1
|
Yao W, Shang L, Wang Y, Xu L, Bai Y, Feng M, Jia X, Wu S. DNMT1-driven methylation of RORA facilitates esophageal squamous cell carcinoma progression under hypoxia through SLC2A3. J Transl Med 2024; 22:1167. [PMID: 39741267 DOI: 10.1186/s12967-024-05960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND The RAR-related orphan receptor alpha (RORA), a circadian clock molecule, is highly associated with anti-oncogenes. In this paper, we defined the precise action and mechanistic basis of RORA in ESCC development under hypoxia. METHODS Expression analysis was conducted by RT-qPCR, western blotting, immunofluorescence (IF), and immunohistochemistry (IHC) assays. The functions of RORA were assessed by detecting its regulatory effects on cell viability, motility, invasion, and tumor growth. DNA pull-down assay and proteomic analysis were employed to identify proteins bound to the RORA promoter. The promoter methylation level of RORA was detected by DNA pyrosequencing. RNA-seq analysis was performed to explore the downstream mechanisms of RORA, and the transcriptional regulation of RORA on SLC2A3 was verified by ChIP-qPCR and dual-luciferase reporter assay. Glycolysis was assessed by detecting the consumption of glucose and the production of lactic acid and ATP. RESULTS In vitro, RORA was shown to suppress ESCC cell viability, motility, and invasion under hypoxic condition. In vivo, increased RORA expression in mouse xenografts impeded tumor growth. DNMT1 was identified to widely exist in the RORA promoter, increasing DNA methylation and reducing RORA expression in hypoxia-induced KYSE150 ESCC cells. Mechanistically, RORA was found to inactivate the transcription of glucose transporter protein SLC2A3 by interacting with its promoter F1 region. Furthermore, rescue experiments revealed that RORA-mediated suppressive effects on ESCC cell migration and invasion were largely based on its negative regulation of SLC2A3 and glycolysis. CONCLUSION DNMT1-driven methylation of RORA promotes ESCC progression largely through affecting SLC2A3 transcription and glycolysis. These findings turn RORA into potential target of anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Wenjian Yao
- Department of Thoracic Surgery, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, Henan, 450003, China
| | - Linlin Shang
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, No.7, Wei Wu Road, Jinshui District, Zhengzhou, Henan, 450003, China
| | - Yinghao Wang
- Department of Thoracic Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, No.7, Wei Wu Road, Jinshui District, Zhengzhou, Henan, 450003, China
| | - Lei Xu
- Department of Thoracic Surgery, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, Henan, 450003, China
| | - Yu Bai
- Department of Pathology, Xinxiang Medical University, No.601 Jinsui Avenue, Hongqi District, Xinxiang, Henan, 453003, China
| | - Mingyu Feng
- Department of Education, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xiangbo Jia
- Department of Thoracic Surgery, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, Henan, 450003, China.
| | - Sen Wu
- Department of Thoracic Surgery, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
2
|
Sánchez-Martin S, Altuna-Coy A, Arreaza-Gil V, Bernal-Escoté X, Fontgivell JFG, Ascaso-Til H, Segarra-Tomás J, Ruiz-Plazas X, Chacón MR. Tumoral periprostatic adipose tissue exovesicles-derived miR-20a-5p regulates prostate cancer cell proliferation and inflammation through the RORA gene. J Transl Med 2024; 22:661. [PMID: 39010137 PMCID: PMC11251289 DOI: 10.1186/s12967-024-05458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND From the first steps of prostate cancer (PCa) initiation, tumours are in contact with the most-proximal adipose tissue called periprostatic adipose tissue (PPAT). Extracellular vesicles are important carriers of non-coding RNA such as miRNAs that are crucial for cellular communication. The secretion of extracellular vesicles by PPAT may play a key role in the interactions between adipocytes and tumour. Analysing the PPAT exovesicles (EVs) derived-miRNA content can be of great relevance for understanding tumour progression and aggressiveness. METHODS A total of 24 samples of human PPAT and 17 samples of perivesical adipose tissue (PVAT) were used. EVs were characterized by western blot and transmission electron microscopy (TEM), and uptake by PCa cells was verified by confocal microscopy. PPAT and PVAT explants were cultured overnight, EVs were isolated, and miRNA content expression profile was analysed. Pathway and functional enrichment analyses were performed seeking potential miRNA targets. In vitro functional studies were evaluated using PCa cells lines, miRNA inhibitors and target gene silencers. RESULTS Western blot and TEM revealed the characteristics of EVs derived from PPAT (PPAT-EVs) samples. The EVs were up taken and found in the cytoplasm of PCa cells. Nine miRNAs were differentially expressed between PPAT and PVAT samples. The RORA gene (RAR Related Orphan Receptor A) was identified as a common target of 9 miRNA-regulated pathways. In vitro functional analysis revealed that the RORA gene was regulated by PPAT-EVs-derived miRNAs and was found to be implicated in cell proliferation and inflammation. CONCLUSION Tumour periprostatic adipose tissue is linked to PCa tumour aggressiveness and could be envisaged for new therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Sánchez-Martin
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
| | - Antonio Altuna-Coy
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
| | - Verónica Arreaza-Gil
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
| | - Xana Bernal-Escoté
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
- Pathology Unit, Joan XXIII University Hospital, Tarragona, Spain
| | - Joan Francesc Garcia Fontgivell
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
- Pathology Unit, Joan XXIII University Hospital, Tarragona, Spain
| | | | - José Segarra-Tomás
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
- Urology Unit, Joan XXIII University Hospital, Tarragona, Spain
| | - Xavier Ruiz-Plazas
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
- Urology Unit, Joan XXIII University Hospital, Tarragona, Spain
| | - Matilde R Chacón
- Disease Biomarkers and Molecular Mechanisms Group. IISPV. Joan, XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain.
- Institut d'Investigació Sanitària Pere Virgili. Hospital Universitari de Tarragona Joan XXIII, C/ Dr. Mallafré Guasch, 4, Tarragona, 43007, Spain.
| |
Collapse
|
3
|
Xiong G, Obringer B, Jones A, Horton E, Xu R. Regulation of RORα Stability through PRMT5-Dependent Symmetric Dimethylation. Cancers (Basel) 2024; 16:1914. [PMID: 38791992 PMCID: PMC11120602 DOI: 10.3390/cancers16101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Retinoic acid receptor-related orphan receptor alpha (RORα), a candidate tumor suppressor, is prevalently downregulated or lost in malignant breast cancer cells. However, the mechanisms of how RORα expression is regulated in breast epithelial cells remain incompletely understood. Protein arginine N-methyltransferase 5 (PRMT5), a type II methyltransferase catalyzing the symmetric methylation of the amino acid arginine in target proteins, was reported to regulate protein stability. To study whether and how PRMT5 regulates RORα, we examined the direct interaction between RORα and PRMT5 by immunoprecipitation and GST pull-down assays. The results showed that PRMT5 directly bound to RORα, and PRMT5 mainly symmetrically dimethylated the DNA-binding domain (DBD) but not the ligand-binding domain (LBD) of RORα. To investigate whether RORα protein stability is regulated by PRMT5, we transfected HEK293FT cells with RORα and PRMT5-expressing or PRMT5-silencing (shPRMT5) vectors and then examined RORα protein stability by a cycloheximide chase assay. The results showed that PRMT5 increased RORα protein stability, while silencing PRMT5 accelerated RORα protein degradation. In PRMT5-silenced mammary epithelial cells, RORα protein expression was decreased, accompanied by an enhanced epithelial-mesenchymal transition morphology and cell invasion and migration abilities. In PRMT5-overexpressed mammary epithelial cells, RORα protein was accumulated, and cell invasion was suppressed. These findings revealed a novel mechanism by which PRMT5 regulates RORα protein stability.
Collapse
Affiliation(s)
- Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Brynne Obringer
- College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA; (B.O.); (A.J.)
| | - Austen Jones
- College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA; (B.O.); (A.J.)
| | - Elise Horton
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH 43210, USA;
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
4
|
El Mashad SN, Kandil MAEH, Talab TAEH, Saied Abd El Naby AEN, Sultan MM, Sohaib A, Hemida AS. Gastric Carcinoma with low ROR alpha, low E- Cadherin and High LAPTM4B Immunohistochemical Profile; is associated with unfavorable prognosis in Egyptian patients. J Immunoassay Immunochem 2024; 45:50-72. [PMID: 38031398 DOI: 10.1080/15321819.2023.2279639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
In view of multiplicity of carcinogenic pathways of gastric carcinoma (GC), poor survival and chemotherapy resistance, more analysis of these pathways is required for prediction of prognosis and developing new therapeutic targets. Knocking down of RORα; induces tumor cell proliferation and epithelial-mesenchymal transition (EMT). LAPTM4B has been suggested to be associated with EMT which promote tumor invasion. This work aimed to investigate prognostic role of RORα, LAPTM4B, and E-Cadherin expression in GC. This retrospective immunohistochemical study assesses the expression of RORα, LAPTM4B, and E-Cadherin in 73 primary gastric carcinomas. Low RORα and high LAPTM4B expression in GC cases were associated with unfavorable prognostic factors such as positive lymph nodes, and high tumor budding. E-Cadherin heterogeneous staining was associated with poor prognostic criteria, such as diffuse type GC and high tumor budding. Low RORα, high LAPTM4B, and heterogeneous E-Cadherin were the most common immunohistochemical profile in GC cases. Low RORα expression showed poor prognostic impact on overall patient survival. In conclusion, RORα and LAPTM4B may have crucial role in GC aggressiveness. The predominance of low RORα, high LAPTM4B, and heterogeneous or negative E-Cadherin immunohistochemical profile in GC cases with unfavorable pathological parameters suggested that this profile may predict tumor behavior.
Collapse
Affiliation(s)
| | | | | | | | - Mervat Mahmoud Sultan
- Pathology Department, National Liver Institute, Menoufia University, Shebin El Kom, Egypt
| | - Ahmed Sohaib
- Clinical Oncology& Nuclear medicine Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Aiat Shaban Hemida
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| |
Collapse
|
5
|
Mahjoubin-Tehran M, Sukhorukov VN, Jmaialahmadi T, Sahebkar A. Genomic Insights Into Statin Therapy: Differential Expression Analysis of Key Genes. Curr Probl Cardiol 2024; 49:102103. [PMID: 37741602 DOI: 10.1016/j.cpcardiol.2023.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
In this study, we utilized microarray profiles, specifically GSE71220 and GSE11393 obtained from the GEO database, which provide gene expression data from blood samples. Through a comparison of differentially expressed genes in both datasets, we successfully identified 11 key genes that exhibited differential expression in groups A and B, respectively. To gain insights into their functional roles, we performed gene ontology (GO) enrichment analysis using the "BiNGO" plugin in Cytoscape. This analysis revealed that these genes are primarily associated with primary metabolic processes. Notably, 8 genes, namely EIF2S3, GZMK, PIK3R1, RORA, SART3, TGM2, WTAP, and ABCG1, were found to be involved in these processes. To further explore the interactions and relationships among these key genes, we conducted protein-protein interaction analysis using the STRING database and co-expression network analysis using the GeneMANIA plugin in Cytoscape. The PPI analysis highlighted RORA, NR1D2, PIK3R1, CKAP4, and GZMK as central players within the network. To validate our findings, we examined the expression profiles of the key genes using the GSE86216 dataset, which comprises blood samples from individuals using statins. The results from this validation set largely corroborated our previous findings, with the exception of 3 genes: LAMP3, NR1D2, and PIK3R1, which exhibited different expression patterns. In conclusion, our study utilized microarray datasets to identify key genes that are influenced by statin treatments. The differential expression and functional analysis of these genes provide valuable insights into the mechanisms underlying the effects of statins.
