1
|
Chitre K, Kairamkonda S, Dwivedi MK, Yadav S, Kumar V, Sikdar SK, Nongthomba U. Beadex, the Drosophila LIM only protein, is required for the growth of the larval neuromuscular junction. J Neurophysiol 2024; 132:418-432. [PMID: 38838299 DOI: 10.1152/jn.00064.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
The appropriate growth of the neurons, accurate organization of their synapses, and successful neurotransmission are indispensable for sensorimotor activities. These processes are highly dynamic and tightly regulated. Extensive genetic, molecular, physiological, and behavioral studies have identified many molecular candidates and investigated their roles in various neuromuscular processes. In this article, we show that Beadex (Bx), the Drosophila LIM only (LMO) protein, is required for motor activities and neuromuscular growth of Drosophila. The larvae bearing Bx7, a null allele of Bx, and the RNAi-mediated neuronal-specific knockdown of Bx show drastically reduced crawling behavior, a diminished synaptic span of the neuromuscular junctions (NMJs) and an increased spontaneous neuronal firing with altered motor patterns in the central pattern generators (CPGs). Microarray studies identified multiple targets of Beadex that are involved in different cellular and molecular pathways, including those associated with the cytoskeleton and mitochondria that could be responsible for the observed neuromuscular defects. With genetic interaction studies, we further show that Highwire (Hiw), a negative regulator of synaptic growth at the NMJs, negatively regulates Bx, as the latter's deficiency was able to rescue the phenotype of the Hiw null mutant, HiwDN. Thus, our data indicate that Beadex functions downstream of Hiw to regulate the larval synaptic growth and physiology.NEW & NOTEWORTHY A novel role for Beadex (Bx) regulates the larval neuromuscular junction (NMJ) structure and function in a tissue-specific manner. Bx is expressed in a subset of Toll-6-expressing neurons and is involved in regulating synaptic span and physiology, possibly through its negative interaction with Highwire (Hiw). The findings of this study provide insights into the molecular mechanisms underlying NMJ development and function and warrant further investigation to understand the role of Bx in these processes fully.
Collapse
Affiliation(s)
- Kripa Chitre
- Department of Development Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India
| | - Subhash Kairamkonda
- Department of Development Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India
| | - Manish Kumar Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Saumitra Yadav
- Molecular Biophysics Unit (MBU), Indian Institute of Science (IISc), Bangalore, India
| | - Vimlesh Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Sujit K Sikdar
- Molecular Biophysics Unit (MBU), Indian Institute of Science (IISc), Bangalore, India
| | - Upendra Nongthomba
- Department of Development Biology and Genetics (DBG), Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
2
|
Wagner VA, Deng G, Claflin KE, Ritter ML, Cui H, Nakagawa P, Sigmund CD, Morselli LL, Grobe JL, Kwitek AE. Cell-specific transcriptome changes in the hypothalamic arcuate nucleus in a mouse deoxycorticosterone acetate-salt model of hypertension. Front Cell Neurosci 2023; 17:1207350. [PMID: 37293629 PMCID: PMC10244568 DOI: 10.3389/fncel.2023.1207350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
A common preclinical model of hypertension characterized by low circulating renin is the "deoxycorticosterone acetate (DOCA)-salt" model, which influences blood pressure and metabolism through mechanisms involving the angiotensin II type 1 receptor (AT1R) in the brain. More specifically, AT1R within Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) has been implicated in selected effects of DOCA-salt. In addition, microglia have been implicated in the cerebrovascular effects of DOCA-salt and angiotensin II. To characterize DOCA-salt effects upon the transcriptomes of individual cell types within the ARC, we used single-nucleus RNA sequencing (snRNAseq) to examine this region from male C57BL/6J mice that underwent sham or DOCA-salt treatment. Thirty-two unique primary cell type clusters were identified. Sub-clustering of neuropeptide-related clusters resulted in identification of three distinct AgRP subclusters. DOCA-salt treatment caused subtype-specific changes in gene expression patterns associated with AT1R and G protein signaling, neurotransmitter uptake, synapse functions, and hormone secretion. In addition, two primary cell type clusters were identified as resting versus activated microglia, and multiple distinct subtypes of activated microglia were suggested by sub-cluster analysis. While DOCA-salt had no overall effect on total microglial density within the ARC, DOCA-salt appeared to cause a redistribution of the relative abundance of activated microglia subtypes. These data provide novel insights into cell-specific molecular changes occurring within the ARC during DOCA-salt treatment, and prompt increased investigation of the physiological and pathophysiological significance of distinct subtypes of neuronal and glial cell types.
Collapse
Affiliation(s)
- Valerie A Wagner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Genetics Graduate Program, University of Iowa, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, United States
| | - McKenzie L Ritter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, United States
- Obesity Research and Education Initiative, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Pablo Nakagawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lisa L Morselli
- Department of Medicine, Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Li S, Liu L, Qu Y, Yuan L, Zhang X, Ma Z, Bai H, Wang J. Comprehensive Analyses and Immunophenotyping of LIM Domain Family Genes in Patients with Non-Small-Cell Lung Cancer. Int J Mol Sci 2023; 24:ijms24054524. [PMID: 36901953 PMCID: PMC10003053 DOI: 10.3390/ijms24054524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The LIM domain family genes play a crucial role in various tumors, including non-small-cell lung cancer (NSCLC). Immunotherapy is one of the most significant treatments for NSCLC, and its effectiveness largely depends on the tumor microenvironment (TME). Currently, the potential roles of LIM domain family genes in the TME of NSCLC remain elusive. We comprehensively evaluated the expression and mutation patterns of 47 LIM domain family genes in 1089 NSCLC samples. Using unsupervised clustering analysis, we classified patients with NSCLC into two distinct gene clusters, i.e., the LIM-high group and the LIM-low group. We further investigated the prognosis, TME cell infiltration characteristics, and immunotherapy in the two groups. The LIM-high and LIM-low groups had different biological processes and prognoses. Moreover, there were significant differences in TME characteristics between the LIM-high and LIM-low groups. Specifically, enhanced survival, immune cell activation, and high tumor purity were demonstrated in patients of the LIM-low group, implying an immune-inflamed phenotype. Moreover, the LIM-low group had higher immune cell proportion scores than the LIM-high group and was more responsive to immunotherapy than the LIM-low group. Additionally, we screened out LIM and senescent cell antigen-like domain 1 (LIMS1) as a hub gene of the LIM domain family via five different algorithms of plug-in cytoHubba and the weighted gene co-expression network analysis. Subsequently, proliferation, migration, and invasion assays demonstrated that LIMS1 acts as a pro-tumor gene that promotes the invasion and progression of NSCLC cell lines. This is the first study to reveal a novel LIM domain family gene-related molecular pattern associated with the TME phenotype, which would increase our understanding of the heterogeneity and plasticity of the TME in NSCLC. LIMS1 may serve as a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Sini Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lihui Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Li Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xue Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zixiao Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hua Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (H.B.); (J.W.)
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (H.B.); (J.W.)
| |
Collapse
|
4
|
Lučiūnaitė A, Dalgėdienė I, Žilionis R, Mašalaitė K, Norkienė M, Šinkūnas A, Gedvilaitė A, Kučinskaitė-Kodzė I, Žvirblienė A. Activation of NLRP3 Inflammasome by Virus-Like Particles of Human Polyomaviruses in Macrophages. Front Immunol 2022; 13:831815. [PMID: 35355981 PMCID: PMC8959312 DOI: 10.3389/fimmu.2022.831815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Viral antigens can activate phagocytes, inducing inflammation, but the mechanisms are barely explored. The aim of this study is to investigate how viral oligomeric proteins of different structures induce inflammatory response in macrophages. Human THP-1 cell line was used to prepare macrophages that were treated with filamentous nucleocapsid-like particles (NLPs) of paramyxoviruses and spherical virus-like particles (VLPs) of human polyomaviruses. The effects of viral proteins on cell viability, pro-inflammatory cytokines’ production, and NLRP3 inflammasome activation were investigated. Filamentous NLPs did not induce inflammation while spherical VLPs mediated inflammatory response followed by NLRP3 inflammasome activation. Inhibitors of cathepsins and K+ efflux decreased IL-1β release and cell death, indicating a complex inflammasome activation process. A similar activation pattern was observed in primary human macrophages. Single-cell RNAseq analysis of THP-1 cells revealed several cell activation states different in inflammation-related genes. This study provides new insights into the interaction of viral proteins with immune cells and suggests that structural properties of oligomeric proteins may define cell activation pathways.
