Carolina
| | - Nathan A. Kimbrel
- Durham Veterans Affairs Health Care System and Duke University Health SystemDurhamNorth Carolina
- VA MIRECCDurhamNorth Carolina
| | - Robert J Ursano
- Uniformed Services University of the Health SciencesBethesdaMaryland
| | - Jordan W. Smoller
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic MedicineMassachusetts General HospitalBostonMassachusetts
- Stanley Center for Psychiatric ResearchBroad Institute of MIT and HarvardCambridgeMassachusetts
| | | |
Collapse
|
4
|
Avidor-Reiss T, Ha A, Basiri ML. Transition Zone Migration: A Mechanism for Cytoplasmic Ciliogenesis and Postaxonemal Centriole Elongation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028142. [PMID: 28108487 DOI: 10.1101/cshperspect.a028142] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cilium is an elongated and continuous structure that spans two major subcellular domains. The cytoplasmic domain contains a short centriole, which serves to nucleate the main projection of the cilium. This projection, known as the axoneme, remains separated from the cytoplasm by a specialized gatekeeping complex within a ciliary subdomain called the transition zone. In this way, the axoneme is compartmentalized. Intriguingly, however, this general principle of cilium biology is altered in the sperm cells of many animals, which instead contain a cytoplasmic axoneme domain. Here, we discuss the hypothesis that the formation of specialized sperm giant centrioles and cytoplasmic cilia is mediated by the migration of the transition zone from its typical location as part of a structure known as the annulus and examine the intrinsic properties of the transition zone that may facilitate its migratory behavior.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- University of Toledo, Department of Biological Sciences, Toledo, Ohio 43606
| | - Andrew Ha
- University of Toledo, Department of Biological Sciences, Toledo, Ohio 43606
| | - Marcus L Basiri
- University of Toledo, Department of Biological Sciences, Toledo, Ohio 43606
| |
Collapse
|
5
|
Ferreira AM, Tuominen I, Sousa S, Gerbens F, van Dijk-Bos K, Osinga J, Kooi KA, Sanjabi B, Esendam C, Oliveira C, Terpstra P, Hardonk M, van der Sluis T, Zazula M, Stachura J, van der Zee AG, Hollema H, Sijmons RH, Aaltonen LA, Seruca R, Hofstra RMW, Westers H. New target genes in endometrial tumors show a role for the estrogen-receptor pathway in microsatellite-unstable cancers. Hum Mutat 2015; 35:1514-23. [PMID: 25231886 DOI: 10.1002/humu.22700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/08/2014] [Indexed: 12/31/2022]
Abstract
Microsatellite instability (MSI) in tumors results in an accumulation of mutations in (target) genes. Previous studies suggest that the profile of target genes differs according to tumor type. This paper describes the first genome-wide search for target genes for mismatch repair-deficient endometrial cancers. Genes expressed in normal endometrium containing coding repeats were analyzed for mutations in tumors. We identified 44 possible genes of which seven are highly mutated (>15%). Some candidates were also found mutated in colorectal and gastric tumors. The most frequently mutated gene, NRIP1 encoding nuclear receptor-interacting protein 1, was silenced in an endometrial tumor cell line and expression microarray experiments were performed. Silencing of NRIP1 was associated with differences in the expression of several genes in the estrogen-receptor network. Furthermore, an enrichment of genes related to cell cycle (regulation) and replication was observed. We present a new profile of target genes, some of them tissue specific, whereas others seem to play a more general role in MSI tumors. The high-mutation frequency combined with the expression data suggest, for the first time, an involvement of NRIP1 in endometrial cancer development.
Collapse
Affiliation(s)
- Ana M Ferreira
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathomorphology, Medical College, Jagiellonian University, Krakow, Poland; Institute of Molecular Pathology and Immunology and Medical Faculty, University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Profiling molecular and behavioral circadian rhythms in the non-symbiotic sea anemone Nematostella vectensis. Sci Rep 2015; 5:11418. [PMID: 26081482 PMCID: PMC4476465 DOI: 10.1038/srep11418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/18/2015] [Indexed: 12/04/2022] Open
Abstract
Endogenous circadian clocks are poorly understood within early-diverging animal
lineages. We have characterized circadian behavioral patterns and identified
potential components of the circadian clock in the starlet sea anemone,
Nematostella vectensis: a model cnidarian which lacks algal symbionts.
Using automatic video tracking we showed that Nematostella exhibits rhythmic
circadian locomotor activity, which is persistent in constant dark, shifted or
disrupted by external dark/light cues and maintained the same rate at two different
temperatures. This activity was inhibited by a casein kinase 1δ/ε
inhibitor, suggesting a role for CK1 homologue(s) in Nematostella clock.