Collapse
Affiliation(s)
| | | | - Tannaz Jmaialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Choudhary M, Malek G. Potential therapeutic targets for age-related macular degeneration: The nuclear option. Prog Retin Eye Res 2023; 94:101130. [PMID: 36220751 PMCID: PMC10082136 DOI: 10.1016/j.preteyeres.2022.101130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 02/07/2023]
Abstract
The functions and activities of nuclear receptors, the largest family of transcription factors in the human genome, have classically focused on their ability to act as steroid and hormone sensors in endocrine organs. However, they are responsible for a diverse array of physiological functions, including cellular homeostasis and metabolism, during development and aging. Though the eye is not a traditional endocrine organ, recent studies have revealed high expression levels of nuclear receptors in cells throughout the posterior pole. These findings have precipitated an interest in investigating the role of these transcription factors in the eye as a function of age and ocular disease, in particular age-related macular degeneration (AMD). As the leading cause of vision impairment in the elderly, identifying signaling pathways that may be targeted for AMD therapy is of great importance, given the lack of therapeutic options for over 85% of patients with this disease. Herein we review this relatively new field and recent findings supporting the hypothesis that the eye is a secondary endocrine organ, in which nuclear receptors serve as the bedrock for biological processes in cells vulnerable in AMD, including retinal pigment epithelial and choroidal endothelial cells, and discuss the therapeutic potential of targeting these receptors for AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
De Vitis C, Battaglia AM, Pallocca M, Santamaria G, Mimmi MC, Sacco A, De Nicola F, Gaspari M, Salvati V, Ascenzi F, Bruschini S, Esposito A, Ricci G, Sperandio E, Massacci A, Prestagiacomo LE, Vecchione A, Ricci A, Sciacchitano S, Salerno G, French D, Aversa I, Cereda C, Fanciulli M, Chiaradonna F, Solito E, Cuda G, Costanzo F, Ciliberto G, Mancini R, Biamonte F. ALDOC- and ENO2- driven glucose metabolism sustains 3D tumor spheroids growth regardless of nutrient environmental conditions: a multi-omics analysis. J Exp Clin Cancer Res 2023; 42:69. [PMID: 36945054 PMCID: PMC10031988 DOI: 10.1186/s13046-023-02641-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Metastases are the major cause of cancer-related morbidity and mortality. By the time cancer cells detach from their primary site to eventually spread to distant sites, they need to acquire the ability to survive in non-adherent conditions and to proliferate within a new microenvironment in spite of stressing conditions that may severely constrain the metastatic process. In this study, we gained insight into the molecular mechanisms allowing cancer cells to survive and proliferate in an anchorage-independent manner, regardless of both tumor-intrinsic variables and nutrient culture conditions. METHODS 3D spheroids derived from lung adenocarcinoma (LUAD) and breast cancer cells were cultured in either nutrient-rich or -restricted culture conditions. A multi-omics approach, including transcriptomics, proteomics, and metabolomics, was used to explore the molecular changes underlying the transition from 2 to 3D cultures. Small interfering RNA-mediated loss of function assays were used to validate the role of the identified differentially expressed genes and proteins in H460 and HCC827 LUAD as well as in MCF7 and T47D breast cancer cell lines. RESULTS We found that the transition from 2 to 3D cultures of H460 and MCF7 cells is associated with significant changes in the expression of genes and proteins involved in metabolic reprogramming. In particular, we observed that 3D tumor spheroid growth implies the overexpression of ALDOC and ENO2 glycolytic enzymes concomitant with the enhanced consumption of glucose and fructose and the enhanced production of lactate. Transfection with siRNA against both ALDOC and ENO2 determined a significant reduction in lactate production, viability and size of 3D tumor spheroids produced by H460, HCC827, MCF7, and T47D cell lines. CONCLUSIONS Our results show that anchorage-independent survival and growth of cancer cells are supported by changes in genes and proteins that drive glucose metabolism towards an enhanced lactate production. Notably, this finding is valid for all lung and breast cancer cell lines we have analyzed in different nutrient environmental conditions. broader Validation of this mechanism in other cancer cells of different origin will be necessary to broaden the role of ALDOC and ENO2 to other tumor types. Future in vivo studies will be necessary to assess the role of ALDOC and ENO2 in cancer metastasis.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Matteo Pallocca
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | | | - Alessandro Sacco
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Francesca De Nicola
- SAFU Laboratory, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Marco Gaspari
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Valentina Salvati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Sara Bruschini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Antonella Esposito
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università Degli Studi Della Campania ''Luigi Vanvitelli'', Naples, Italy
| | - Eleonora Sperandio
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Alice Massacci
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Licia Elvira Prestagiacomo
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Alberto Ricci
- Respiratory Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Gerardo Salerno
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Deborah French
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | | | - Egle Solito
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
- Magna Graecia University of Catanzaro, Interdepartmental Centre of Services, Catanzaro, Italy
| | - Gennaro Ciliberto
- Scientific Director, IRCCS ''Regina Elena'' National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ''Sapienza'' University of Rome, Rome, Italy.
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, ''Magna Graecia'' University of Catanzaro, Catanzaro, Italy
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, E1 2AT, UK
| |
Collapse
|
8
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504 DOI: 10.12688/f1000research.126364.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
9
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504.2 DOI: 10.12688/f1000research.126364.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
10
|
Liu S, Won H, Clarke D, Matoba N, Khullar S, Mu Y, Wang D, Gerstein M. Illuminating links between cis-regulators and trans-acting variants in the human prefrontal cortex. Genome Med 2022; 14:133. [PMID: 36424644 PMCID: PMC9685876 DOI: 10.1186/s13073-022-01133-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders afflict a large portion of the global population and constitute a significant source of disability worldwide. Although Genome-wide Association Studies (GWAS) have identified many disorder-associated variants, the underlying regulatory mechanisms linking them to disorders remain elusive, especially those involving distant genomic elements. Expression quantitative trait loci (eQTLs) constitute a powerful means of providing this missing link. However, most eQTL studies in human brains have focused exclusively on cis-eQTLs, which link variants to nearby genes (i.e., those within 1 Mb of a variant). A complete understanding of disease etiology requires a clearer understanding of trans-regulatory mechanisms, which, in turn, entails a detailed analysis of the relationships between variants and expression changes in distant genes. METHODS By leveraging large datasets from the PsychENCODE consortium, we conducted a genome-wide survey of trans-eQTLs in the human dorsolateral prefrontal cortex. We also performed colocalization and mediation analyses to identify mediators in trans-regulation and use trans-eQTLs to link GWAS loci to schizophrenia risk genes. RESULTS We identified ~80,000 candidate trans-eQTLs (at FDR<0.25) that influence the expression of ~10K target genes (i.e., "trans-eGenes"). We found that many variants associated with these candidate trans-eQTLs overlap with known cis-eQTLs. Moreover, for >60% of these variants (by colocalization), the cis-eQTL's target gene acts as a mediator for the trans-eQTL SNP's effect on the trans-eGene, highlighting examples of cis-mediation as essential for trans-regulation. Furthermore, many of these colocalized variants fall into a discernable pattern wherein cis-eQTL's target is a transcription factor or RNA-binding protein, which, in turn, targets the gene associated with the candidate trans-eQTL. Finally, we show that trans-regulatory mechanisms provide valuable insights into psychiatric disorders: beyond what had been possible using only cis-eQTLs, we link an additional 23 GWAS loci and 90 risk genes (using colocalization between candidate trans-eQTLs and schizophrenia GWAS loci). CONCLUSIONS We demonstrate that the transcriptional architecture of the human brain is orchestrated by both cis- and trans-regulatory variants and found that trans-eQTLs provide insights into brain-disease biology.
Collapse
Affiliation(s)
- Shuang Liu
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Declan Clarke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Yudi Mu
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA. .,Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA. .,Department of Computer Sciences, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA. .,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA. .,Department of Computer Science, Yale University, New Haven, CT, 06520, USA. .,Department of Statistics and Data Science, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Mashad SNE, Kandil MAE, Talab TAE, Naby AENSAE, Sultan MM, Sohaib A, Hemida AS. Gastric Carcinoma with low ROR alpha, low E- Cadherin and High LAPTM4B Immunohistochemical Profile; is associated with poor prognosis in Egyptian patients.. [DOI: 10.21203/rs.3.rs-2123133/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Background
Gastric carcinoma (GC) is the tenth most prevalent cancer in both sexes in Egypt. Many pathways have been investigated regarding pathogenesis of GC, including epithelial-mesenchymal transition (EMT) pathway. In view of multiplicity of carcinogenic pathways, poor survival and chemotherapy resistance detected in GC patients, more analysis of these pathways is required for better molecular selection of patients, prediction of prognosis and developing new therapeutic targets. Down-regulation of E-Cadherin is an important EMT stage. RORα is a tumor suppressor gene, expressed in normal epithelial tissues and reduced in a variety of human cancers. Knocking down of RORα; increase cell proliferation, EMT, migration, and invasion. LAPTM4B is a protooncogene and it has been suggested to be strictly associated with EMT induction. Therefore, this work aims to investigate the role of RORα, LAPTM4B and E-Cadherin and its relationship to prognosis of GC.
Methods
This is a retrospective study where the standard immunohistochemical technique was done to assess the expression of RORα, LAPTM4B and E-Cadherin in 167 cases of chronic gastritis (control group) and 73 primary gastric carcinomas (51 of them have available adjacent non tumor tissue).
Results
Low RORα and high LAPTM4B expression in GC cases were associated with unfavorable prognostic factors such as positive lymph nodes, and high tumor budding. E-Cadherin Heterogeneous staining was associated with poor prognostic pathological criteria, such as diffuse type GC and high tumor budding. In GC, there was significant co parallel correlation between RORα and E-Cadherin expression while LAPTM4B showed inverse correlation with E-Cadherin expression. Low RORα, high LAPTM4B, and negative or heterogeneous E-Cadherin were the most common immunohistochemical profile in GC cases. Low RORα expression showed poor prognostic impact on overall patient survival.