Collapse
Affiliation(s)
- Asta Lučiūnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Indrė Dalgėdienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rapolas Žilionis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,R&D Department, Droplet Genomics, Vilnius, Lithuania
| | - Kristina Mašalaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Norkienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Alma Gedvilaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
MicroRNA-139-5p Alleviates High Glucose-Triggered Human Retinal Pigment Epithelial Cell Injury by Targeting LIM-Only Factor 4. Mediators Inflamm 2021; 2021:1629783. [PMID: 34725544 PMCID: PMC8557081 DOI: 10.1155/2021/1629783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a type of diabetes complication, which can result in loss of vision in adults worldwide. Increasing evidence has revealed that microRNAs (miRs) can regulate DR progression. Thus, the present study was aimed at assessing the possible mechanism of miR-139-5p in high glucose- (HG-) incubated retinal pigment epithelial (ARPE-19) cells. The present results demonstrated that miR-139-5p expression was notably reduced in the serum samples of patients with DR, as well as in ARPE-19 cells treated with HG in a time-dependent manner. Moreover, miR-139-5p was markedly overexpressed by transfection of miR-139-5p mimics into ARPE-19 cells. Overexpression of miR-139-5p markedly induced cell viability and repressed HG-triggered apoptosis. Furthermore, overexpression of miR-139-5p relived HG-enhanced oxidative stress injury. It was found that HG induced malondialdehyde levels but decreased superoxide dismutase and glutathione peroxidase activities in ARPE-19 cells. In addition, overexpression of miR-139-5p could markedly decrease intracellular stress. The results demonstrated that overexpression of miR-139-5p effectively repressed HG-activated inflammation, as indicated by the upregulation of inflammation cytokines, including TNF-α, IL-6, and Cox-2, in ARPE-19 cells. Subsequently, it was identified that LIM-only factor 4 (LMO4) could act as a downstream target for miR-139-5p. LMO4 expression was significantly increased in patients with DR and HG-treated ARPE-19 cells. Mechanistically, knockdown of LMO4 reversed the biological role of miR-139-5p in proliferation, apoptosis, oxidative stress, and release of inflammation factors in vitro. Collectively, these results suggested that miR-139-5p significantly decreased ARPE-19 cell injury caused by HG by inducing proliferation and suppressing cell apoptosis, oxidant stress, and inflammation by modulating LMO4.
Collapse
|
6
|
Santos HP, Bhattacharya A, Joseph RM, Smeester L, Kuban KCK, Marsit CJ, O'Shea TM, Fry RC. Evidence for the placenta-brain axis: multi-omic kernel aggregation predicts intellectual and social impairment in children born extremely preterm. Mol Autism 2020; 11:97. [PMID: 33308293 PMCID: PMC7730750 DOI: 10.1186/s13229-020-00402-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Children born extremely preterm are at heightened risk for intellectual and social impairment, including Autism Spectrum Disorder (ASD). There is increasing evidence for a key role of the placenta in prenatal developmental programming, suggesting that the placenta may, in part, contribute to origins of neurodevelopmental outcomes. METHODS We examined associations between placental transcriptomic and epigenomic profiles and assessed their ability to predict intellectual and social impairment at age 10 years in 379 children from the Extremely Low Gestational Age Newborn (ELGAN) cohort. Assessment of intellectual ability (IQ) and social function was completed with the Differential Ability Scales-II and Social Responsiveness Scale (SRS), respectively. Examining IQ and SRS allows for studying ASD risk beyond the diagnostic criteria, as IQ and SRS are continuous measures strongly correlated with ASD. Genome-wide mRNA, CpG methylation and miRNA were assayeds with the Illumina Hiseq 2500, HTG EdgeSeq miRNA Whole Transcriptome Assay, and Illumina EPIC/850 K array, respectively. We conducted genome-wide differential analyses of placental mRNA, miRNA, and CpG methylation data. These molecular features were then integrated for a predictive analysis of IQ and SRS outcomes using kernel aggregation regression. We lastly examined associations between ASD and the multi-omic-predicted component of IQ and SRS. RESULTS Genes with important roles in neurodevelopment and placental tissue organization were associated with intellectual and social impairment. Kernel aggregations of placental multi-omics strongly predicted intellectual and social function, explaining approximately 8% and 12% of variance in SRS and IQ scores via cross-validation, respectively. Predicted in-sample SRS and IQ showed significant positive and negative associations with ASD case-control status. LIMITATIONS The ELGAN cohort comprises children born pre-term, and generalization may be affected by unmeasured confounders associated with low gestational age. We conducted external validation of predictive models, though the sample size (N = 49) and the scope of the available out-sample placental dataset are limited. Further validation of the models is merited. CONCLUSIONS Aggregating information from biomarkers within and among molecular data types improves prediction of complex traits like social and intellectual ability in children born extremely preterm, suggesting that traits within the placenta-brain axis may be omnigenic.
Collapse
Affiliation(s)
- Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, University of North Carolina, 544 Carrington Hall, Campus Box 7460, Chapel Hill, NC, 27599-7460, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Lisa Smeester
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Karl C K Kuban
- Department of Pediatrics, Division of Pediatric Neurology, Boston University Medical Center, Boston, MA, USA
| | - Carmen J Marsit
- Department of Environmental Health, Emory University, Atlanta, GA, 30322, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Rathinam R, Rosati R, Jamesdaniel S. CRISPR/Cas9-mediated knockout of Lim-domain only four retards organ of Corti cell growth. J Cell Biochem 2018; 119:3545-3553. [PMID: 29143984 DOI: 10.1002/jcb.26529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/13/2017] [Indexed: 01/04/2023]
Abstract
Lim-domain only 4 (LMO4) plays a critical role in mediating the ototoxic side-effects of cisplatin, a highly effective anti-cancer drug. However, the signaling mechanism by which cochlear LMO4 mediates otopathology is yet to be fully understood. Knockout cell culture models are useful tools for investigating the functional roles of novel genes and delineating associated signaling pathways. Therefore, LMO4 knockout organ of Corti cells were generated by using the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system. Successful knockout of LMO4 in UB/OC1 cells was verified by the absence of LMO4 protein bands in immunoblots. Though the Knockout of LMO4 retarded the growth rate and the migratory potential of the cells it did not inhibit their long-term viability as the LMO4 knockout UB/OC1 cells were able to survive, proliferate, and form colonies. In addition, the knockout of LMO4 did not alter the expression of myosin VIIa, a biomarker of hair cells, suggesting that the knockout cells retain important characteristic features of cochlear sensory receptor cells. Thus, the findings of this study indicate that CRISPR/Cas9 system is a simple and versatile method for knocking out genes of interest in organ of Corti cells and that LMO4 knockout UB/OC1 cells are viable experimental models for studying the functional role of LMO4 in ototoxicity.
Collapse
Affiliation(s)
- Rajamani Rathinam
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Samson Jamesdaniel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan.,Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
8
|
Gao W, Sun W, Yin J, Lv X, Bao J, Yu J, Wang L, Jin C, Hu L. Screening candidate microRNAs (miRNAs) in different lambskin hair follicles in Hu sheep. PLoS One 2017; 12:e0176532. [PMID: 28464030 PMCID: PMC5413071 DOI: 10.1371/journal.pone.0176532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
Hu sheep lambskin is a unique white lambskin from China that exhibits three types of flower patterns, including small waves, medium waves, and large waves, with small waves considered the best quality. However, our understanding of the molecular mechanism underlying flower pattern formation in Hu sheep lambskin is limited. The aim of the present study was to further explore the relevance between candidate microRNAs (miRNAs) and developmental characteristics of hair follicles and screen miRNAs for later functional validation. Herein, we employed Illumina Hiseq 2500 to identify differentially expressed miRNAs in hair follicles of different flower patterns with small, medium, and large waves to construct a comprehensive sequence database on the mechanism of hair follicle development. Paraffin sections of lambskin tissue were prepared to assess the structure of different hair follicles. Expression levels of candidate miRNAs in different flower patterns were analyzed by relative quantitation using real-time PCR, combined with histological observation and micro-observation technologies, and the correlation between expression levels of candidate miRNAs and histological properties of hair follicles was analyzed by using SPSS 17.0. A total of 522 differentially expressed miRNAs were identified, and RNA-seq analysis detected 7,266 target genes in different groups of flower patterns. Gene ontological analysis indicated these target genes were mainly involved in cell proliferation, differentiation, growth, apoptosis, and ion transport, and 14 miRNAs, including miR-143, miR-10a, and let-7 were screened as candidate miRNAs in Hu sheep hair follicle growth and development. In the same field of vision, variance analysis showed that the number of secondary follicles in small waves was significantly larger than that in large and medium waves (P<0.01); the diameter of the primary and secondary follicles in large waves was respectively larger than those in medium and small waves (P<0.01). Combined with correlation analysis between miRNA expression and histological properties of hair follicles, highly significant differences in miRNA-143 expression levels between large and small waves were observed (P<0.01), and significant differences in the miRNA-10a expression levels between large and small waves (P<0.05) and in let-7i expression levels between large and medium waves were observed (P<0.05). Significant differences in the expression of novel miRNAs of NW_004080184.1_6326 between medium and large waves were detected (P<0.05), and highly significant differences between medium and small waves were observed (P<0.01). Highly significant differences in the expression level of NW_004080165.1_8572 between medium and large and small waves (P<0.01), in that of NW_004080181.1_3961 between medium and small waves (P<0.01), and in that of NW_004080190.1_13733 between medium and large waves were observed, whereas no significant differences in the other miRNAs among large, medium, and small waves were detected. Overall, the present study showed that miRNA-143, miRNA-10a, let-7i, NW_004080184.1_6326, NW_004080165.1_8572, NW_004080181.1_3961, and NW_004080190.1_13733 could be considered as important candidate genes, indicating these seven miRNAs may play significant roles in hair follicle growth and development in Hu sheep lambskin.