Using high-throughput sequencing we profiled Nematostella transcriptomes over
48 hours under a light-dark cycle. We identified 180 Nematostella
diurnally-oscillated transcripts and compared them with previously established
databases of adult and larvae of the symbiotic coral Acropora millepora,
revealing both shared homologues and unique rhythmic genes. Taken together, this
study further establishes Nematostella as a non-symbiotic model organism to
study circadian rhythms and increases our understanding about the fundamental
elements of circadian regulation and their evolution within the Metazoa
Collapse
|
7
|
Awata T, Yamashita H, Kurihara S, Morita-Ohkubo T, Miyashita Y, Katayama S, Mori K, Yoneya S, Kohda M, Okazaki Y, Maruyama T, Shimada A, Yasuda K, Nishida N, Tokunaga K, Koike A. A genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA. PLoS One 2014; 9:e111715. [PMID: 25364816 PMCID: PMC4218806 DOI: 10.1371/journal.pone.0111715] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/30/2014] [Indexed: 12/31/2022] Open
Abstract
Elucidation of the genetic susceptibility factors for diabetic retinopathy (DR) is important to gain insight into the pathogenesis of DR, and may help to define genetic risk factors for this condition. In the present study, we conducted a three-stage genome-wide association study (GWAS) to identify DR susceptibility loci in Japanese patients, which comprised a total of 837 type 2 diabetes patients with DR (cases) and 1,149 without DR (controls). From the stage 1 genome-wide scan of 446 subjects (205 cases and 241 controls) on 614,216 SNPs, 249 SNPs were selected for the stage 2 replication in 623 subjects (335 cases and 288 controls). Eight SNPs were further followed up in a stage 3 study of 297 cases and 620 controls. The top signal from the present association analysis was rs9362054 in an intron of RP1-90L14.1 showing borderline genome-wide significance (Pmet = 1.4×10−7, meta-analysis of stage 1 and stage 2, allele model). RP1-90L14.1 is a long intergenic non-coding RNA (lincRNA) adjacent to KIAA1009/QN1/CEP162 gene; CEP162 plays a critical role in ciliary transition zone formation before ciliogenesis. The present study raises the possibility that the dysregulation of ciliary-associated genes plays a role in susceptibility to DR.
Collapse
Affiliation(s)
- Takuya Awata
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- * E-mail:
| | - Hisakuni Yamashita
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Susumu Kurihara
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tomoko Morita-Ohkubo
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yumi Miyashita
- Division of RI Laboratory, Biomedical Research Center, Saitama Medical University, Saitama, Japan
| | - Shigehiro Katayama
- Department of Endocrinology and Diabetes, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Keisuke Mori
- Department of Ophthalmology, Faculty of Medicine, Saitama Medical University, Faculty of Medicine, Saitama, Japan
| | - Shin Yoneya
- Department of Ophthalmology, Faculty of Medicine, Saitama Medical University, Faculty of Medicine, Saitama, Japan
| | - Masakazu Kohda
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Yasushi Okazaki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Taro Maruyama
- Department of Internal Medicine, Saitama Social Insurance Hospital, Saitama, Japan
| | - Akira Shimada
- Department of Internal Medicine, Saiseikai Central Hospital, Tokyo, Japan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nao Nishida
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asako Koike
- Central Research Laboratory, Hitachi Ltd, Tokyo, Japan
| |
Collapse
|
8
|
Wang WJ, Tay HG, Soni R, Perumal GS, Goll MG, Macaluso FP, Asara JM, Amack JD, Tsou MFB. CEP162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base. Nat Cell Biol 2013; 15:591-601. [PMID: 23644468 PMCID: PMC3815462 DOI: 10.1038/ncb2739] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/19/2013] [Indexed: 12/17/2022]
Abstract
The transition zone is a specialized compartment found at the base of cilia, adjacent to the centriole distal end, where axonemal microtubules are heavily crosslinked to the surrounding membrane to form a barrier that gates the ciliary compartment. A number of ciliopathy molecules have been found to associate with the transition zone, but factors that directly recognize axonemal microtubules to specify transition zone assembly at the cilia base remain unclear. Here, through quantitative centrosome proteomics, we identify an axoneme-associated protein, CEP162 (KIAA1009), tethered specifically at centriole distal ends to promote transition zone assembly. CEP162 interacts with core transition zone components, and mediates their association with microtubules. Loss of CEP162 arrests ciliogenesis at the stage of transition zone assembly. Abolishing its centriolar tethering, however, allows CEP162 to stay on the growing end of the axoneme and ectopically assemble transition zone components at cilia tips. This generates extra-long cilia with strikingly swollen tips that actively release ciliary contents into the extracellular environment. CEP162 is thus an axoneme-recognition protein pre-tethered at centriole distal ends before ciliogenesis to promote and restrict transition zone formation specifically at the cilia base.