Conclusions
Low RORα H-score and increased expression of LAPTM4B were significantly associated with unfavorable prognostic parameters of GC which may indicate their crucial role in tumor aggressiveness. The predominance of low RORα, high LAPTM4B and heterogeneous or negative E-Cadherin immunohistochemical profile in GC cases with unfavorable pathological parameters suggested that this profile may predict tumor behavior and this profile could be linked to EMT molecular subtype of GC
Collapse
|
12
|
Retinoid orphan nuclear receptor alpha (RORα) suppresses the epithelial-mesenchymal transition (EMT) by directly repressing Snail transcription. J Biol Chem 2022; 298:102059. [PMID: 35605663 PMCID: PMC9218514 DOI: 10.1016/j.jbc.2022.102059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Retinoid orphan nuclear receptor alpha (RORα) is a member of the orphan nuclear factor family and regulates gene expression by binding to ROR response elements (ROREs). RORα has been identified as a potential tumor suppressor; however, how downregulation of RORα promotes cancer progression is not fully understood. Here, we showed that protein levels of RORα were downregulated during the Snail-, Twist-, or transforming growth factor-β–induced epithelial–mesenchymal transition (EMT). We found that silencing of RORα induced expression of mesenchymal markers in MCF10A cells, accompanied by enhanced cell invasion, migration, and mammosphere formation. Furthermore, ectopic expression of RORα suppressed transforming growth factor-β–induced EMT processes in MCF10A and HMLE cells. These results indicate that downregulation of RORα is crucial for the induction of EMT in mammary epithelial cells. By analyzing gene expression profiles in control and RORα-expressing cells, we also identified Snail, a key regulator of EMT, as a potential target of RORα. We show that RORα expression significantly inhibits Snail transcription in breast cancer cells. Chromatin immunoprecipitation analysis demonstrated that RORα bound to the ROREs in promoter region of SNAI1 gene, and using the luciferase reporter assay, we showed that binding to the ROREs was critical for RORα to repress Snail transcription. Finally, rescue experiments substantiated that Snail mediates RORα function in suppressing EMT and mammosphere formation. These results reveal a novel function of RORα in suppressing EMT and identify Snail as a direct target of RORα in mammary epithelial cells.
Collapse
|
13
|
Kim HS, An CH, Teller D, Moon SJ, Hwang GW, Song JW. The role of retinoid-related orphan receptor-α in cigarette smoke-induced autophagic response. Respir Res 2022; 23:110. [PMID: 35509068 PMCID: PMC9066967 DOI: 10.1186/s12931-022-02034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Retinoid-related orphan receptor-α (RORα) and autophagy dysregulation are involved in the pathophysiology of chronic obstructive pulmonary disease (COPD), but little is known regarding their association. We investigated the role of RORα in COPD-related autophagy. METHODS The lung tissues and cells from a mouse model were analyzed for autophagy markers by using western blot analysis and transmission electron microscopy. RESULTS Cigarette smoke increased the LC3-II level and decreased the p62 level in whole lung homogenates of a chronic cigarette smoking mouse model. Although cigarette smoke did not affect the levels of p62 in Staggerer mutant mice (RORαsg/sg), the baseline expression levels of p62 were significantly higher than those in wild type (WT) mice. Autophagy was induced by cigarette smoke extract (CSE) in Beas-2B cells and in primary fibroblasts from WT mice. In contrast, fibroblasts from RORαsg/sg mice failed to show CSE-induced autophagy and exhibited fewer autophagosomes, lower LC3-II levels, and higher p62 levels than fibroblasts from WT mice. Damage-regulated autophagy modulator (DRAM), a p53-induced modulator of autophagy, was expressed at significantly lower levels in the fibroblasts from RORαsg/sg mice than in those from WT mice. DRAM knockdown using siRNA in Beas-2B cells inhibited CSE-induced autophagy and cell death. Furthermore, RORα co-immunoprecipitated with p53 and the interaction increased p53 reporter gene activity. CONCLUSIONS Our findings suggest that RORα promotes autophagy and contributes to COPD pathogenesis via regulation of the RORα-p53-DRAM pathway.
Collapse
Affiliation(s)
- Hak-Su Kim
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Chang Hyeok An
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, USA
- Division of Pulmonology, Department of Internal Medicine, Hanil General Hospital, Seoul, Republic of Korea
| | - Danielle Teller
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, USA
| | - Su-Jin Moon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Gi Won Hwang
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
14
|
Zhou L, Zhang Z, Nice E, Huang C, Zhang W, Tang Y. Circadian rhythms and cancers: the intrinsic links and therapeutic potentials. J Hematol Oncol 2022; 15:21. [PMID: 35246220 PMCID: PMC8896306 DOI: 10.1186/s13045-022-01238-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The circadian rhythm is an evolutionarily conserved time-keeping system that comprises a wide variety of processes including sleep-wake cycles, eating-fasting cycles, and activity-rest cycles, coordinating the behavior and physiology of all organs for whole-body homeostasis. Acute disruption of circadian rhythm may lead to transient discomfort, whereas long-term irregular circadian rhythm will result in the dysfunction of the organism, therefore increasing the risks of numerous diseases especially cancers. Indeed, both epidemiological and experimental evidence has demonstrated the intrinsic link between dysregulated circadian rhythm and cancer. Accordingly, a rapidly increasing understanding of the molecular mechanisms of circadian rhythms is opening new options for cancer therapy, possibly by modulating the circadian clock. In this review, we first describe the general regulators of circadian rhythms and their functions on cancer. In addition, we provide insights into the mechanisms underlying how several types of disruption of the circadian rhythm (including sleep-wake, eating-fasting, and activity-rest) can drive cancer progression, which may expand our understanding of cancer development from the clock perspective. Moreover, we also summarize the potential applications of modulating circadian rhythms for cancer treatment, which may provide an optional therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Laboratory of Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
15
|
Li D, Liu G, Wu Y. RORA alleviates LPS-induced apoptosis of renal epithelial cells by promoting PGC-1α transcription. Clin Exp Nephrol 2022; 26:512-521. [PMID: 35195816 PMCID: PMC9114077 DOI: 10.1007/s10157-022-02184-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To explore the effect of RORA on LPS-induced renal epithelial cell apoptosis and the underlying mechanism. METHODS LPS-treated HK-2 cells were established as a cellular model of acute kidney injury. The expression of RORA or/and PGC-1α in LPS-induced HK-2 cells was altered by transfection. qRT-PCR and Western blotting were used to detect the expression changes of RORA and PGC-1α. ELISA was performed to detect the expression of IL-1β and IL-6 and the activity of caspase-3. Western blotting was applied for visualization of cleaved caspase-3. CCK-8 and flow cytometry were used to assess cell proliferation and apoptosis. Dual-luciferase reporter and ChIP-qPCR were utilized to verify the binding of RORA to PGC-1α promoter. RESULTS LPS treatment decreased the expression of RORA and PGC-1α and increased that of cleaved caspase-3 in HK-2 cells. Also, LPS treatment inhibited HK-2 cell proliferation and promoted HK-2 cell apoptosis and secretion of IL-1β and IL-6. Overexpression of RORA or PGC-1α eliminated the adverse effects of LPS treatment in HK-2 cells. RORA drove the transcription of PGC-1α by binding PGC-1α promoter. Knockdown of PGC-1α offset the reduction in HK-2 cell injury caused by overexpression of RORA. CONCLUSION RORA reduces LPS-induced apoptosis of renal epithelial cells by promoting PGC-1α transcription.
Collapse
Affiliation(s)
- Dayong Li
- Department of Nephrology, The First Hospital of Changsha, No. 311 Yingpan Road, Changsha, 410005, Hunan, People's Republic of China
| | - Guanlan Liu
- Department of Nephrology, The First Hospital of Changsha, No. 311 Yingpan Road, Changsha, 410005, Hunan, People's Republic of China
| | - Yundou Wu
- Department of Nephrology, The First Hospital of Changsha, No. 311 Yingpan Road, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
16
|
Sutton M, Sugier PE, Truong T, Liquet B. Leveraging pleiotropic association using sparse group variable selection in genomics data. BMC Med Res Methodol 2022; 22:9. [PMID: 34996381 PMCID: PMC8742466 DOI: 10.1186/s12874-021-01491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have identified genetic variants associated with multiple complex diseases. We can leverage this phenomenon, known as pleiotropy, to integrate multiple data sources in a joint analysis. Often integrating additional information such as gene pathway knowledge can improve statistical efficiency and biological interpretation. In this article, we propose statistical methods which incorporate both gene pathway and pleiotropy knowledge to increase statistical power and identify important risk variants affecting multiple traits. Methods We propose novel feature selection methods for the group variable selection in multi-task regression problem. We develop penalised likelihood methods exploiting different penalties to induce structured sparsity at a gene (or pathway) and SNP level across all studies. We implement an alternating direction method of multipliers (ADMM) algorithm for our penalised regression methods. The performance of our approaches are compared to a subset based meta analysis approach on simulated data sets. A bootstrap sampling strategy is provided to explore the stability of the penalised methods. Results Our methods are applied to identify potential pleiotropy in an application considering the joint analysis of thyroid and breast cancers. The methods were able to detect eleven potential pleiotropic SNPs and six pathways. A simulation study found that our method was able to detect more true signals than a popular competing method while retaining a similar false discovery rate. Conclusion We developed feature selection methods for jointly analysing multiple logistic regression tasks where prior grouping knowledge is available. Our method performed well on both simulation studies and when applied to a real data analysis of multiple cancers.
Collapse
Affiliation(s)
- Matthew Sutton
- Queensland University of Technology Centre for Data Science, Brisbane, Australia.
| | - Pierre-Emmanuel Sugier
- Laboratoire De Mathématiques et de leurs Applications de PAU E2S UPPA, CNRS, Pau, France.,University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Exposome and Heredity", Villejuif, France
| | - Therese Truong
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Team "Exposome and Heredity", Villejuif, France
| | - Benoit Liquet
- Laboratoire De Mathématiques et de leurs Applications de PAU E2S UPPA, CNRS, Pau, France.,Department of Mathematics and Statistics, Macquarie University, Sydney, Australia
| |
Collapse
|
17
|
Mao W, Xiong G, Wu Y, Wang C, St. Clair D, Li JD, Xu R. RORα Suppresses Cancer-Associated Inflammation by Repressing Respiratory Complex I-Dependent ROS Generation. Int J Mol Sci 2021; 22:ijms221910665. [PMID: 34639006 PMCID: PMC8509002 DOI: 10.3390/ijms221910665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer development is associated with macrophage infiltration and differentiation in the tumor microenvironment. Our previous study highlights the crucial function of reactive oxygen species (ROS) in enhancing macrophage infiltration during the disruption of mammary tissue polarity. However, the regulation of ROS and ROS-associated macrophage infiltration in breast cancer has not been fully determined. Previous studies identified retinoid orphan nuclear receptor alpha (RORα) as a potential tumor suppressor in human breast cancer. In the present study, we showed that retinoid orphan nuclear receptor alpha (RORα) significantly decreased ROS levels and inhibited ROS-mediated cytokine expression in breast cancer cells. RORα expression in mammary epithelial cells inhibited macrophage infiltration by repressing ROS generation in the co-culture assay. Using gene co-expression and chromatin immunoprecipitation (ChIP) analyses, we identified complex I subunits NDUFS6 and NDUFA11 as RORα targets that mediated its function in suppressing superoxide generation in mitochondria. Notably, the expression of RORα in 4T1 cells significantly inhibited cancer metastasis, reduced macrophage accumulation, and enhanced M1-like macrophage differentiation in tumor tissue. In addition, reduced RORα expression in breast cancer tissue was associated with an increased incidence of cancer metastasis. These results provide additional insights into cancer-associated inflammation, and identify RORα as a potential target to suppress ROS-induced mammary tumor progression.