Collapse
Affiliation(s)
- Wen Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- * E-mail:
| | - Jinfeng Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianjun Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiarui Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lihong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chengyan Jin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liang Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Wang W, Wu S, Guo M, He J. LMO4 is a prognostic marker involved in cell migration and invasion in non-small-cell lung cancer. J Thorac Dis 2016; 8:3682-3690. [PMID: 28149564 DOI: 10.21037/jtd.2016.12.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The aims of this study were to analyze the association of LMO4 with non-small-cell lung cancer (NSCLC) survival rate, and to determine its functional role and signaling pathway in lung cancer. METHODS Immunohistochemistry (IHC) was used to detect the expression of LMO4 in NSCLC cell lines and tumor tissues. Migration and invasion ability was detected respectively by wound healing test and transwell test. Immunofluorescence and western blot were detected of AKT/PI3K pathway related genes MAPK, PI3K, AKT. RESULTS LMO4 has high expression level of NSCLC cell lines and tumor tissues, and correlated with a lower survival rate. LMO4 can regulate the migration and invasion of NSCLC cells through the AKT/PI3K pathway. CONCLUSIONS LMO4 could serve as a promising biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Sipei Wu
- Lung Cancer Research Institute and Cancer Center, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Minzhang Guo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jianxing He
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
10
|
Lv X, Sun W, Yin J, Ni R, Su R, Wang Q, Gao W, Bao J, Yu J, Wang L, Chen L. An Integrated Analysis of MicroRNA and mRNA Expression Profiles to Identify RNA Expression Signatures in Lambskin Hair Follicles in Hu Sheep. PLoS One 2016; 11:e0157463. [PMID: 27404636 PMCID: PMC4942090 DOI: 10.1371/journal.pone.0157463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/30/2016] [Indexed: 12/27/2022] Open
Abstract
Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep’s wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA) and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq) analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR) analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to small waves, medium waves included 13 downregulated miRNAs that had regulatory effects on 64 upregulated genes and 4 upregulated miRNAs, which in turn had regulatory effects on 22 downregulated genes. Compared to medium waves, large waves consisted of 13 upregulated miRNAs that had regulatory effects on 48 downregulated genes. These differentially expressed miRNAs and genes may play a significant role in forming different patterns, and provide evidence for the molecular mechanisms underlying the formation of hair follicles of varying patterns.
Collapse
Affiliation(s)
- Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- * E-mail:
| | - Jinfeng Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Rong Ni
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Rui Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qingzeng Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wen Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianjun Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiarui Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lihong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ling Chen
- Animal Science and Veterinary Medicine Bureau of Suzhou City, Suzhou, China
| |
Collapse
|
11
|
CXXC5 is required for cardiac looping relating to TGFβ signaling pathway in zebrafish. Int J Cardiol 2016; 214:246-53. [DOI: 10.1016/j.ijcard.2016.03.201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/05/2016] [Accepted: 03/29/2016] [Indexed: 11/21/2022]
|
12
|
Chen S, Kang Y, Sun Y, Zhong Y, Li Y, Deng L, Tao J, Li Y, Tian Y, Zhao Y, Cheng J, Liu W, Feng GS, Lu Z. Deletion of Gab2 in mice protects against hepatic steatosis and steatohepatitis: a novel therapeutic target for fatty liver disease. J Mol Cell Biol 2016; 8:492-504. [PMID: 27282405 DOI: 10.1093/jmcb/mjw028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/31/2016] [Accepted: 01/03/2016] [Indexed: 02/07/2023] Open
Abstract
Fatty liver disease is a serious health problem worldwide and is the most common cause for chronic liver disease and metabolic disorders. The major challenge in the prevention and intervention of this disease is the incomplete understanding of the underlying mechanism and thus lack of potent therapeutic targets due to multifaceted and interdependent disease factors. In this study, we investigated the role of a signaling adaptor protein, GRB2-associated-binding protein 2 (Gab2), in fatty liver using an animal disease model. Gab2 expression in hepatocytes responded to various disease factor stimulations, and Gab2 knockout mice exhibited resistance to fat-induced obesity, fat- or alcohol-stimulated hepatic steatosis, as well as methionine and choline deficiency-induced steatohepatitis. Concordantly, the forced expression or knockdown of Gab2 enhanced or diminished oleic acid (OA)- or ethanol-induced lipid production in hepatocytes in vitro, respectively. During lipid accumulation in hepatocytes, both fat and alcohol induced the recruitment of PI3K or Socs3 by Gab2 and the activation of their downstream signaling proteins AKT, ERK, and Stat3. Therefore, Gab2 may be a disease-associated protein that is induced by pathogenic factors to amplify and coordinate multifactor-induced signals to govern disease development in the liver. Our research provides a novel potential target for the prevention and intervention of fatty liver disease.
Collapse
Affiliation(s)
- Shuai Chen
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yujia Kang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Sun
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanhong Zhong
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanli Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Lijuan Deng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jin Tao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yinan Zhao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianghong Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenjie Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
13
|
|
14
|
Holik AZ, Filby CE, Pasquet J, Viitaniemi K, Ciciulla J, Sutherland KD, Asselin-Labat ML. The LIM-domain only protein 4 contributes to lung epithelial cell proliferation but is not essential for tumor progression. Respir Res 2015; 16:67. [PMID: 26048572 PMCID: PMC4475329 DOI: 10.1186/s12931-015-0228-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/02/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The lung is constantly exposed to environmental challenges and must rapidly respond to external insults. Mechanisms involved in the repair of the damaged lung involve expansion of different epithelial cells to repopulate the injured cellular compartment. However, factors regulating cell proliferation following lung injury remain poorly understood. Here we studied the role of the transcriptional regulator Lmo4 during lung development, in the regulation of adult lung epithelial cell proliferation following lung damage and in the context of oncogenic transformation. METHODS To study the role of Lmo4 in embryonic lung development, lung repair and tumorigenesis, we used conditional knock-out mice to delete Lmo4 in lung epithelial cells from the first stages of lung development. The role of Lmo4 in lung repair was evaluated using two experimental models of lung damage involving chemical and viral injury. The role of Lmo4 in lung tumorigenesis was measured using a mouse model of lung adenocarcinoma in which the oncogenic K-Ras protein has been knocked into the K-Ras locus. Overall survival difference between genotypes was tested by log rank test. Difference between means was tested using one-way ANOVA after assuring that assumptions of normality and equality of variance were satisfied. RESULTS We found that Lmo4 was not required for normal embryonic lung morphogenesis. In the adult lung, loss of Lmo4 reduced epithelial cell proliferation and delayed repair of the lung following naphthalene or flu-mediated injury, suggesting that Lmo4 participates in the regulation of epithelial cell expansion in response to cellular damage. In the context of K-Ras(G12D)-driven lung tumor formation, Lmo4 loss did not alter overall survival but delayed initiation of lung hyperplasia in K-Ras(G12D) mice sensitized by naphthalene injury. Finally, we evaluated the expression of LMO4 in tissue microarrays of early stage non-small cell lung cancer and observed that LMO4 is more highly expressed in lung squamous cell carcinoma compared to adenocarcinoma. CONCLUSIONS Together these results show that the transcriptional regulator Lmo4 participates in the regulation of lung epithelial cell proliferation in the context of injury and oncogenic transformation but that Lmo4 depletion is not sufficient to prevent lung repair or tumour formation.