Collapse
Affiliation(s)
- Won-Jing Wang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Schmitt J, Fischer U, Heisel S, Strickfaden H, Backes C, Ruggieri A, Keller A, Chang P, Meese E. GAS41 amplification results in overexpression of a new spindle pole protein. Genes Chromosomes Cancer 2012; 51:868-80. [PMID: 22619067 DOI: 10.1002/gcc.21971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 11/08/2022] Open
Abstract
Amplification is a hallmark of many human tumors but the role of most amplified genes in human tumor development is not yet understood. Previously, we identified a frequently amplified gene in glioma termed glioma-amplified sequence 41 (GAS41). Using the TCGA data portal and performing experiments on HeLa and TX3868, we analyzed the role of GAS41 amplification on GAS41 overexpression and the effect on the cell cycle. Here we show that GAS41 amplification is associated with overexpression in the majority of cases. Both induced and endogenous overexpression of GAS41 leads to an increase in multipolar spindles. We showed that GAS41 is specifically associated with pericentrosome material. As result of an increased GAS41 expression we found bipolar spindles with misaligned chromosomes. This number was even increased by a combined overexpression of GAS41 and a reduced expression of NuMA. We propose that GAS41 amplification may have an effect on the highly altered karyotype of glioblastoma via its role during spindle pole formation.
Collapse
Affiliation(s)
- Jana Schmitt
- Department of Human Genetics, Saarland University, Medical School, Homburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pramparo T, Libiger O, Jain S, Li H, Youn YH, Hirotsune S, Schork NJ, Wynshaw-Boris A. Global developmental gene expression and pathway analysis of normal brain development and mouse models of human neuronal migration defects. PLoS Genet 2011; 7:e1001331. [PMID: 21423666 PMCID: PMC3053345 DOI: 10.1371/journal.pgen.1001331] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/08/2011] [Indexed: 01/01/2023] Open
Abstract
Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define novel candidates for related human diseases.
Collapse
Affiliation(s)
- Tiziano Pramparo
- Department of Pediatrics and Institute for Human Genetics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ondrej Libiger
- The Scripps Research Institute and the Scripps Translational Science Institute, La Jolla, California United States of America
| | - Sonia Jain
- Department of Family and Preventive Medicine, Division of Biostatistics and Bioinformatics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Hong Li
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yong Ha Youn
- Department of Pediatrics and Institute for Human Genetics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Nicholas J. Schork
- The Scripps Research Institute and the Scripps Translational Science Institute, La Jolla, California United States of America
| | - Anthony Wynshaw-Boris
- Department of Pediatrics and Institute for Human Genetics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
11
|
Wu Y, Jing X, Ma X, Wu Y, Ding X, Fan W, Fan M. DIXDC1 co-localizes and interacts with gamma-tubulin in HEK293 cells. Cell Biol Int 2009; 33:697-701. [PMID: 19375513 DOI: 10.1016/j.cellbi.2009.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/03/2008] [Accepted: 04/01/2009] [Indexed: 01/23/2023]
Abstract
DIXDC1 is a Dishevelled-Axin (DIX) domain-containing protein involved in neural development and Wnt signaling pathway. Besides the DIX domain, DIXDC1 also contains a coiled-coil domain (MTH domain), which is a common feature of centrosomal proteins. We have demonstrated that exogenously expressed GFP-tag fused DIXDC1 co-localize with gamma-tubulin both at interphase and mitotic phase in HEK293 cells. By immunostaining with anti-DIXDC1 and anti-gamma-tubulin antibody, endogenous DIXDC1 was also co-localized with gamma-tubulin at the centrosomes in HEK293 cells. We confirmed this interaction of DIXDC1 with gamma-tubulin by co-immunoprecipitation. The findings suggest that DIXDC1 might play an important role in chromosome segregation and cell cycle regulation.
Collapse
Affiliation(s)
- Yanrui Wu
- Department of Brain Protection and Plasticity Research, Beijing Institute of Basic Medical Sciences, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
Schmidt M, Bastians H. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist Updat 2007; 10:162-81. [PMID: 17669681 DOI: 10.1016/j.drup.2007.06.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/18/2007] [Indexed: 12/22/2022]
Abstract
Drugs that interfere with the normal progression of mitosis belong to the most successful chemotherapeutic compounds currently used for anti-cancer treatment. Classically, these drugs are represented by microtubule binding drugs that inhibit the function of the mitotic spindle in order to halt the cell cycle in mitosis and to induce apoptosis in tumor cells. However, these compounds act not only on proliferating tumor cells, but exhibit significant side effects on non-proliferating cells including neurons that are highly dependent on intracellular transport processes mediated by microtubules. Therefore, there is a particular interest in developing novel anti-mitotic drugs that target non-microtubule structures. In fact, recently several novel drugs that target mitotic kinesins or the Aurora and polo-like kinases have been developed and are currently tested in clinical trials. In addition, approaches of cell cycle checkpoint abrogation during mitosis and at the G2/M transition inducing mitosis-associated tumor cell death are promising new strategies for anti-cancer therapy. It is expected that this "next generation" of anti-mitotic drugs will be as successful as the classical anti-microtubule drugs, while avoiding some of the adverse side effects.
Collapse
Affiliation(s)
- Mathias Schmidt
- Altana Pharma AG, Therapeutic Area Oncology, Byk-Gulden Strasse 2, Konstanz, Germany
| | | |
Collapse
|