Collapse
Affiliation(s)
- Wei Mao
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (W.M.); (G.X.); (Y.W.); (C.W.); (D.S.C.)
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, School of Life Sciences, Central South University, Changsha 410078, China;
| | - Gaofeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (W.M.); (G.X.); (Y.W.); (C.W.); (D.S.C.)
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Yuanyuan Wu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (W.M.); (G.X.); (Y.W.); (C.W.); (D.S.C.)
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (W.M.); (G.X.); (Y.W.); (C.W.); (D.S.C.)
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Daret St. Clair
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (W.M.); (G.X.); (Y.W.); (C.W.); (D.S.C.)
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jia-Da Li
- Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, School of Life Sciences, Central South University, Changsha 410078, China;
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (W.M.); (G.X.); (Y.W.); (C.W.); (D.S.C.)
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-323-7889
| |
Collapse
|
18
|
Han YH, Kim HJ, Lee MO. RORα regulates hepatic lipolysis by inducing transcriptional expression of PNPLA3 in mice. Mol Cell Endocrinol 2021; 522:111122. [PMID: 33347955 DOI: 10.1016/j.mce.2020.111122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver diseases (NAFLDs) are characterized by excessive triacylglycerol (TAG) accumulation in the liver which contributes to hepatocyte dysfunction, inflammation, and fibrosis. Patatin-like phospholipase domain-containing 3 (PNPLA3; also known as adiponutrin) has emerged as an important enzyme leading to hepatic TAG hydrolysis. Because the I148M substitution in the PNPLA3 gene markedly reduces hepatic TAG hydrolase activity, this genetic variation is strongly associated with increased hepatic TAG in the full spectrum of NAFLDs. The Retinoic acid-related orphan receptor α (RORα) regulates various target genes related to lipid metabolism. Here, we investigated the role of RORα on PNPLA3-mediated hepatic lipid hydrolysis. With blockade of lipid esterification and β-oxidation, RORα enhanced TAG hydrolysis, resulting in increased free glycerol levels. We found a putative RORα response element on the upstream of PNPLA3 gene that was activated by RORα. Furthermore, the inhibitory action of cJUN on the RORα/PNPLA3 axis was enhanced under lipid stress and contributed to hepatic lipid accumulation. In summary, we showed for the first time that RORα activates the transcription of PNPLA3, which suggests that RORα and its ligands represent potential precision therapeutic approaches for NAFLDs.
Collapse
Affiliation(s)
- Yong-Hyun Han
- College of Pharmacy, Seoul National University, Seoul, South Korea; Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea; Bio-MAX Institute, Seoul National University, Seoul, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
19
|
FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability. Commun Biol 2021; 4:127. [PMID: 33514811 PMCID: PMC7846573 DOI: 10.1038/s42003-021-01647-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and promotes CFS gene stability. Mechanistically, we demonstrate that the mitochondrial stress-dependent induction of CFS genes is mediated by ubiquitin-like protein 5 (UBL5), and that a UBL5-FANCD2 dependent axis regulates the mitochondrial UPR in human cells. We propose that FANCD2 coordinates nuclear and mitochondrial activities to prevent genome instability.
Collapse
|
20
|
Small Molecules Targeting Biological Clock; A Novel Prospective for Anti-Cancer Drugs. Molecules 2020; 25:molecules25214937. [PMID: 33114496 PMCID: PMC7663518 DOI: 10.3390/molecules25214937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
The circadian rhythms are an intrinsic timekeeping system that regulates numerous physiological, biochemical, and behavioral processes at intervals of approximately 24 h. By regulating such processes, the circadian rhythm allows organisms to anticipate and adapt to continuously changing environmental conditions. A growing body of evidence shows that disruptions to the circadian rhythm can lead to various disorders, including cancer. Recently, crucial knowledge has arisen regarding the essential features that underlie the overt circadian rhythm and its influence on physiological outputs. This knowledge suggests that specific small molecules can be utilized to control the circadian rhythm. It has been discovered that these small molecules can regulate circadian-clock-related disorders such as metabolic, cardiovascular, inflammatory, as well as cancer. This review examines the potential use of small molecules for developing new drugs, with emphasis placed on recent progress that has been made regarding the identification of small-molecule clock modulators and their potential use in treating cancer.
Collapse
|
21
|
Farahani S, Solgi L, Bayat S, Abedin Do A, Zare-Karizi S, Safarpour Lima B, Mirfakhraie R. RAR-related orphan receptor A: One gene with multiple functions related to migraine. CNS Neurosci Ther 2020; 26:1315-1321. [PMID: 32892507 PMCID: PMC7702232 DOI: 10.1111/cns.13453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/01/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Aims RAR‐related orphan receptor (RORA) involves in regulation of several biological processes including inflammation and circadian rhythm that probably are involved in migraine pathophysiology. In the current study, the association between RORA rs11639084 and rs4774388 variants and susceptibility to migraine were investigated in a sample of Iranian migraine patients for the first time. Methods In a case‐control study including 400 participants, 200 migraineurs and 200 healthy controls, genotyping of RORA rs4774388 and rs11639084 polymorphisms was performed using tetra‐primer amplification refractory mutation system–polymerase chain reaction (TP‐ARMS‐PCR). Results The distribution of rs4774388 C/T and T/T genotypes differed significantly between the studied groups. Moreover, an association was observed between rs4774388 and migraine under the recessive mode of inheritance (P = 0.002; OR = 1.89.; CI = 1.25‐2.87). The distribution of rs11639084 alleles and genotypes was not significantly different between migraineurs and healthy controls. Conclusion Current results suggest RORA, as a molecular link, may explain inflammation and circadian rhythm dysfunction in migraine. Further studies in different ethnicities are required to confirm the function of RORA in migraine development.
Collapse
Affiliation(s)
- Sedigheh Farahani
- Department of Genetics, School of Biological Sciences, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Leila Solgi
- Department of Genetics, School of Biological Sciences, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Sahar Bayat
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atieh Abedin Do
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Regenerative Medicine, Faculty of Medicine, GREB Dental Faculty, Laval University, Quebec, Canada
| | - Shohreh Zare-Karizi
- Department of Genetics, School of Biological Sciences, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Behnam Safarpour Lima
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Genomic Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Yang Y, Hu H, Mao C, Jiang F, Lu X, Han X, Hao K, Lan X, Zhang Q, Pan C. Detection of the 23-bp nucleotide sequence mutation in retinoid acid receptor related orphan receptor alpha (RORA) gene and its effect on sheep litter size. Anim Biotechnol 2020; 33:70-78. [PMID: 32731793 DOI: 10.1080/10495398.2020.1770273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinoid acid receptor related orphan receptor alpha (RORA) transcribes steroid-related genes to regulate estrogen synthesis. As an important reproductive trait, litter size relates to estrogen synthesis. Therefore, it is important to investigate the association between RORA gene and sheep litter size. In this study, one 23-bp nucleotide sequence mutation was identified in intron 1 of RORA gene in 532 female Australian White Sheep. Moreover, the polymorphic information content (PIC) values of this locus was 0.219. The litter size of ID genotype was significantly better than II genotype and DD genotype in the second born litter size (p < 0.05). This loci was related to third born litter size and the ID is the dominant genotype (p < 0.05). The association between combined genotypes and average litter size showed that sheep with heterozygote (ID) genotypes had larger lamb than homozygous (DD and II) genotypes. To sum, this study provided theoretical references for the comprehensively research of the function of RORA gene and the breeding of Australian White Sheep. The 23-bp indel variants could be considered as molecular markers for the second and third born litter size of sheep for MAS breeding.
Collapse
Affiliation(s)
- Yuta Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huina Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cui Mao
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China.,Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - Fugui Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan, China
| | - Xiaofang Lu
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Xufei Han
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Kunjie Hao
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Zhang
- Tianjin Aoqun Sheep Industry Research Institute, Tianjin Aoqun Animal Husbandry Company Ltd, Tianjin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
23
|
Tamarindo GH, Góes RM. Docosahexaenoic acid differentially modulates the cell cycle and metabolism- related genes in tumor and pre-malignant prostate cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158766. [PMID: 32712248 DOI: 10.1016/j.bbalip.2020.158766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) has different molecular features along progression, including androgen profile, which is associated to therapy inefficiency leading to more aggressive phenotype. Docosahexaenoic acid (DHA) has antiproliferative and pro-apoptotic properties in different cancers associated to cell metabolism modulation. The latter is of particular interest since metabolic reprogramming is one of PCa hallmarks, but is not clear how this occurs among disease progression. Therefore, we evaluated DHA antiproliferative potential in distinct androgenic backgrounds associated to metabolism modulation and androgen-regulated genes. For this purpose, pre-malignant PNT1A and tumor AR-positive 22rv1, and AR-negative PC3 cells were incubated with DHA at 100 μM-48 h. DHA reduced at least 26% cell number for all lineages due to S-phase decrease in AR-positive and G2/M arrest in AR-negative. Mitochondrial metabolic rate decreased in PNT1A (~38%) and increased in tumor cells (at least 40%). This was associated with ROS overproduction (1.6-fold PNT1A; 2.1 22rv1; 2.2 PC3), lipid accumulation (3-fold PNT1A; 1.8 22rv1; 3.6 PC3) and mitochondria damage in all cell lines. AKT, AMPK and PTEN were not activated in any cell line, but p-ERK1/2 increased (1.5-fold) in PNT1A. Expression of androgen-regulated and nuclear receptors genes showed that DHA affected them in a distinct pattern in each cell line, but most converged to metabolism regulation, response to hormones, lipids and stress. In conclusion, regardless of androgenic or PTEN background DHA exerted antiproliferative effect associated to cell cycle impairment, lipid deregulation and oxidative stress, but differentially regulated gene expression probably due to distinct molecular features of each pathologic stage.