Collapse
Affiliation(s)
- Aliaksei Z Holik
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Caitlin E Filby
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Julie Pasquet
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| | - Kati Viitaniemi
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| | | | - Kate D Sutherland
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Marie-Liesse Asselin-Labat
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
15
|
Gu W, Monteiro R, Zuo J, Simões FC, Martella A, Andrieu-Soler C, Grosveld F, Sauka-Spengler T, Patient R. A novel TGFβ modulator that uncouples R-Smad/I-Smad-mediated negative feedback from R-Smad/ligand-driven positive feedback. PLoS Biol 2015; 13:e1002051. [PMID: 25665164 PMCID: PMC4321984 DOI: 10.1371/journal.pbio.1002051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/17/2014] [Indexed: 01/17/2023] Open
Abstract
As some of the most widely utilised intercellular signalling molecules, transforming growth factor β (TGFβ) superfamily members play critical roles in normal development and become disrupted in human disease. Establishing appropriate levels of TGFβ signalling involves positive and negative feedback, which are coupled and driven by the same signal transduction components (R-Smad transcription factor complexes), but whether and how the regulation of the two can be distinguished are unknown. Genome-wide comparison of published ChIP-seq datasets suggests that LIM domain binding proteins (Ldbs) co-localise with R-Smads at a substantial subset of R-Smad target genes including the locus of inhibitory Smad7 (I-Smad7), which mediates negative feedback for TGFβ signalling. We present evidence suggesting that zebrafish Ldb2a binds and directly activates the I-Smad7 gene, whereas it binds and represses the ligand gene, Squint (Sqt), which drives positive feedback. Thus, the fine tuning of TGFβ signalling derives from positive and negative control by Ldb2a. Expression of ldb2a is itself activated by TGFβ signals, suggesting potential feed-forward loops that might delay the negative input of Ldb2a to the positive feedback, as well as the positive input of Ldb2a to the negative feedback. In this way, precise gene expression control by Ldb2a enables an initial build-up of signalling via a fully active positive feedback in the absence of buffering by the negative feedback. In Ldb2a-deficient zebrafish embryos, homeostasis of TGFβ signalling is perturbed and signalling is stably enhanced, giving rise to excess mesoderm and endoderm, an effect that can be rescued by reducing signalling by the TGFβ family members, Nodal and BMP. Thus, Ldb2a is critical to the homeostatic control of TGFβ signalling and thereby embryonic patterning.
Collapse
Affiliation(s)
- Wenchao Gu
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rui Monteiro
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- BHF Centre of Research Excellence, Oxford, United Kingdom
| | - Jie Zuo
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Filipa Costa Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrea Martella
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Charlotte Andrieu-Soler
- INSERM U872, Université René Descartes Sorbonne Paris Cité, Team 17, Centre de Recherche des Cordeliers, Paris, France
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Tatjana Sauka-Spengler
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Roger Patient
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- BHF Centre of Research Excellence, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
EZH2-Induced H3K27me3 is Associated with Epigenetic Repression of the ARHI Tumor-Suppressor Gene in Ovarian Cancer. Cell Biochem Biophys 2014; 71:105-12. [DOI: 10.1007/s12013-014-0168-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
He S, Pham MH, Pease M, Zada G, Giannotta SL, Wang K, Mack WJ. A review of epigenetic and gene expression alterations associated with intracranial meningiomas. Neurosurg Focus 2014; 35:E5. [PMID: 24289130 DOI: 10.3171/2013.10.focus13360] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECT A more comprehensive understanding of the epigenetic abnormalities associated with meningioma tumorigenesis, growth, and invasion may provide useful targets for molecular classification and development of targeted therapies for meningiomas. METHODS The authors performed a review of the current literature to identify the epigenetic modifications associated with the formation and/or progression of meningiomas. RESULTS Several epigenomic alterations, mainly pertaining to DNA methylation, have been associated with meningiomas. Hypermethylation of TIMP3 inactivates its tumor suppression activity while CDKN2 (p14[ARF]) and TP73 gene hypermethylation and HIST1H1c upregulation interact with the p53 regulation of cell cycle control. Other factors such as HOX, IGF, WNK2, and TGF-β epigenetic modifications allow either upregulation or downregulation of critical pathways for meningioma development, progression, and recurrence. CONCLUSIONS Genome-wide methylation profiling demonstrated that global hypomethylation correlates with tumor grades and severity. Identification of additional epigenetic changes, such as histone modification and higher-order chromosomal structure, may allow for a more thorough understanding of tumorigenesis and enable future individualized treatment strategies for meningiomas.
Collapse
|
18
|
Li J, Kang Y, Wei L, Liu W, Tian Y, Chen B, Lin X, Li Y, Feng GS, Lu Z. Tyrosine phosphatase Shp2 mediates the estrogen biological action in breast cancer via interaction with the estrogen extranuclear receptor. PLoS One 2014; 9:e102847. [PMID: 25048202 PMCID: PMC4105620 DOI: 10.1371/journal.pone.0102847] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/23/2014] [Indexed: 11/19/2022] Open
Abstract
The extranuclear estrogen receptor pathway opens up novel perspectives in many physiological and pathological processes, especially in breast carcinogenesis. However, its function and mechanisms are not fully understood. Herein we present data identifying Shp2, a SH2-containing tyrosine phosphatase, as a critical component of extranuclear ER pathway in breast cancer. The research checked that the effect of Shp2 on the tumor formation and growth in animal model and investigated the regulation of Shp2 on the bio-effect and signaling transduction of estrogen in breast cancer cell lines. The results showed that Shp2 was highly expressed in more than 60% of total 151 breast cancer cases. The inhibition of Shp2 activity by PHPS1 (a Shp2 inhibitor) delayed the development of dimethylbenz(a)anthracene (DMBA)-induced tumors in the rat mammary gland and also blocked tumor formation in MMTV-pyvt transgenic mice. Estradiol (E2) stimulated protein expression and phosphorylation of Shp2, and induced Shp2 binding to ERα and IGF-1R around the membrane to facilitate the phosphorylation of Erk and Akt in breast cancer cells MCF7. Shp2 was also involved in several biological effects of the extranuclear ER-initiated pathway in breast cancer cells. Specific inhibitors (phps1, phps4 and NSC87877) or small interference RNAs (siRNA) of Shp2 remarkably suppressed E2-induced gene transcription (Cyclin D1 and trefoil factor 1 (TFF1)), rapid DNA synthesis and late effects on cell growth. These results introduced a new mechanism for Shp2 oncogenic action and shed new light on extranuclear ER-initiated action in breast tumorigenesis by identifying a novel associated protein, Shp2, for extranuclear ER pathway, which might benefit the therapy of breast cancer.
Collapse
Affiliation(s)
- Jun Li
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yujia Kang
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Longgang Wei
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenjie Liu
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingpu Tian
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baozhen Chen
- Department of Pathology, Fujian Provincial Tumor Hospital, Fuzhou, Fujian, China
| | - Xiandong Lin
- Department of Pathology, Fujian Provincial Tumor Hospital, Fuzhou, Fujian, China
| | - Yang Li
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gen-Sheng Feng
- Department of Pathology & Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Zhongxian Lu
- Xiamen City Key Lab of Metabolism Disease & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- * E-mail:
| |
Collapse
|
19
|
Li LL, Xue AM, Li BX, Shen YW, Li YH, Luo CL, Zhang MC, Jiang JQ, Xu ZD, Xie JH, Zhao ZQ. JMJD2A contributes to breast cancer progression through transcriptional repression of the tumor suppressor ARHI. Breast Cancer Res 2014; 16:R56. [PMID: 24886710 PMCID: PMC4077733 DOI: 10.1186/bcr3667] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 05/22/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Breast cancer is a worldwide health problem and the leading cause of cancer death among females. We previously identified Jumonji domain containing 2A (JMJD2A) as a critical mediator of breast cancer proliferation, migration and invasion. We now report that JMJD2A could promote breast cancer progression through transcriptional repression of the tumor suppressor aplasia Ras homolog member I (ARHI). Methods Immunohistochemistry was performed to examine protein expressions in 155 cases of breast cancer and 30 non-neoplastic tissues. Spearman correlation analysis was used to analyze the correlation between JMJD2A expression and clinical parameters as well as several tumor regulators in 155 cases of breast cancer. Gene and protein expressions were monitored by quantitative polymerase chain reaction (qPCR) and Western blot. Results from knockdown of JMJD2A, overexpression of JMJD2A, Co-immunoprecipitation (Co-IP) assay, dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) elucidated molecular mechanisms of JMJD2A action in breast cancer progression. Furthermore, the effects of ARHI overexpression on JMJD2A-mediated tumor progression were investigated in vitro and in vivo. For in vitro experiments, cell proliferation, wound-healing, migration and invasion were monitored by cell counting, scratch and Boyden Chamber assays. For in vivo experiments, control cells and cells stably expressing JMJD2A alone or together with ARHI were inoculated into mammary fat pads of mice. Tumor volume, tumor weight and metastatic nodules were measured by caliper, electronic balance and nodule counting, respectively. Results JMJD2A was highly expressed in human breast cancers and positively correlated with tumor progression. Knockdown of JMJD2A increased ARHI expression whereas overexpression of JMJD2A decreased ARHI expression at both protein and mRNA levels. Furthermore, E2Fs and histone deacetylases were involved in the transcriptional repression of ARHI expression by JMJD2A. And the aggressive behavior of JMJD2A in breast cancers could be reversed by re-expression of ARHI in vitro and in vivo. Conclusion We demonstrated a cancer-promoting effect of JMJD2A and defined a novel molecular pathway contributing to JMJD2A-mediated breast cancer progression.