Collapse
Affiliation(s)
| | - Rejane Maira Góes
- Institute of Biology, University of Campinas, Campinas, SP, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
24
|
Samanta S. Melatonin: an endogenous miraculous indolamine, fights against cancer progression. J Cancer Res Clin Oncol 2020; 146:1893-1922. [PMID: 32583237 DOI: 10.1007/s00432-020-03292-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Melatonin is an amphipathic indolamine molecule ubiquitously present in all organisms ranging from cyanobacteria to humans. The pineal gland is the site of melatonin synthesis and secretion under the influence of the retinohypothalamic tract. Some extrapineal tissues (skin, lens, gastrointestinal tract, testis, ovary, lymphocytes, and astrocytes) also enable to produce melatonin. Physiologically, melatonin regulates various functions like circadian rhythm, sleep-wake cycle, gonadal activity, redox homeostasis, neuroprotection, immune-modulation, and anticancer effects in the body. Inappropriate melatonin secretion advances the aging process, tumorigenesis, visceral adiposity, etc. METHODS: For the preparation of this review, I had reviewed the literature on the multidimensional activities of melatonin from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Wiley Online ResearchGate, and Google Scholar databases to search relevant articles. Specifically, I focused on the roles and mechanisms of action of melatonin in cancer prevention. RESULTS The actions of melatonin are primarily mediated by G-protein coupled MT1 and MT2 receptors; however, several intracellular protein and nuclear receptors can modulate the activity. Normal levels of the melatonin protect the cells from adverse effects including carcinogenesis. Therapeutically, melatonin has chronomedicinal value; it also shows a remarkable anticancer property. The oncostatic action of melatonin is multidimensional, associated with the advancement of apoptosis, the arrest of the cell cycle, inhibition of metastasis, and antioxidant activity. CONCLUSION The present review has emphasized the mechanism of the anti-neoplastic activity of melatonin that increases the possibilities of the new approaches in cancer therapy.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department Physiology, Midnapore College, Paschim Medinipur, Midnapore, West Bengal, 721101, India.
| |
Collapse
|
25
|
Impaired Replication Timing Promotes Tissue-Specific Expression of Common Fragile Sites. Genes (Basel) 2020; 11:genes11030326. [PMID: 32204553 PMCID: PMC7140878 DOI: 10.3390/genes11030326] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Common fragile sites (CFSs) are particularly vulnerable regions of the genome that become visible as breaks, gaps, or constrictions on metaphase chromosomes when cells are under replicative stress. Impairment in DNA replication, late replication timing, enrichment of A/T nucleotides that tend to form secondary structures, the paucity of active or inducible replication origins, the generation of R-loops, and the collision between replication and transcription machineries on particularly long genes are some of the reported characteristics of CFSs that may contribute to their tissue-specific fragility. Here, we validated the induction of two CFSs previously found in the human fetal lung fibroblast line, Medical Research Council cell strain 5 (MRC-5), in another cell line derived from the same fetal tissue, Institute for Medical Research-90 cells (IMR-90). After induction of CFSs through aphidicolin, we confirmed the expression of the CFS 1p31.1 on chromosome 1 and CFS 3q13.3 on chromosome 3 in both fetal lines. Interestingly, these sites were found to not be fragile in lymphocytes, suggesting a role for epigenetic or transcriptional programs for this tissue specificity. Both these sites contained late-replicating genes NEGR1 (neuronal growth regulator 1) at 1p31.1 and LSAMP (limbic system-associated membrane protein) at 3q13.3, which are much longer, 0.880 and 1.4 Mb, respectively, than the average gene length. Given the established connection between long genes and CFS, we compiled information from the literature on all previously identified CFSs expressed in fibroblasts and lymphocytes in response to aphidicolin, including the size of the genes contained in each fragile region. Our comprehensive analysis confirmed that the genes found within CFSs are longer than the average human gene; interestingly, the two longest genes in the human genome are found within CFSs: Contactin Associated Protein 2 gene (CNTNAP2) in a lymphocytes’ CFS, and Duchenne muscular dystrophy gene (DMD) in a CFS expressed in both lymphocytes and fibroblasts. This indicates that the presence of very long genes is a unifying feature of all CFSs. We also obtained replication profiles of the 1p31.1 and 3q13.3 sites under both perturbed and unperturbed conditions using a combination of fluorescent in situ hybridization (FISH) and immunofluorescence against bromodeoxyuridine (BrdU) on interphase nuclei. Our analysis of the replication dynamics of these CFSs showed that, compared to lymphocytes where these regions are non-fragile, fibroblasts display incomplete replication of the fragile alleles, even in the absence of exogenous replication stress. Our data point to the existence of intrinsic features, in addition to the presence of long genes, which affect DNA replication of the CFSs in fibroblasts, thus promoting chromosomal instability in a tissue-specific manner.
Collapse
|
26
|
Jiang Y, Zhou J, Zhao J, Hou D, Zhang H, Li L, Zou D, Hu J, Zhang Y, Jing Z. MiR-18a-downregulated RORA inhibits the proliferation and tumorigenesis of glioma using the TNF-α-mediated NF-κB signaling pathway. EBioMedicine 2020; 52:102651. [PMID: 32062354 PMCID: PMC7016377 DOI: 10.1016/j.ebiom.2020.102651] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/05/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glioma has a poor prognosis, and is the most common primary and lethal primary malignant tumor in the central nervous system. Retinoic acid receptor-related orphan receptor A (RORA) is a member of the ROR subfamily of orphan receptors and plays an anti-tumor role in several cancers. METHODS A cell viability assay, the Edu assay, neurosphere formation assay, and xenograft experiments were used to detect the proliferative abilities of glioma cell line, glioma stem cells (GSCs). Western blotting, ELISAs, and luciferase reporter assays were used to detect the presence of possible microRNAs. FINDINGS Our study found for the first time that RORA was expressed at low levels in gliomas, and was associated with a good prognosis. RORA overexpression inhibited the proliferation and tumorigenesis of glioma cell lines and GSCs via inhibiting the TNF-α mediated NF-κB signaling pathway. In addition, microRNA-18a had a promoting effect on gliomas, and was the possible reason for low RORA expression in gliomas. INTERPRETATION RORA may be a promising therapeutic target in the treatment of gliomas.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang 110001, Liaoning, China; Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Jinpeng Zhou
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang 110001, Liaoning, China
| | - Junshuang Zhao
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang 110001, Liaoning, China
| | - Dianqi Hou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, Shenyang, No. 79 Chongshan East Road, Shenyang 110042, Liaoning, China
| | - Long Li
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang 110001, Liaoning, China
| | - Dan Zou
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang 110001, Liaoning, China
| | - Jiangfeng Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang 110001, Liaoning, China
| | - Zhitao Jing
- Department of Neurosurgery, the First Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang 110001, Liaoning, China.
| |
Collapse
|
27
|
Liu G, Yang ZF, Zhou PY, Zhou C, Guan RY, Sun BY, Fan J, Zhou J, Yi Y, Qiu SJ. ROR-α-1 inhibits the proliferation, invasion, and migration of hepatocellular carcinoma MHCC97H via downregulation of chemokine CXCL5. Cytokine 2020; 129:155004. [PMID: 32058275 DOI: 10.1016/j.cyto.2020.155004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022]
Abstract
Hepatocarcinogenesis is a complicated process that is affected by a variety of microenvironmental factors, such as secretory chemokines and cell-extracellular matrix (ECM). Retinoic acid receptor-related orphan receptor (ROR)-α has been shown to attenuate tumor invasiveness by inducing suppressive cell microenvironment, and its low expression was associated with a worse prognosis in HCC patients. In the present study, we attempted to investigate the role and mechanism of the dominant transcript of ROR-α, ROR-α-1, in HCC development and progression. Among the four transcripts (ROR-α-1/-2/-3/-4), overexpression of ROR-α-1 dramatically suppressed the capacity of MHCC97H cells to proliferate, migrate and invade. We analyzed the differentially expressed genes in ROR-α-1-overexpressed and non-overexpressed MHCC97H cells, performed Gene Ontology (GO) enrichment analysis on these differentially-expressed genes, and found out that factors involved in the tumor microenvironment and ECM are related to the anti-tumor effects of ROR-α-1. Among these factors, chemokine CXCL5 was significantly downregulated by ROR-α-1 overexpression. Overexpression of ROR-α-1 remarkably inhibited the capacity of HCC cells to proliferate, migrate, invade, and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1, and N-cadherin, suggesting the tumor-suppressive role of ROR-α-1 in MHCC97H cells. Moreover, overexpression of CXCL5 dramatically attenuated the suppressive effects of cell proliferation, migration and invasion induced by ROR-α-1 overexpression in MHCC97H, suggesting that ROR-α-1 exerts its anti-tumor effects via downregulating CXCL5. In conclusion, we demonstrate the tumor-suppressive role of ROR-α-1 in MHCC97H cells and that ROR-α-1 might play a tumor-suppressive role via regulation of chemokine CXCL5.
Collapse
Affiliation(s)
- Gao Liu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Liver Cancer Institute, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Liver Cancer Institute, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, China
| | - Pei-Yun Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Liver Cancer Institute, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, China
| | - Cheng Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Liver Cancer Institute, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, China
| | - Ruo-Yu Guan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Liver Cancer Institute, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Liver Cancer Institute, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Liver Cancer Institute, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Liver Cancer Institute, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Liver Cancer Institute, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Liver Cancer Institute, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, China.
| |
Collapse
|
28
|
Sun M, Hu L, Wang S, Huang T, Zhang M, Yang M, Zhen W, Yang D, Lu W, Guan M, Peng S. Circulating MicroRNA-19b Identified From Osteoporotic Vertebral Compression Fracture Patients Increases Bone Formation. J Bone Miner Res 2020; 35:306-316. [PMID: 31614022 DOI: 10.1002/jbmr.3892] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Circulating microRNAs (miRNAs) play important roles in regulating gene expression and have been reported to be involved in various metabolic diseases, including osteoporosis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the role of circulating miRNAs in this process is poorly understood. Here we discovered that the level of circulating miR-19b was significantly lower in osteoporotic patients with vertebral compression fractures than that of healthy controls. The expression level of miR-19b was increased during osteoblastic differentiation of human mesenchymal stem cells (hMSCs) and MC3T3-E1 cells, and transfection with synthetic miR-19b could promote osteoblastic differentiation of hMSCs and MC3T3-E1 cells. PTEN (phosphatase and tensin homolog deleted from chromosome 10) was found to be directly repressed by miR-19b, with a concomitant increase in Runx2 expression and increased phosphorylation of AKT (protein kinase B, PKB). The expression level of circulating miR-19b in aged ovariectomized mice was significantly lower than in young mice. Moreover, the osteoporotic bone phenotype in aged ovariectomized mice was alleviated by the injection of chemically modified miR-19b (agomiR-19b). Taken together, our results show that circulating miR-19b plays an important role in enhancing osteoblastogenesis, possibly through regulation of the PTEN/pAKT/Runx2 pathway, and may be a useful therapeutic target in bone loss disorders, such as osteoporosis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mengge Sun
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Liqiu Hu
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Shang Wang
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Tongling Huang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Minyi Zhang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meng Yang
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wanxin Zhen
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Dazhi Yang
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - William Lu
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Orthopaedic and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Min Guan
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, The Second College of Medicine, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
29
|
Kültz D. Evolution of cellular stress response mechanisms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:359-378. [PMID: 31970941 DOI: 10.1002/jez.2347] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
The cellular stress response (CSR) is pervasive to all domains of life. It has shaped the interaction between organisms and their environment since the origin of the first cell. Although the CSR has been subject to a myriad of nuanced modifications in the various branches of life present today, its core features remain preserved. The scientific literature covering the CSR is enormous and the broad scope of this brief overview was challenging. However, it is critical to conceptually understand how cells respond to stress in a holistic sense and to point out how fundamental aspects of the CSR framework are integrated. It was necessary to be extremely selective and not feasible to even mention many interesting and important developments in this expansive field. The purpose of this overview is to sketch out general and emerging CSR concepts with an emphasis on the initial cellular strain resulting from stress (macromolecular damage) and the evolutionarily most highly conserved elements of the CSR. Examples emphasize fish and aquatic invertebrates to highlight what is known in organisms beyond mammals, yeast, and other common models. Nonetheless, select pioneering studies using canonical models are also considered and the concepts discussed are applicable to all cells. More detail on important aspects of the CSR in aquatic animals is provided in the accompanying articles of this special issue.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Davis, California
| |
Collapse
|
30
|
Su J, Su B, Xia H, Liu F, Zhao X, Li J, Zhang J, Shi Y, Zeng Y, Zeng X, Ling H, Wu Y, Su Q. RORα Suppresses Epithelial-to-Mesenchymal Transition and Invasion in Human Gastric Cancer Cells via the Wnt/β-Catenin Pathway. Front Oncol 2019; 9:1344. [PMID: 31867273 PMCID: PMC6909819 DOI: 10.3389/fonc.2019.01344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
Retinoid-related orphan receptor alpha (RORα) is involved in tumor development. However, the mechanisms underlying RORα inhibiting epithelial-to-mesenchymal transition (EMT) and invasion are poorly understood in gastric cancer (GC). This study revealed that the decreased expression of RORα is associated with GC development, progression, and prognosis. RORα suppressed cell proliferation, EMT, and invasion in GC cells through inhibition of the Wnt/β-catenin pathway. RORα overexpression resulted in the decreased Wnt1 expression and the increased RORα interaction with β-catenin, which could lead to the decreased intranuclear β-catenin and p-β-catenin levels, concomitant with downregulated T-cell factor-4 (TCF-4) expression and the promoter activity of c-Myc. The inhibition of Wnt/β-catenin pathway was coupled with the reduced expression of Axin, c-Myc, and c-Jun. RORα downregulated vimentin and Snail and upregulated E-cadherin protein levels in vitro and in vivo. Inversely, knockdown of RORα attenuated its inhibitory effects on Wnt/β-catenin pathway and its downstream gene expression, facilitating cell proliferation, EMT, migration, and invasion in GC cells. Therefore, RORα could play a crucial role in repressing GC cell proliferation, EMT, and invasion via downregulating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jian Su
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Department of Pathology, Second Affiliated Hospital, University of South China, Hengyang, China
| | - Bo Su
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Key Laboratory for Pharmacoproteomics of Hunan Provincial University, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Hong Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| | - Fang Liu
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| | - XiaoHong Zhao
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Department of Gynaecology, Hainan Maternal and Child Health Hospital, Haikou, China
| | - Juan Li
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Department of Gastroenterology, Loudi Center Hospital, Loudi, China
| | - JiZhen Zhang
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Department of Pathology, Affiliated Hospital, Jinggangshan University, Ji'an, China
| | - Ying Shi
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Department of Pathology and Pathophysiology, Xiamen Medical College, Xiamen, China
| | - Ying Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| | - Hui Ling
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| | - YouHua Wu
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| | - Qi Su
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China.,Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
31
|
Benna C, Rajendran S, Spiro G, Tropea S, Del Fiore P, Rossi CR, Mocellin S. Associations of clock genes polymorphisms with soft tissue sarcoma susceptibility and prognosis. J Transl Med 2018; 16:338. [PMID: 30518396 PMCID: PMC6280400 DOI: 10.1186/s12967-018-1715-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022] Open
Abstract
Background Dysfunction of the circadian clock and polymorphisms of some circadian genes have been linked to cancer development and progression. We investigated the relationship between circadian genes germline variation and susceptibility or prognosis of patients with soft tissue sarcoma. Patients and methods We considered the 14 single nucleotide polymorphisms (SNPs) of 6 core circadian genes that have a minor allele frequency > 5% and that are known to be associated with cancer risk or prognosis. Genotyping was performed by q-PCR. Peripheral blood and clinic-pathological data were available for 162 patients with liposarcoma or leiomyosarcoma and 610 healthy donors. Associations between the selected clock genes polymorphisms and sarcoma susceptibility or prognosis were tested assuming 3 models of inheritance: additive, recessive and dominant. Subgroup analysis based on sarcoma histotype was performed under the additive genetic model. Multivariate logistic regression and multivariate Cox proportional hazard regression analyses were utilized to assess the association between SNPs with patient susceptibility and survival, respectively. Pathway variation analysis was conducted employing the Adaptive Rank Truncated Product method. Results Six out of the 14 analyzed SNPs were statistically significantly associated with susceptibility or prognosis of soft tissue sarcoma (P < 0.05). The present analysis suggested that carriers of the minor allele of the CLOCK polymorphism rs1801260 (C) or of PER2 rs934945 (T) had a reduced predisposition to sarcoma (26% and 35% respectively with the additive model) and liposarcoma (33% and 41% respectively). The minor allele (A) of NPAS2 rs895520 was associated with an increased predisposition to sarcoma of 33% and leiomyosarcoma of 44%. RORA rs339972 C allele was associated with a decreased predisposition to develop sarcoma assuming an additive model (29%) and leiomyosarcoma (36%). PER1 rs3027178 was associated with a reduced predisposition only in liposarcoma subgroup (32%). rs7602358 located upstream PER2 was significantly associated with liposarcoma survival (HR: 1.98; 95% CI 1.02–3.85; P = 0.04). Germline genetic variation in the circadian pathway was associated with the risk of developing soft tissue sarcoma (P = 0.035). Conclusions Genetic variation of circadian genes appears to play a role in the determinism of patient susceptibility and prognosis. These findings prompt further studies to fully dissect the molecular mechanisms. Electronic supplementary material The online version of this article (10.1186/s12967-018-1715-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy. .,Clinica Chirurgica I, Azienda Ospedaliera Padova, Padua, Italy.
| | | | - Giovanna Spiro
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Saveria Tropea
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy.,Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| | - Paolo Del Fiore
- Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| | - Carlo Riccardo Rossi
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy.,Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy.,Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| |
Collapse
|
32
|
Nejati Moharrami N, Bjørkøy Tande E, Ryan L, Espevik T, Boyartchuk V. RORα controls inflammatory state of human macrophages. PLoS One 2018; 13:e0207374. [PMID: 30485323 PMCID: PMC6261595 DOI: 10.1371/journal.pone.0207374] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/30/2018] [Indexed: 11/18/2022] Open
Abstract
ROR family of nuclear receptor transcription factors forms nodes connecting metabolic and inflammatory signaling pathways. The RORα members of the family have intrinsic transcriptional activity and they are involved in both activation and repression of a wide range of genes. The role of RORα in control of inflammation has been extensively studied using animal models but its function in human cells is not as well understood. To address this shortcoming, we analyzed how RORα is shaping the inflammatory state of human macrophages. Using CRISPR-Cas9 system, we deleted RORA in THP-1 human monocytic cell line. In mutant cells we observed a dramatic increase in basal expression of a subset of NF-κB regulated genes, including TNF, IL-1β and IL-6, at both transcriptional and translational levels. Furthermore, RORA-deletion cells produced notable amounts of pro-IL-1β even in the absence of LPS stimulation. Subsequent LPS stimulation induced cleavage of pro-IL-1β to mature form. Our RNAseq analysis further confirmed the key role of RORA in setting the inflammatory state of macrophages and defined the set of differentially regulated genes. Overall, our data provides evidence supporting the anti-inflammatory function of RORα in human macrophages.
Collapse
Affiliation(s)
- Neda Nejati Moharrami
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical Research and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Erlend Bjørkøy Tande
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical Research and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical Research and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical Research and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Victor Boyartchuk
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical Research and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Cardiology, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
- * E-mail:
| |
Collapse
|
33
|
Xu N, Wu YP, Yin HB, Xue XY, Gou X. Molecular network-based identification of competing endogenous RNAs and mRNA signatures that predict survival in prostate cancer. J Transl Med 2018; 16:274. [PMID: 30286759 PMCID: PMC6172814 DOI: 10.1186/s12967-018-1637-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background The aim of the study is described the regulatory mechanisms and prognostic values of differentially expressed RNAs in prostate cancer and construct an mRNA signature that predicts survival. Methods The RNA profiles of 499 prostate cancer tissues and 52 non-prostate cancer tissues from TCGA were analyzed. The differential expression of RNAs was examined using the edgeR package. Survival was analyzed by Kaplan–Meier method. microRNA (miRNA), messenger RNA (mRNA), and long non-coding RNA (lncRNA) networks from the miRcode database were constructed, based on the differentially expressed RNAs between non-prostate and prostate cancer tissues. Results A total of 773 lncRNAs, 1417 mRNAs, and 58 miRNAs were differentially expressed between non-prostate and prostate cancer samples. The newly constructed ceRNA network comprised 63 prostate cancer-specific lncRNAs, 13 miRNAs, and 18 mRNAs. Three of 63 differentially expressed lncRNAs and 1 of 18 differentially expressed mRNAs were significantly associated with overall survival in prostate cancer (P value < 0.05). After the univariate and multivariate Cox regression analyses, 4 mRNAs (HOXB5, GPC2, PGA5, and AMBN) were screened and used to establish a predictive model for the overall survival of patients. Our ROC curve analysis revealed that the 4-mRNA signature performed well. Conclusion These ceRNAs may play a critical role in the progression and metastasis of prostate cancer and are thus candidate therapeutic targets and potential prognostic biomarkers. A novel model that incorporated these candidates was established and might provide more powerful prognostic information in predicting survival in prostate cancer.