Collapse
|
20
|
The LIM domain protein nTRIP6 recruits the mediator complex to AP-1-regulated promoters. PLoS One 2014; 9:e97549. [PMID: 24819052 PMCID: PMC4018362 DOI: 10.1371/journal.pone.0097549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/18/2014] [Indexed: 01/25/2023] Open
Abstract
Several LIM domain proteins regulate transcription. They are thought to act through their LIM protein-protein interaction domains as adaptors for the recruitment of transcriptional co-regulators. An intriguing example is nTRIP6, the nuclear isoform of the focal adhesion protein TRIP6. nTRIP6 interacts with AP-1 and enhances its transcriptional activity. nTRIP6 is also essential for the transrepression of AP-1 by the glucocorticoid receptor (GR), by mediating GR tethering to promoter-bound AP-1. Here we report on the molecular mechanism by which nTRIP6 exerts these effects. Both the LIM domains and the pre-LIM region of nTRIP6 are necessary for its co-activator function for AP-1. Discrete domains within the pre-LIM region mediate the dimerization of nTRIP6 at the promoter, which enables the recruitment of the Mediator complex subunits THRAP3 and Med1. This recruitment is blocked by GR, through a competition between GR and THRAP3 for the interaction with the LIM domains of nTRIP6. Thus, nTRIP6 both positively and negatively regulates transcription by orchestrating the recruitment of the Mediator complex to AP-1-regulated promoters.
Collapse
|
21
|
LIM-domain-only proteins: multifunctional nuclear transcription coregulators that interacts with diverse proteins. Mol Biol Rep 2013; 41:1067-73. [DOI: 10.1007/s11033-013-2952-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023]
|
22
|
Wang N, Wang X, Shi M, Shi H, Yan X, Li H, Wang S, Wang Y. LMO4 modulates proliferation and differentiation of 3T3-L1 preadipocytes. FEBS Lett 2013; 587:3032-7. [PMID: 23892074 DOI: 10.1016/j.febslet.2013.07.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/06/2013] [Accepted: 07/14/2013] [Indexed: 12/11/2022]
Abstract
Previous microarray analyses revealed that LMO4 is expressed in 3T3-L1 preadipocytes, however, its roles in adipogenesis are unknown. In the present study, using RT-PCR sequencing and quantitative real-time RT-PCR, we confirmed that LMO4 gene is expressed in 3T3-L1 preadipocytes and its expression peaks at the early stage of 3T3-L1 preadipocyte differentiation. Further analyses showed that LMO4 knockdown decreased the proliferation of 3T3-L1 preadipocytes, and attenuated the differentiation of 3T3-L1 preadipocytes, as evidenced by reduced lipid accumulation and down-regulation of PPARγ gene expression. Collectively, our findings indicate that LMO4 is a novel modulator of adipogenesis.
Collapse
Affiliation(s)
- Ning Wang
- College of Animal Science and Technology, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, Heilongjiang 150030, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
LMO4 is an essential cofactor in the Snail2-mediated epithelial-to-mesenchymal transition of neuroblastoma and neural crest cells. J Neurosci 2013; 33:2773-83. [PMID: 23407937 DOI: 10.1523/jneurosci.4511-12.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Neuroblastoma is an embryonic tumor derived from cells of the neural crest. Taking advantage of a newly developed neural crest lineage tracer and based on the hypothesis that the molecular mechanisms that mediate neural crest delamination are also likely to be involved in the spread of neuroblastoma, we were able to identify genes that are active both in neural crest development and neuroblastoma tumor formation. A subsequent search of the neuroblastoma gene server for human orthologues of genes differentially expressed in the chick embryo neural crest screen retrieved the LIM domain only protein 4 (LMO4), which was expressed in both cell types analyzed. Functional experiments in these two model systems revealed that LMO4 activity is required for neuroblastoma cell invasion and neural crest delamination. Moreover, we identified LMO4 as an essential cofactor in Snail2-mediated cadherin repression and in the epithelial-to-mesenchymal transition of both neural crest and neuroblastoma cells. Together, our results suggest that the association of high levels of LMO4 with aggressive neuroblastomas is dependent on LMO4 regulation of cadherin expression and hence, tumor invasiveness.
Collapse
|
24
|
Abstract
LIM-domain proteins are a large family of proteins that are emerging as key molecules in a wide variety of human cancers. In particular, all members of the human LIM-domain-only (LMO) proteins, LMO1-4, which are required for many developmental processes, are implicated in the onset or the progression of several cancers, including T cell leukaemia, breast cancer and neuroblastoma. These small proteins contain two protein-interacting LIM domains but little additional sequence, and they seem to function by nucleating the formation of new transcriptional complexes and/or by disrupting existing transcriptional complexes to modulate gene expression programmes. Through these activities, the LMO proteins have important cellular roles in processes that are relevant to cancer such as self-renewal, cell cycle regulation and metastasis. These functions highlight the therapeutic potential of targeting these proteins in cancer.
Collapse
Affiliation(s)
- Jacqueline M Matthews
- School of Molecular Bioscience, The University of Sydney, New South Wales 2006, Australia. jacqui.matthews@ sydney.edu.au
| | | | | | | |
Collapse
|
25
|
Yue L, Li L, Liu F, Hu N, Zhang W, Bai X, Li Y, Zhang Y, Fu L, Zhang X, Ye L. The oncoprotein HBXIP activates transcriptional coregulatory protein LMO4 via Sp1 to promote proliferation of breast cancer cells. Carcinogenesis 2013; 34:927-35. [PMID: 23291272 PMCID: PMC3616668 DOI: 10.1093/carcin/bgs399] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B X-interacting protein (HBXIP) is an important oncoprotein that plays critical role in the development of cancer. In this study, we report that HBXIP activates LIM-only protein 4 (LMO4), a transcriptional coregulatory protein, in promotion of cell proliferation. We observed that the messenger RNA (mRNA) expression levels of HBXIP were positively associated with those of LMO4 in clinical breast cancer tissues. We further identified that HBXIP upregulated LMO4 at the levels of promoter, mRNA and protein in MCF-7 and LM-MCF-7 breast cancer cell lines. The expression of cyclin D1 and cyclin E, downstream effectors of LMO4, could be upregulated by HBXIP through LMO4. Then, chromatin immunoprecipitation (ChIP) assay revealed that HBXIP was able to interact with the promoter region of LMO4. Electrophoretic mobility shift assay showed that HBXIP occupied the -237/-206 region of LMO4 promoter containing Sp1 binding element. The mutant of Sp1 binding site in the LMO4 promoter impeded the interaction of HBXIP with the promoter. Co-immunoprecipitation, ChIP and luciferase reporter gene assays showed that HBXIP activated LMO4 promoter through binding to Sp1. In function, flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays and animal transplantation assays demonstrated that HBXIP-enhanced cell proliferation of breast cancer through upregulating LMO4 in vitro and in vivo. Thus, we concluded that oncoprotein HBXIP is able to activate the transcriptional coregulatory protein LMO4 through transcription factor Sp1 in promotion of proliferation of breast cancer cells. HBXIP may serve as a driver gene to activate transcription in the development of cancer.
Collapse
Affiliation(s)
- Lin Yue
- Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cubeddu L, Joseph S, Richard DJ, Matthews JM. Contribution of DEAF1 structural domains to the interaction with the breast cancer oncogene LMO4. PLoS One 2012; 7:e39218. [PMID: 22723967 PMCID: PMC3378519 DOI: 10.1371/journal.pone.0039218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/17/2012] [Indexed: 12/22/2022] Open
Abstract
The proteins LMO4 and DEAF1 contribute to the proliferation of mammary epithelial cells. During breast cancer LMO4 is upregulated, affecting its interaction with other protein partners. This may set cells on a path to tumour formation. LMO4 and DEAF1 interact, but it is unknown how they cooperate to regulate cell proliferation. In this study, we identify a specific LMO4-binding domain in DEAF1. This domain contains an unstructured region that directly contacts LMO4, and a coiled coil that contains the DEAF1 nuclear export signal (NES). The coiled coil region can form tetramers and has the typical properties of a coiled coil domain. Using a simple cell-based assay, we show that LMO4 modulates the activity of the DEAF NES, causing nuclear accumulation of a construct containing the LMO4-interaction region of DEAF1.
Collapse
Affiliation(s)
- Liza Cubeddu
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (LC); (JM)
| | - Soumya Joseph
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
| | - Derek J. Richard
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Jacqueline M. Matthews
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (LC); (JM)
| |
Collapse
|
27
|
Zheng Q, Zhao Y. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol Cell 2012; 99:489-502. [PMID: 17696879 DOI: 10.1042/bc20060126] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The LIM domain is a cysteine- and histidine-rich motif that has been proposed to direct protein-protein interactions. A diverse group of proteins containing LIM domains have been identified, which display various functions including gene regulation and cell fate determination, tumour formation and cytoskeleton organization. LIM domain proteins are distributed in both the nucleus and the cytoplasm, and they exert their functions through interactions with various protein partners.
Collapse
Affiliation(s)
- Quanhui Zheng
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
28
|
Alk is a transcriptional target of LMO4 and ERα that promotes cocaine sensitization and reward. J Neurosci 2011; 31:14134-41. [PMID: 21976498 DOI: 10.1523/jneurosci.3415-11.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previously, we showed that the mouse LIM-domain only 4 (Lmo4) gene, which encodes a protein containing two zinc-finger LIM domains that interact with various DNA-binding transcription factors, attenuates behavioral sensitivity to repeated cocaine administration. Here we show that transcription of anaplastic lymphoma kinase (Alk) is repressed by LMO4 in the striatum and that Alk promotes the development of cocaine sensitization and conditioned place preference, a measure of cocaine reward. Since LMO4 is known to interact with estrogen receptor α (ERα) at the promoters of target genes, we investigated whether Alk expression might be controlled by a similar mechanism. We found that LMO4 and ERα are associated with the Alk promoter by chromatin immunoprecipitation and that Alk is an estrogen-responsive gene in the striatum. Moreover, we show that ERα knock-out mice exhibit enhanced cocaine sensitization and conditioned place preference and an increase in Alk expression in the nucleus accumbens. These data define a novel regulatory network involved in behavioral responses to cocaine. Interestingly, sex differences in several behavioral responses to cocaine in humans and rodents have been described, and estrogen is thought to mediate some of these differences. Our data suggest that estrogen regulation of Alk may be one mechanism responsible for sexually dimorphic responses to cocaine.
Collapse
|
29
|
Ochoa SD, Salvador S, LaBonne C. The LIM adaptor protein LMO4 is an essential regulator of neural crest development. Dev Biol 2011; 361:313-25. [PMID: 22119055 DOI: 10.1016/j.ydbio.2011.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/18/2011] [Accepted: 10/21/2011] [Indexed: 12/20/2022]
Abstract
The neural crest (NC) is a population of multipotent stem cell-like progenitors that arise at the neural plate border in vertebrates and migrate extensively before giving rise to diverse derivatives. A number of components of the neural crest gene regulatory network (NC-GRN) are used reiteratively to control multiple steps in the development of these cells. It is therefore important to understand the mechanisms that control the distinct function of reiteratively used factors in different cellular contexts, and an important strategy for doing so is to identify and characterize the regulatory factors they interact with. Here we report that the LIM adaptor protein, LMO4, is a Slug/Snail interacting protein that is essential for NC development. LMO4 is expressed in NC forming regions of the embryo, as well as in the central nervous system and the cranial placodes. LMO4 is necessary for normal NC development as morpholino-mediated knockdown of this factor leads to loss of NC precursor formation at the neural plate border. Misexpression of LMO4 leads to ectopic expression of some neural crest markers, but a reduction in the expression of others. LMO4 binds directly to Slug and Snail, but not to other components of the NC-GRN and can modulate Slug-mediated neural crest induction, suggesting a mechanistic link between these factors. Together these findings implicate LMO4 as a critical component of the NC-GRN and shed new light on the control of Snail family repressors.
Collapse
Affiliation(s)
- Stacy D Ochoa
- Dept. of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
30
|
Li BX, Zhang MC, Luo CL, Yang P, Li H, Xu HM, Xu HF, Shen YW, Xue AM, Zhao ZQ. Effects of RNA interference-mediated gene silencing of JMJD2A on human breast cancer cell line MDA-MB-231 in vitro. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:90. [PMID: 21962223 PMCID: PMC3215938 DOI: 10.1186/1756-9966-30-90] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/03/2011] [Indexed: 11/24/2022]
Abstract
Previous data demonstrate that JMJD2A is a cancer-associated gene and may be involved in human breast cancer by demethylation of H3K9me3. The aim of this study was to investigate depressive effects on JMJD2A by transfection with JMJD2A-sepcific siRNA in human breast cancer cell line MDA-MB-231 and effects on cell proliferation, invasion and migration. JMJD2A-specific siRNA was chemically synthesised and transfected into human breast cancer cell line MDA-MB-231. Expression levels of JMJD2A were detected by quantitative real-time PCR and Western blot analysis. Cells proliferation was evaluated by using flow cytometric anlysis and MTT assay. The abilities of invasion and migration were evaluated by cell migration and invasion assay with Boyden chambers. The results showed that the transfection was successful and expression levels of JMJD2A mRNA and protein in siRNA group were both down-regulated. By MTT assay, the mean actual absorbance in siRNA group was significantly lower than that in blank control group (P < 0.05) and negative control group (P < 0.05). In addition, the percentage of cells in G0/G1 phase in siRNA group was significantly more than that in blank control group (P < 0.05) and negative control group (P < 0.05). Furthermore, by cell invasion and migration assay, the decreased number of migrated cells in siRNA group was observed (P < 0.05). These data imply that silencing JMJD2A gene could result in cell cycle change and proliferation inhibition, and lead to suppress tumor cell invasion and migration. It provides a new perspective in understanding the pleiotropic functions of JMJD2A and its contribution to human breast cancer.
Collapse
Affiliation(s)
- Bei-Xu Li
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Montañez-Wiscovich ME, Shelton MD, Seachrist DD, Lozada KL, Johnson E, Miedler JD, Abdul-Karim FW, Visvader JE, Keri RA. Aberrant expression of LMO4 induces centrosome amplification and mitotic spindle abnormalities in breast cancer cells. J Pathol 2010; 222:271-81. [PMID: 20814902 DOI: 10.1002/path.2762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The LIM-only protein, LMO4, is a transcriptional modulator overexpressed in breast cancer. It is oncogenic in murine mammary epithelium and is required for G2/M progression of ErbB2-dependent cells as well as growth and invasion of other breast cancer cell types. However, the mechanisms underlying the oncogenic activity of LMO4 remain unclear. Herein, we show that LMO4 is expressed in all breast cancer subtypes examined and its expression level correlates with the degree of proliferation of such tumours. In addition, we have determined that LMO4 silencing induces G2/M arrest in cells from various breast cancer subtypes, suggesting that LMO4 action in the cell cycle is not restricted to a single breast cancer subtype. This arrest was accompanied by increased cell death, amplification of centrosomes, and formation of abnormal mitotic spindles. Consistent with its ability to positively and negatively regulate the formation of active transcription complexes, overexpression of LMO4 also resulted in an increase in centrosome number. Centrosome amplification has been shown to prolong the G2/M phase of the cell cycle and induce apoptosis; thus, we conclude that supernumerary centrosomes mediate the G2/M arrest and cell death in LMO4-deficient cells. Furthermore, the correlation of centrosome amplification with genomic instability suggests that the impact of dysregulated LMO4 on the centrosome cycle may promote LMO4-induced tumour formation.
Collapse
|
32
|
Pérez-Magán E, Rodríguez de Lope A, Ribalta T, Ruano Y, Campos-Martín Y, Pérez-Bautista G, García JF, García-Claver A, Fiaño C, Hernández-Moneo JL, Mollejo M, Meléndez B. Differential expression profiling analyses identifies downregulation of 1p, 6q, and 14q genes and overexpression of 6p histone cluster 1 genes as markers of recurrence in meningiomas. Neuro Oncol 2010; 12:1278-90. [PMID: 20685720 DOI: 10.1093/neuonc/noq081] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The majority of meningiomas are probably benign but a number of tumors display considerable histological and/or clinical aggressivity, sometimes with unexpectedly high recurrence rates after radical removal. Understanding the potential behavior of these tumors in individual patients is critical for rational therapeutic decision-making. This study aimed to identify gene expression profiles and candidate markers associated with original and recurrent meningiomas. Unsupervised hierarchical clustering of the samples confirmed 2 main groups of meningiomas with distinct clinical behaviors. The gene expression profiling study identified genes and pathways potentially associated with meningioma recurrence, revealing an overall lower level of gene expression. The differential gene expression profiling analyses of original and recurrent meningiomas identified 425 known genes and expressed sequence tags related to meningioma recurrence, with SFRP1 (8p12), TMEM30B (14q23), and CTGF (6q23) showing the most disparate expression. Most of the differentially expressed genes were located at 1p, 6q, and 14q and were underexpressed in recurrences. Loss of such chromosomal regions has previously been associated with a higher risk of meningioma recurrence or malignant progression. Thus, at these locations, we propose the existence of novel candidate genes that could be involved in meningioma recurrence. In addition, the overexpression of genes of histone cluster 1 (6p) in recurrent meningiomas is reported here for the first time. Finally, the altered genes related to meningioma recurrence are involved in pathways such as Notch, TGFβ, and Wnt, as described previously, and in other pathways such as cell cycle, oxidative phosphorylation, PPAR, and PDGF, not related before to meningioma recurrence.