Collapse
Affiliation(s)
- Ning Xu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd., Yuzhong District, Chongqing, 400016, China.,Departments of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Peng Wu
- Departments of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Hu-Bin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd., Yuzhong District, Chongqing, 400016, China
| | - Xue-Yi Xue
- Departments of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd., Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
34
|
Taheri M, Omrani MD, Noroozi R, Ghafouri-Fard S, Sayad A. Retinoic acid-related orphan receptor alpha (RORA) variants and risk of breast cancer. Breast Dis 2018; 37:21-25. [PMID: 28598825 DOI: 10.3233/bd-160248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Breast cancer is the most common type of cancer and the second leading cause of cancer death in females. Despite numerous studies in this field, the etiology and clinical behavior of breast tumors have not been understood yet. Retinoid orphan nuclear receptor alpha (RORA) is a member of the orphan nuclear factor family involved in the regulation of lipid and steroid metabolism, immune response and circadian rhythms. Recent evidences support its role as a tumor suppressor gene. OBJECTIVES To find the associations between RORA polymorphisms and breast cancer. METHODS In the present study, we evaluated the association between two functional polymorphisms in RORA (rs11639084 and rs4774388) and breast cancer risk in a population of 122 Iranian breast cancer patients as well as 200 healthy subjects by means of tetra primer-amplification refractory mutation system-PCR (4P-ARMS-PCR) method. RESULTS The rs4774388 has been shown to be associated with breast cancer risk in recessive inheritance model (OR (95% CI ) = 0.51 (0.26-0.97) and P = 0.041). However, the allele and genotype frequencies of rs11639084 were not different in patients and control (P > 0.05). Haplotype analysis revealed no significant association of any estimated block of rs11639084/rs4774388 in breast cancer patients versus healthy controls. CONCLUSIONS The results of this study support a putative role for RORA in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, No 23, Shahid Labbafi Nejad Educational Hospital, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, No 23, Shahid Labbafi Nejad Educational Hospital, Tehran, Iran
| | - Rezvan Noroozi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Martín-Del-Campo R, Bárcenas-Ibarra A, Sifuentes-Romero I, Llera-Herrera R, García-Gasca A. Methylation status of the putative Pax6 promoter in olive ridley sea turtle embryos with eye defects: An initial approach. Mech Dev 2018; 154:287-295. [PMID: 30110613 DOI: 10.1016/j.mod.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022]
Abstract
Normal development involves the interplay of genetic and epigenetic regulatory mechanisms. Pax6 is an eye-selector factor responsible for initiating the regulatory cascade for the development of the eyes. For the olive ridley sea turtle (Lepidochelys olivacea), a threatened species, eye malformations have been reported. In order to study the DNA methylation status of the putative promoter of the Pax6 gene in embryos with ocular malformations, an exploratory study was carried out in which DNA was isolated from embryos with anophthalmia, microphthalmia, and cyclopia, as well as from their normal counterparts. The 5'-flanking region from the Pax6 gene was isolated, showing two CpG islands (CGIs). The methylation status of CGIs in malformed embryos was compared with that of normal embryos by bisulfite sequencing. Putative transcription factor binding sites and regulatory features were identified. Methylation patterns were observed in both CpG and non-CpG contexts, and were unique for each malformed embryo; in the CpG context, an embryo with cyclopia showed a methylated cytosine upstream the CGI-1 not present in other embryos, an embryo with left anophthalmia presented two methylated cytosines in the CGI-1, whereas an embryo with left anophthalmia and right microphthalmia showed two methylated cytosines in the CGI-2. Normal embryos did not show methylated cytosines in the CGI-1, but one of them showed one methylcytosine in the CGI-2. Methylated transcription factor-binding sites may affect Pax6 expression associated to the cellular response to environmental compounds and hypoxia, signal transduction, cell cycle, lens physiology and development, as well as the transcription rate. Although preliminary, these results suggest that embryos with ocular malformations present unique DNA methylation patterns in the putative promoter of the Pax6 gene in L. olivacea, and probably those subtle, random changes in the methylation status can cause (at least in part) the aberrant phenotypes observed in these embryos.
Collapse
Affiliation(s)
- Rodolfo Martín-Del-Campo
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico.
| | - Annelisse Bárcenas-Ibarra
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico
| | - Itzel Sifuentes-Romero
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Raúl Llera-Herrera
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico; Instituto de Ciencias del Mar y Limnología (Unidad Académica Mazatlán), Universidad Nacional Autónoma de México, Avenida Joel Montes Camarena s/n, PO Box 811, Mazatlán, Sinaloa 82040, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular Biology, Centro de Investigación en Alimentación y Desarrollo (CIAD), Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa 82110, Mexico.
| |
Collapse
|
36
|
Sun X, Dongol S, Qiu C, Xu Y, Sun C, Zhang Z, Yang X, Zhang Q, Kong B. miR-652 Promotes Tumor Proliferation and Metastasis by Targeting RORA in Endometrial Cancer. Mol Cancer Res 2018; 16:1927-1939. [PMID: 30093563 DOI: 10.1158/1541-7786.mcr-18-0267] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/21/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaomei Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, Shandong, China
| | - Samina Dongol
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, Shandong, China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, Shandong, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, Shandong, China
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, Shandong, China
| | - Zhiwei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, Shandong, China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, Shandong, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, Shandong, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, Shandong, China
| |
Collapse
|
37
|
Li B, Wang Y, Xu Y, Liu H, Bloomer W, Zhu D, Amos CI, Fang S, Lee JE, Li X, Han J, Wei Q. Genetic variants in RORA and DNMT1 associated with cutaneous melanoma survival. Int J Cancer 2018; 142:2303-2312. [PMID: 29313974 PMCID: PMC5893376 DOI: 10.1002/ijc.31243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
Abstract
Cutaneous melanoma (CM) is considered as a steroid hormone-related malignancy. However, few studies have evaluated the roles of genetic variants encoding steroid hormone receptor genes and their related regulators (SHR-related genes) in CM-specific survival (CMSS). Here, we performed a pathway-based analysis to evaluate genetic variants of 191 SHR-related genes in 858 CMSS patients using a dataset from a genome-wide association study (GWAS) from The University of Texas MD Anderson Cancer Center (MDACC), and then validated the results in an additional dataset of 409 patients from the Harvard GWAS. Using multivariate Cox proportional hazards regression analysis, we identified three-independent SNPs (RORA rs782917 G > A, RORA rs17204952 C > T and DNMT1 rs7253062 G > A) as predictors of CMSS, with a variant-allele attributed hazards ratio (HR) and 95% confidence interval of 1.62 (1.25-2.09), 1.60 (1.20-2.13) and 1.52 (1.20-1.94), respectively. Combined analysis of risk genotypes of these three SNPs revealed a decreased CMSS in a dose-response manner as the number of risk genotypes increased (ptrend < 0.001); however, no improvement in the prediction model was observed (area under the curve [AUC] = 79.6-80.8%, p = 0.656), when these risk genotypes were added to the model containing clinical variables. Our findings suggest that genetic variants of RORA and DNMT1 may be promising biomarkers for CMSS, but these results needed to be validated in future larger studies.
Collapse
Affiliation(s)
- Bo Li
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yinghui Xu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wendy Bloomer
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dakai Zhu
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Christopher I. Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey E. Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jiali Han
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
38
|
Brożyna AA, Jóźwicki W, Skobowiat C, Jetten A, Slominski AT. RORα and RORγ expression inversely correlates with human melanoma progression. Oncotarget 2018; 7:63261-63282. [PMID: 27542227 PMCID: PMC5325362 DOI: 10.18632/oncotarget.11211] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
The retinoic acid-related orphan receptors (RORs) regulate several physiological and pathological processes, including immune functions, development and cancer. To study the potential role of RORs in melanoma progression, we analysed RORα and RORγ expression in nevi and primary melanomas and non-lesional skin and metastases in relation to melanoma clinico-pathomorphological features. The expression of RORα and RORγ was lower in melanomas than in nevi and decreased during melanoma progression, with lowest levels found in primary melanomas at stages III and IV and in melanoma metastases. Their expression correlated with pathomorphological pTNM parameters being low in aggressive tumors and being high in tumors showing histological markers of good prognosis. Higher nuclear levels of RORα and RORγ and of cytoplasmic RORγ correlated with significantly longer overall and disease free survival time. Highly pigmented melanomas showed significantly lower level of nuclear RORs. This study shows that human melanoma development and aggressiveness is associated with decreased expression of RORα and RORγ, suggesting that RORs could be important in melanoma progression and host responses against the tumor. Furthermore, it suggests that RORα and RORγ might constitute a novel druggable target in anti-melanoma management using tumor suppressor gene therapy restoring their normal functions.
Collapse
Affiliation(s)
- Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Wojciech Jóźwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.,Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Cezary Skobowiat
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Anton Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrzej T Slominski
- Department of Dermatology, Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
39
|
Abstract
Nitrogen (N) fertilizer has a major influence on the yield and quality. Understanding and optimising the response of crop plants to nitrogen fertilizer usage is of central importance in enhancing food security and agricultural sustainability. In this study, the analysis of gene regulatory networks reveals multiple genes and biological processes in response to N. Two microarray studies have been used to infer components of the nitrogen-response network. Since they used different array technologies, a map linking the two probe sets to the maize B73 reference genome has been generated to allow comparison. Putative Arabidopsis homologues of maize genes were used to query the Biological General Repository for Interaction Datasets (BioGRID) network, which yielded the potential involvement of three transcription factors (TFs) (GLK5, MADS64 and bZIP108) and a Calcium-dependent protein kinase. An Artificial Neural Network was used to identify influential genes and retrieved bZIP108 and WRKY36 as significant TFs in both microarray studies, along with genes for Asparagine Synthetase, a dual-specific protein kinase and a protein phosphatase. The output from one study also suggested roles for microRNA (miRNA) 399b and Nin-like Protein 15 (NLP15). Co-expression-network analysis of TFs with closely related profiles to known Nitrate-responsive genes identified GLK5, GLK8 and NLP15 as candidate regulators of genes repressed under low Nitrogen conditions, while bZIP108 might play a role in gene activation.
Collapse
|
40
|
Katsyv I, Wang M, Song WM, Zhou X, Zhao Y, Park S, Zhu J, Zhang B, Irie HY. EPRS is a critical regulator of cell proliferation and estrogen signaling in ER+ breast cancer. Oncotarget 2018; 7:69592-69605. [PMID: 27612429 PMCID: PMC5342500 DOI: 10.18632/oncotarget.11870] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/25/2016] [Indexed: 02/06/2023] Open
Abstract
Aminoacyl tRNA synthetases (ARSs) are a class of enzymes with well-conserved housekeeping functions in cellular translation. Recent evidence suggests that ARS genes may participate in a wide array of cellular processes, and may contribute to the pathology of autoimmune disease, cancer, and other diseases. Several studies have suggested a role for the glutamyl prolyl tRNA synthetase (EPRS) in breast cancers, although none has identified any underlying mechanism about how EPRS contributes to carcinogenesis. In this study, we identified EPRS as upregulated in estrogen receptor positive (ER+) human breast tumors in the TCGA and METABRIC cohorts, with copy number gains in nearly 50% of samples in both datasets. EPRS expression is associated with reduced overall survival in patients with ER+ tumors in TCGA and METABRIC datasets. EPRS expression was also associated with reduced distant relapse-free survival in patients treated with adjuvant tamoxifen monotherapy for five years, and EPRS-correlated genes were highly enriched for genes predictive of a poor response to tamoxifen. We demonstrated the necessity of EPRS for proliferation of tamoxifen-resistant ER+ breast cancer, but not ER- breast cancer cells. Transcriptomic profiling showed that EPRS regulated cell cycle and estrogen response genes. Finally, we constructed a causal gene network based on over 2500 ER+ breast tumor samples to build up an EPRS-estrogen signaling pathway. EPRS and its regulated estrogenic gene network may offer a promising alternative approach to target ER+ breast cancers that are refractory to current anti-estrogens.