Collapse
Affiliation(s)
- Elisa Pérez-Magán
- Molecular Pathology Research Unit, Virgen de la Salud Hospital, Toledo 45004, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tian Y, Wang N, Lu Z. Repression of Lim only protein 4-activated transcription inhibits proliferation and induces apoptosis of normal mammary epithelial cells and breast cancer cells. Clin Exp Metastasis 2010; 27:455-63. [PMID: 20526802 DOI: 10.1007/s10585-010-9332-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 04/30/2010] [Indexed: 12/18/2022]
Abstract
Lim only protein (LMO) 4 acts as a transcriptional adapter and modulates mammary gland morphogenesis as well as breast oncogenesis in transgenic mice. Yet, the molecular and cellular mechanisms of these effects remain to be fully elucidated. Engrailed LMO4 fusion protein is a powerful dominant repressor of LMO4 activated transcription that was successfully used to discover the role of LMO4 as a transcriptional activator in mammary gland development in our previous studies using mouse models. In this manuscript, we investigated the cellular effects of LMO4 in human normal mammary epithelial cells (HMECs) and breast cancer cell lines using the Engrailed-LMO4 fusion protein. HMEC cell growth was inhibited by the expression of the Engrailed-LMO4 fusion protein. The decrease in cell number was due to both decreased cell proliferation and enhanced apoptosis, suggesting that LMO4 promotes proliferation and survival of normal mammary epithelial cells. The expression of the Engrailed-LMO4 fusion protein also suppressed cell growth, and induced apoptosis in two breast cancer cell lines, MDA-MB-231 and T47D, suggesting that LMO4 contributes to oncogenesis by similar mechanisms of enhanced cell survival and proliferation. Taken together, our data indicate that LMO4 has similar cellular effects in normal mammary epithelial cells and breast cancer cells, and also provide direct evidence for the idea that normal development and carcinogenesis share conserved molecular mechanisms.
Collapse
Affiliation(s)
- Yingpu Tian
- Institute for Biomedical Research, Xiamen University, Fujian, China
| | | | | |
Collapse
|
34
|
He W, Tan R, Dai C, Li Y, Wang D, Hao S, Kahn M, Liu Y. Plasminogen activator inhibitor-1 is a transcriptional target of the canonical pathway of Wnt/beta-catenin signaling. J Biol Chem 2010; 285:24665-75. [PMID: 20519507 DOI: 10.1074/jbc.m109.091256] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a multifunctional glycoprotein that plays a critical role in the pathogenesis of chronic kidney and cardiovascular diseases. Although transforming growth factor (TGF)-beta1 is a known inducer of PAI-1, how it controls PAI-1 expression remains enigmatic. Here we investigated the mechanism underlying TGF-beta1 regulation of PAI-1 in kidney tubular epithelial cells (HKC-8). Surprisingly, overexpression of Smad2 or Smad3 in HKC-8 cells blocked PAI-1 induction by TGF-beta1, whereas knockdown of them sensitized the cells to TGF-beta1 stimulation, suggesting that Smad signaling is not responsible for PAI-1 induction. Blockade of several TGF-beta1 downstream pathways such as p38 MAPK or JNK, but not phosphatidylinositol 3-kinase/Akt and ERK1/2, only partially inhibited PAI-1 expression. TGF-beta1 stimulated beta-catenin activation in tubular epithelial cells, and ectopic expression of beta-catenin induced PAI-1 expression, whereas inhibition of beta-catenin abolished its induction. A functional T cell factor/lymphoid enhancer-binding factor-binding site was identified in the promoter region of the PAI-1 gene, which interacted with T cell factor upon beta-catenin activation. Deletion or site-directed mutation of this site abolished PAI-1 response to beta-catenin or TGF-beta1 stimulation. Similarly, ectopic expression of Wnt1 also activated PAI-1 expression and promoter activity. In vivo, PAI-1 was induced in kidney tubular epithelia in obstructive nephropathy. Delivery of Wnt1 gene activated beta-catenin and promoted PAI-1 expression after obstructive injury, whereas blockade of Wnt/beta-catenin signaling by Dickkopf-1 gene inhibited PAI-1 induction. Collectively, these studies identify PAI-1 as a direct downstream target of Wnt/beta-catenin signaling and demonstrate that PAI-1 induction could play a role in mediating the fibrogenic action of this signaling.
Collapse
Affiliation(s)
- Weichun He
- Department of Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Zhen Lu
- Department of Experimental Therapeutics, M.D. Anderson Cancer Center, University of Texas, Houston, TX 77030-4009, USA
| | | |
Collapse
|
36
|
Yu J, Ohuchida K, Nakata K, Mizumoto K, Cui L, Fujita H, Yamaguchi H, Egami T, Kitada H, Tanaka M. LIM only 4 is overexpressed in late stage pancreas cancer. Mol Cancer 2008; 7:93. [PMID: 19099607 PMCID: PMC2628350 DOI: 10.1186/1476-4598-7-93] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 12/22/2008] [Indexed: 12/21/2022] Open
Abstract
Background LIM-only 4 (LMO4), a member of the LIM-only (LMO) subfamily of LIM domain-containing transcription factors, was initially reported to have an oncogenic role in breast cancer. We hypothesized that LMO4 may be related to pancreatic carcinogenesis as it is in breast carcinogenesis. If so, this could result in a better understanding of tumorigenesis in pancreatic cancer. Methods We measured LMO4 mRNA levels in cultured cells, pancreatic bulk tissues and microdissected target cells (normal ductal cells; pancreatic intraepithelial neoplasia-1B [PanIN-1B] cells; PanIN-2 cells; invasive ductal carcinoma [IDC] cells; intraductal papillary-mucinous adenoma [IPMA] cells; IPM borderline [IPMB] cells; and invasive and non-invasive IPM carcinoma [IPMC]) by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Results 9 of 14 pancreatic cancer cell lines expressed higher levels of LMO4 mRNA than did the human pancreatic ductal epithelial cell line (HPDE). In bulk tissue samples, expression of LMO4 was higher in pancreatic carcinoma than in intraductal papillary-mucinous neoplasm (IPMN) or non-neoplastic pancreas (p < 0.0001 for both). We carried out microdissection-based analyses. IDC cells expressed significantly higher levels of LMO4 than did normal ductal epithelia or PanIN-1B cells (p < 0.001 for both) or PanIN-2 cells (p = 0.014). IPMC cells expressed significantly higher levels of LMO4 than did normal ductal epithelia (p < 0.001), IPMA (p < 0.001) and IPMB cells (p = 0.003). Conclusion Pancreatic carcinomas (both IDC and IPMC) expressed significantly higher levels of LMO4 mRNA than did normal ductal epithelia, PanIN-1B, PanIN-2, IPMA and IPMB. These results suggested that LMO4 is overexpressed at late stages in carcinogenesis of pancreatic cancer.
Collapse
Affiliation(s)
- Jun Yu
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schaffar G, Taniguchi J, Brodbeck T, Meyer AH, Schmidt M, Yamashita T, Mueller BK. LIM-only protein 4 interacts directly with the repulsive guidance molecule A receptor Neogenin. J Neurochem 2008; 107:418-31. [PMID: 18702663 DOI: 10.1111/j.1471-4159.2008.05621.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Repulsive guidance molecule A (RGM A) was recently described as a potent inhibitor of neuroregeneration in a rat spinal cord injury model. The receptor mediating RGM A's repulsive activity was shown to be Neogenin, a member of the Deleted in Colorectal Cancer (DCC) family of netrin receptors. Binding of RGM A to Neogenin induces activation of the small GTPase RhoA and of its effector Rho-kinase by an unknown mechanism. Here we show, that the cytoplasmic tail of Neogenin interacts directly with the transcriptional coactivator LIM domain only 4 (LMO4) in human SH-SY5Y cells, human Ntera neurons, and in embryonic rat cortical neurons. RGM A binding to Neogenin but not binding of Netrin-1, induces release of LMO4 from Neogenin. Down-regulation of LMO4 neutralizes the repulsive activity of RGM A in neuronal cell lines and embryonic rat cortical neurons and prevents RhoA activation. These results show for the first time that an interaction of Neogenin with LMO4 is involved in the RGM A - Neogenin signal transduction pathway for RhoA activation.