Collapse
Affiliation(s)
- Igor Katsyv
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minghui Wang
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Won Min Song
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianxiao Zhou
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongzhong Zhao
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sun Park
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jun Zhu
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
41
|
Shostak A. Human Clock Genes and Cancer. CURRENT SLEEP MEDICINE REPORTS 2018. [DOI: 10.1007/s40675-018-0102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Shahen M, Guo Z, Shar AH, Ebaid R, Tao Q, Zhang W, Wu Z, Bai Y, Fu Y, Zheng C, Wang H, Shar PA, Liu J, Wang Z, Xiao W, Wang Y. Dengue virus causes changes of MicroRNA-genes regulatory network revealing potential targets for antiviral drugs. BMC SYSTEMS BIOLOGY 2018; 12:2. [PMID: 29301573 PMCID: PMC5753465 DOI: 10.1186/s12918-017-0518-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Dengue virus (DENV) is an increasing global health threat and associated with induction of both a long-lived protective immune response and immune-suppression. So far, the potency of treatment of DENV via antiviral drugs is still under investigation. Recently, increasing evidences suggest the potential role of microRNAs (miRNAs) in regulating DENV. The present study focused on the function of miRNAs in innate insusceptible reactions and organization of various types of immune cells and inflammatory responses for DENV. Three drugs were tested including antiviral herbal medicine ReDuNing (RDN), Loratadine (LRD) and Acetaminophen. RESULTS By the microarray expression of miRNAs in 165 Patients. Results showed that 89 active miRNAs interacted with 499 potential target genes, during antiviral treatment throughout the critical stage of DENV. Interestingly, reduction of the illness threats using RDN combined with LRD treatment showed better results than Acetaminophen alone. The inhibitions of DENV was confirmed by decrease concentrations of cytokines and interleukin parameters; like TNF-α, IFN-γ, TGF-β1, IL-4, IL-6, IL-12, and IL-17; after treatment and some coagulants factors increased. CONCLUSIONS This study showed a preliminary support to suggest that the herbal medicine RDN combined with LRD can reduce both susceptibility and the severity of DENV.
Collapse
Affiliation(s)
- Mohamed Shahen
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Zihu Guo
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Akhtar Hussain Shar
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Reham Ebaid
- School of Environment and Safety Engineering, Jiangsu University, Jiangsu, 212013, China
| | - Qin Tao
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wenjuan Zhang
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ziyin Wu
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yaofei Bai
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yingxue Fu
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chunli Zheng
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - He Wang
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Piar Ali Shar
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jianling Liu
- College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China.
| | - Yonghua Wang
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China. .,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
43
|
Samuelsson LB, Bovbjerg DH, Roecklein KA, Hall MH. Sleep and circadian disruption and incident breast cancer risk: An evidence-based and theoretical review. Neurosci Biobehav Rev 2017; 84:35-48. [PMID: 29032088 DOI: 10.1016/j.neubiorev.2017.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 02/08/2023]
Abstract
Opportunities for restorative sleep and optimal sleep-wake schedules are becoming luxuries in industrialized cultures, yet accumulating research has revealed multiple adverse health effects of disruptions in sleep and circadian rhythms, including increased risk of breast cancer. The literature on breast cancer risk has focused largely on adverse effects of night shift work and exposure to light at night (LAN), without considering potential effects of associated sleep disruptions. As it stands, studies on breast cancer risk have not considered the impact of both sleep and circadian disruption, and the possible interaction of the two through bidirectional pathways, on breast cancer risk in the population at large. We review and synthesize this literature, including: 1) studies of circadian disruption and incident breast cancer; 2) evidence for bidirectional interactions between sleep and circadian systems; 3) studies of sleep and incident breast cancer; and 4) potential mechanistic pathways by which interrelated sleep and circadian disruption may contribute to the etiology of breast cancer.
Collapse
Affiliation(s)
- Laura B Samuelsson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dana H Bovbjerg
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Behavioral & Community Health Sciences, University of Pittsburgh, Pittsburgh, PA, United States; Biobehavioral Oncology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kathryn A Roecklein
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Martica H Hall
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
44
|
Benna C, Helfrich-Förster C, Rajendran S, Monticelli H, Pilati P, Nitti D, Mocellin S. Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis. Oncotarget 2017; 8:23978-23995. [PMID: 28177907 PMCID: PMC5410358 DOI: 10.18632/oncotarget.15074] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The number of studies on the association between clock genes’ polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available. RESULTS Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1). We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30). CONCLUSIONS Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer. METHODS We conducted a systematic review and meta-analysis of the evidence on the association between clock genes’ germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Subgroup meta-analysis was also performed based on participant features and tumor type. The breast cancer subgroup was further stratified by work conditions, estrogen receptor/progesterone receptor status and menopausal status, conditions associated with the risk of breast cancer in different studies.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | | | - Donato Nitti
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Clinica Chirurgica I, Azienda Ospedaliera Padova, Padova, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Istituto Oncologico Veneto, IOV-IRCSS, Padova, Italy
| |
Collapse
|
45
|
RORα2 requires LSD1 to enhance tumor progression in breast cancer. Sci Rep 2017; 7:11994. [PMID: 28931919 PMCID: PMC5607251 DOI: 10.1038/s41598-017-12344-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 09/07/2017] [Indexed: 11/30/2022] Open
Abstract
Retinoic acid-related orphan receptor α (RORα) regulates diverse physiological processes, including inflammatory responses, lipid metabolism, circadian rhythm, and cancer biology. RORα has four different isoforms which have distinct N-terminal domains but share identical DNA binding domain and ligand binding domain in human. However, lack of specific antibody against each RORα isoform makes biochemical studies on each RORα isoform remain unclear. Here, we generate RORα2-specific antibody and characterize the role of RORα2 in promoting tumor progression in breast cancer. RORα2 requires lysine specific demethylase 1 (LSD1/KDM1A) as a coactivator for transcriptional activation of RORα2 target genes, exemplified by CTNND1. Intriguingly, RORα2 and LSD1 protein levels are dramatically elevated in human breast cancer specimens compared to normal counterparts. Taken together, our studies indicate that LSD1-mediated RORα2 transcriptional activity is important to promote tumor cell migration in human breast cancer as well as breast cancer cell lines. Therefore, our data establish that suppression of LSD1-mediated RORα2 transcriptional activity may be potent therapeutic strategy to attenuate tumor cell migration in human breast cancer.
Collapse
|
46
|
Wang Z, Xiong F, Wang X, Qi Y, Yu H, Zhu Y, Zhu H. Nuclear receptor retinoid-related orphan receptor alpha promotes apoptosis but is reduced in human gastric cancer. Oncotarget 2017; 8:11105-11113. [PMID: 28052040 PMCID: PMC5355250 DOI: 10.18632/oncotarget.14364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
Retinoid-related orphan receptor α (RORα) is a nuclear receptor, which regulates inflammation and immune responses, lipid metabolism and circadian rhythm. Although RORα suppresses breast tumor invasion, it is unknown whether RORα is dysregulated in gastric cancer leading to cellular survival. Therefore, we hypothesize that RORα is dysfunctional in gastric carcinoma and this causes decreased apoptosis in gastric cancer cells. To test this hypothesis, we employed human gastric cancer tissues with different stages to determine RORα expression, as well as in vitro human gastric cancer cells to determine how RORα is reduced during apoptosis. We found that the expression of RORα was reduced in gastric tissues with cancer, and this correlated with increased TNM stages. The mechanisms underlying RORα reduction is due to the reduced activation of AMP-activated protein kinase (AMPK), as a selective AMPK activator AICAR increased RORα activation and level in human gastric cancer cells. Furthermore, AICAR treatment increased RORα recruitment on the promoters of tumor suppressor genes (i.e., FBXM7, SEMA3F and p21) leading to apoptosis in human gastric cancer cells. Taken together, RORα reduction occurs in gastric cancer leading to the survival of tumor cells, which is attenuated by AMPK. Therefore, both RORα and AMPK are potential targets for the intervention and therapy in gastric carcinoma.
Collapse
Affiliation(s)
- Zhengguang Wang
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Fangyuan Xiong
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Xiaoshan Wang
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yijun Qi
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Haoyuan Yu
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yong Zhu
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
47
|
Strzelczyk JK, Gołąbek K, Cuber P, Krakowczyk Ł, Owczarek AJ, Fronczek M, Choręża P, Hudziec E, Ostrowska Z. Comparison of Selected Protein Levels in Tumour and Surgical Margin in a Group of Patients with Oral Cavity Cancer. Biochem Genet 2017; 55:322-334. [DOI: 10.1007/s10528-017-9799-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/03/2017] [Indexed: 12/20/2022]
|
48
|
Feng W, Chakraborty A. Fragility Extraordinaire: Unsolved Mysteries of Chromosome Fragile Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:489-526. [PMID: 29357071 DOI: 10.1007/978-981-10-6955-0_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosome fragile sites are a fascinating cytogenetic phenomenon now widely implicated in a slew of human diseases ranging from neurological disorders to cancer. Yet, the paths leading to these revelations were far from direct, and the number of fragile sites that have been molecularly cloned with known disease-associated genes remains modest. Moreover, as more fragile sites were being discovered, research interests in some of the earliest discovered fragile sites ebbed away, leaving a number of unsolved mysteries in chromosome biology. In this review we attempt to recount some of the early discoveries of fragile sites and highlight those phenomena that have eluded intense scrutiny but remain extremely relevant in our understanding of the mechanisms of chromosome fragility. We then survey the literature for disease association for a comprehensive list of fragile sites. We also review recent studies addressing the underlying cause of chromosome fragility while highlighting some ongoing debates. We report an observed enrichment for R-loop forming sequences in fragile site-associated genes than genomic average. Finally, we will leave the reader with some lingering questions to provoke discussion and inspire further scientific inquiries.
Collapse
Affiliation(s)
- Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
49
|
Hazan I, Hofmann TG, Aqeilan RI. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response. PLoS Genet 2016; 12:e1006436. [PMID: 27977694 PMCID: PMC5157955 DOI: 10.1371/journal.pgen.1006436] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of common fragile sites (CFSs) in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR) and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.
Collapse
Affiliation(s)
- Idit Hazan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Thomas G. Hofmann
- Cellular Senescence Group, Department of Epigenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
50
|
Yin K, Smith AG. Nuclear receptor function in skin health and disease: therapeutic opportunities in the orphan and adopted receptor classes. Cell Mol Life Sci 2016; 73:3789-800. [PMID: 27544210 PMCID: PMC11108460 DOI: 10.1007/s00018-016-2329-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
The skin forms a vital barrier between an organism's external environment, providing protection from pathogens and numerous physical and chemical threats. Moreover, the intact barrier is essential to prevent water and electrolyte loss without which terrestrial life could not be maintained. Accordingly, acute disruption of the skin through physical or chemical trauma needs to be repaired timely and efficiently as sustained skin pathologies ranging from mild irritations and inflammation through to malignancy impact considerably on morbidity and mortality. The Nuclear Hormone Receptor Family of transcriptional regulators has proven to be highly valuable targets for addressing a range of pathologies, including metabolic syndrome and cancer. Indeed members of the classic endocrine sub-group, such as the glucocorticoid, retinoid, and Vitamin D receptors, represent mainstay treatment strategies for numerous inflammatory skin disorders, though side effects from prolonged use are common. Emerging evidence has now highlighted important functional roles for nuclear receptors belonging to the adopted and orphan subgroups in skin physiology and patho-physiology. This review will focus on these subgroups and explore the current evidence that suggests these nuclear receptor hold great promise as future stand-alone or complementary drug targets in treating common skin diseases and maintaining skin homeostasis.
Collapse
Affiliation(s)
- Kelvin Yin
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Aaron G Smith
- Dermatology Research Centre, School of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Science, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|