Collapse
Affiliation(s)
- Gregor Schaffar
- Neuroscience Research, Abbott GmbH and Company KG, Ludwigshafen, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Lukas TJ, Miao H, Chen L, Riordan SM, Li W, Crabb AM, Wise A, Du P, Lin SM, Hernandez MR. Susceptibility to glaucoma: differential comparison of the astrocyte transcriptome from glaucomatous African American and Caucasian American donors. Genome Biol 2008; 9:R111. [PMID: 18613964 PMCID: PMC2530868 DOI: 10.1186/gb-2008-9-7-r111] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/18/2008] [Accepted: 07/09/2008] [Indexed: 12/23/2022] Open
Abstract
Comparison of gene expression in normal and glaucomatous eyes from Caucasian American and African American donors reveals differences that might reflect different susceptibility to glaucoma. Background Epidemiological and genetic studies indicate that ethnic/genetic background plays an important role in susceptibility to primary open angle glaucoma (POAG). POAG is more prevalent among the African-descent population compared to the Caucasian population. Damage in POAG occurs at the level of the optic nerve head (ONH) and is mediated by astrocytes. Here we investigated differences in gene expression in primary cultures of ONH astrocytes obtained from age-matched normal and glaucomatous donors of Caucasian American (CA) and African American (AA) populations using oligonucleotide microarrays. Results Gene expression data were obtained from cultured astrocytes representing 12 normal CA and 12 normal AA eyes, 6 AA eyes with POAG and 8 CA eyes with POAG. Data were normalized and significant differential gene expression levels detected by using empirical Bayesian shrinkage moderated t-statistics. Gene Ontology analysis and networks of interacting proteins were constructed using the BioGRID database. Network maps included regulation of myosin, actin, and protein trafficking. Real-time RT-PCR, western blots, ELISA, and functional assays validated genes in the networks. Conclusion Cultured AA and CA glaucomatous astrocytes retain differential expression of genes that promote cell motility and migration, regulate cell adhesion, and are associated with structural tissue changes that collectively contribute to neural degeneration. Key upregulated genes include those encoding myosin light chain kinase (MYLK), transforming growth factor-β receptor 2 (TGFBR2), rho-family GTPase-2 (RAC2), and versican (VCAN). These genes along with other differentially expressed components of integrated networks may reflect functional susceptibility to chronic elevated intraocular pressure that is enhanced in the optic nerve head of African Americans.
Collapse
Affiliation(s)
- Thomas J Lukas
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, E Chicago Ave, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hernandez MR, Miao H, Lukas T. Astrocytes in glaucomatous optic neuropathy. PROGRESS IN BRAIN RESEARCH 2008; 173:353-73. [DOI: 10.1016/s0079-6123(08)01125-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
40
|
Turowska O, Nauman A, Pietrzak M, Popławski P, Master A, Nygard M, Bondesson M, Tanski Z, Puzianowska-Kuznicka M. Overexpression of E2F1 in clear cell renal cell carcinoma: a potential impact of erroneous regulation by thyroid hormone nuclear receptors. Thyroid 2007; 17:1039-48. [PMID: 17910524 DOI: 10.1089/thy.2007.0075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We show here that the promoter of E2F1 gene, encoding one of the key regulators of cell proliferation, is overly active in the presence of low amounts of triiodothyronine (T3) and in the presence of mutant thyroid hormone receptor. We also show that T3-thyroid hormone receptor pathway of regulation of molecular processes is disturbed in clear cell renal cell carcinoma (ccRCC) on several levels, including overexpression of thyroid hormone receptors and the disturbance of their binding to DNA and to the hormone. In comparison to the cancer-free kidneys and peritumoral respective control tissues, E2F1 mRNA and protein levels are significantly increased in cancer tissues. A significant correlation between E2F1 mRNA and protein levels has been found in both control types and ccRCCs. No correlation was observed between the amount of E2F1 mRNA and the amount of thyroid hormone receptors or their DNA or T3 binding activity, suggesting that the function of thyroid hormone receptors could be markedly disturbed in both tumor and peritumoral cells. In summary, we show that ccRCC is characterized by the overexpression of E2F1, which is likely a result of a deregulated control of T3-dependent molecular processes.
Collapse
Affiliation(s)
- Olga Turowska
- Department of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, 99 Marymoncka Street, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang N, Lin KK, Lu Z, Lam KS, Newton R, Xu X, Yu Z, Gill GN, Andersen B. The LIM-only factor LMO4 regulates expression of the BMP7 gene through an HDAC2-dependent mechanism, and controls cell proliferation and apoptosis of mammary epithelial cells. Oncogene 2007; 26:6431-41. [PMID: 17452977 DOI: 10.1038/sj.onc.1210465] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nuclear LIM-only protein 4 (LMO4) is upregulated in breast cancer, especially estrogen receptor-negative tumors, and its overexpression in mice leads to hyperplasia and tumor formation. Here, we show that deletion of LMO4 in the mammary glands of mice leads to impaired lobuloalveolar development due to decreased epithelial cell proliferation. With the goal of discovering potential LMO4-target genes, we also developed a conditional expression system in MCF-7 cells for both LMO4 and a dominant negative (DN) form of its co-regulator, cofactor of LIM domains (Clim/Ldb/Nli). We then used DNA microarrays to identify genes responsive to LMO4 and DN-Clim upregulation. One of the genes common to both data sets was bone morphogenic protein 7 (BMP7), whose expression is also significantly correlated with LMO4 transcript levels in a large dataset of human breast cancers, suggesting that BMP7 is a bona fide target gene of LMO4 in breast cancer. Inhibition of BMP7 partially blocks the effects of LMO4 on apoptosis, indicating that BMP7 mediates at least some functions of LMO4. Gene transfer studies show that LMO4 regulates the BMP7 promoter, and chromatin immunoprecipitation studies show that LMO4 and its cofactor Clim2 are recruited to the BMP7 promoter. Furthermore, we demonstrate that HDAC2 recruitment to the BMP7 promoter is inhibited by upregulation of LMO4 and that HDAC2 knockdown upregulates the promoter. These studies suggest a novel mechanism of action for LMO4: LMO4, Clim2 and HDAC2 are part of a transcriptional complex, and increased LMO4 levels can disrupt the complex, leading to decreased HDAC2 recruitment and increased promoter activity.
Collapse
Affiliation(s)
- N Wang
- Department of Medicine, University of California, Irvine, CA 92697-4030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen HH, Xu J, Safarpour F, Stewart AFR. LMO4 mRNA stability is regulated by extracellular ATP in F11 cells. Biochem Biophys Res Commun 2007; 357:56-61. [PMID: 17418808 DOI: 10.1016/j.bbrc.2007.03.113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
LIM only domain protein 4 (LMO4) interacts with many signaling and transcription factors to regulate cellular proliferation, differentiation and plasticity. In Drosophila, mutations in the 3' untranslated region (UTR) of the homologue dLMO cause a gain of function by increasing mRNA stability. LMO4 3'UTR contains several AU-rich elements (ARE) and is highly conserved among vertebrates, suggesting that RNA destabilizing mechanisms are evolutionarily conserved. Here, we found that extracellular ATP stabilized LMO4 mRNA in F11 cells. The LMO4 3'UTR added to a luciferase reporter markedly reduced reporter activity under basal conditions, but increased activity with ATP treatment. Two ARE motifs were characterized in the LMO4 3'UTR. ATP increased binding of HuD protein to ARE1. ARE1 conferred ATP and HuD-dependent mRNA stabilization. In contrast, sequences flanking ARE2 bound CUGBP1 and ATP destabilized this complex. Thus, our results suggest that ATP modulates recruitment of RNA-binding proteins to the 3'UTR to stabilize LMO4 mRNA.
Collapse
Affiliation(s)
- Hsiao-Huei Chen
- Ottawa Health Research Institute, Neuroscience, Centre for Stroke Recovery, 451 Smyth Road, Ottawa, Ont., Canada K1H 8M5.
| | | | | | | |
Collapse
|
43
|
Yu Z, Lin KK, Bhandari A, Spencer JA, Xu X, Wang N, Lu Z, Gill GN, Roop DR, Wertz P, Andersen B. The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4. Dev Biol 2006; 299:122-36. [PMID: 16949565 DOI: 10.1016/j.ydbio.2006.07.015] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 07/11/2006] [Accepted: 07/12/2006] [Indexed: 10/24/2022]
Abstract
Defective permeability barrier is an important feature of many skin diseases and causes mortality in premature infants. To investigate the control of barrier formation, we characterized the epidermally expressed Grainyhead-like epithelial transactivator (Get-1)/Grhl3, a conserved mammalian homologue of Grainyhead, which plays important roles in cuticle development in Drosophila. Get-1 interacts with the LIM-only protein LMO4, which is co-expressed in the developing mammalian epidermis. The epidermis of Get-1(-/-) mice showed a severe barrier function defect associated with impaired differentiation of the epidermis, including defects of the stratum corneum, extracellular lipid composition and cell adhesion in the granular layer. The Get-1 mutation affects multiple genes linked to terminal differentiation and barrier function, including most genes of the epidermal differentiation complex. Get-1 therefore directly or indirectly regulates a broad array of epidermal differentiation genes encoding structural proteins, lipid metabolizing enzymes and cell adhesion molecules. Although deletion of the LMO4 gene had no overt consequences for epidermal development, the epidermal terminal differentiation defect in mice deleted for both Get-1 and LMO4 is much more severe than in Get-1(-/-) mice with striking impairment of stratum corneum formation. These findings indicate that the Get-1 and LMO4 genes interact functionally to regulate epidermal terminal differentiation.
Collapse
Affiliation(s)
- Zhengquan Yu
- Departments of Medicine and Biological Chemistry, University of California, Irvine, CA 92697-4030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|