1
|
Cuglievan B, Kantarjian H, Rubnitz JE, Cooper TM, Zwaan CM, Pollard JA, DiNardo CD, Kadia TM, Guest E, Short NJ, McCall D, Daver N, Nunez C, Haddad FG, Garcia M, Bhalla KN, Maiti A, Catueno S, Fiskus W, Carter BZ, Gibson A, Roth M, Khazal S, Tewari P, Abbas HA, Bourgeois W, Andreeff M, Shukla NN, Truong DD, Connors J, Ludwig JA, Stutterheim J, Salzer E, Juul-Dam KL, Sasaki K, Mahadeo KM, Tasian SK, Borthakur G, Dickson S, Jain N, Jabbour E, Meshinchi S, Garcia-Manero G, Ravandi F, Stein EM, Kolb EA, Issa GC. Menin inhibitors in pediatric acute leukemia: a comprehensive review and recommendations to accelerate progress in collaboration with adult leukemia and the international community. Leukemia 2024; 38:2073-2084. [PMID: 39179671 PMCID: PMC11436367 DOI: 10.1038/s41375-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Aberrant expression of HOX and MEIS1 family genes, as seen in KMT2A-rearranged, NUP98-rearranged, or NPM1-mutated leukemias leads to arrested differentiation and leukemia development. HOX family genes are essential gatekeepers of physiologic hematopoiesis, and their expression is regulated by the interaction between KMT2A and menin. Menin inhibitors block this interaction, downregulate the abnormal expression of MEIS1 and other transcription factors and thereby release the differentiation block. Menin inhibitors show significant clinical efficacy against KMT2A-rearranged and NPM1-mutated acute leukemias, with promising potential to address unmet needs in various pediatric leukemia subtypes. In this collaborative initiative, pediatric and adult hematologists/oncologists, and stem cell transplant physicians have united their expertise to explore the potential of menin inhibitors in pediatric leukemia treatment internationally. Our efforts aim to provide a comprehensive clinical overview of menin inhibitors, integrating preclinical evidence and insights from ongoing global clinical trials. Additionally, we propose future international, inclusive, and efficient clinical trial designs, integrating pediatric populations in adult trials, to ensure broad access to this promising therapy for all children and adolescents with menin-dependent leukemias.
Collapse
Affiliation(s)
- Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd M Cooper
- Cancer and Blood Disorders Center, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - C Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; The Innovative Therapies for Children with Cancer Consortium, Paris, France
| | | | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erin Guest
- Department of Pediatric Oncology, Children's Mercy, Kansas City, MO, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kapil N Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z Carter
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sajad Khazal
- Division of Transplant and Cellular Therapy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Priti Tewari
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danh D Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeremy Connors
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Elisabeth Salzer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kris M Mahadeo
- Division of Pediatric Transplantation and Cellular Therapy, Duke University, Durham, NC, USA
| | - Sarah K Tasian
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samantha Dickson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eytan M Stein
- Department of Leukemia, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Anders Kolb
- Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, DE, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Su P, Liu Y, Chen T, Xue Y, Zeng Y, Zhu G, Chen S, Teng M, Ci X, Guo M, He MY, Hao J, Chu V, Xu W, Wang S, Mehdipour P, Xu X, Marhon SA, Soares F, Pham NA, Wu BX, Her PH, Feng S, Alshamlan N, Khalil M, Krishnan R, Yu F, Chen C, Burrows F, Hakem R, Lupien M, Harding S, Lok BH, O'Brien C, Berlin A, De Carvalho DD, Brooks DG, Schramek D, Tsao MS, He HH. In vivo CRISPR screens identify a dual function of MEN1 in regulating tumor-microenvironment interactions. Nat Genet 2024; 56:1890-1902. [PMID: 39227744 PMCID: PMC11387198 DOI: 10.1038/s41588-024-01874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/18/2024] [Indexed: 09/05/2024]
Abstract
Functional genomic screens in two-dimensional cell culture models are limited in identifying therapeutic targets that influence the tumor microenvironment. By comparing targeted CRISPR-Cas9 screens in a two-dimensional culture with xenografts derived from the same cell line, we identified MEN1 as the top hit that confers differential dropout effects in vitro and in vivo. MEN1 knockout in multiple solid cancer types does not impact cell proliferation in vitro but significantly promotes or inhibits tumor growth in immunodeficient or immunocompetent mice, respectively. Mechanistically, MEN1 knockout redistributes MLL1 chromatin occupancy, increasing H3K4me3 at repetitive genomic regions, activating double-stranded RNA expression and increasing neutrophil and CD8+ T cell infiltration in immunodeficient and immunocompetent mice, respectively. Pharmacological inhibition of the menin-MLL interaction reduces tumor growth in a CD8+ T cell-dependent manner. These findings reveal tumor microenvironment-dependent oncogenic and tumor-suppressive functions of MEN1 and provide a rationale for targeting MEN1 in solid cancers.
Collapse
Affiliation(s)
- Peiran Su
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yin Liu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyi Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yibo Xue
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Guanghui Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Mona Teng
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Xinpei Ci
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mengdi Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Y He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jun Hao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vivian Chu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wenxi Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shiyan Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Parinaz Mehdipour
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Bell Xi Wu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Peter Hyunwuk Her
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shengrui Feng
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Najd Alshamlan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Maryam Khalil
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Razqallah Hakem
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shane Harding
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Catherine O'Brien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alejandro Berlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Schramek
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Menin signaling and therapeutic targeting in breast cancer. Curr Probl Cancer 2024; 51:101118. [PMID: 38968834 DOI: 10.1016/j.currproblcancer.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
To date, mounting evidence have shown that patients with multiple endocrine neoplasia type 1 (MEN1) may face an increased risk for breast carcinogenesis. The product of the MEN1 gene, menin, was also indicated to be an important regulator in breast cancer signaling network. Menin directly interacts with MLL, EZH2, JunD, NF-κB, PPARγ, VDR, Smad3, β-catenin and ERα to modulate gene transcriptions leading to cell proliferation inhibition. Moreover, interaction of menin-FANCD2 contributes to the enhancement of BRCA1-mediated DNA repair mechanism. Ectopic expression of menin causes Bax-, Bak- and Caspase-8-dependent apoptosis. However, despite numbers of menin inhibitors were exploited in other cancers, data on the usage of menin inhibitors in breast cancer treatment remain limited. In this review, we focused on the menin associated signaling pathways and gene transcription regulations, with the aim of elucidating its molecular mechanisms and of guiding the development of novel menin targeted drugs in breast cancer therapy.
Collapse
Affiliation(s)
- Peng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
5
|
Hernández-Ramírez LC, Perez-Rivas LG, Theodoropoulou M, Korbonits M. An Update on the Genetic Drivers of Corticotroph Tumorigenesis. Exp Clin Endocrinol Diabetes 2024. [PMID: 38830604 DOI: 10.1055/a-2337-2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The genetic landscape of corticotroph tumours of the pituitary gland has dramatically changed over the last 10 years. Somatic changes in the USP8 gene account for the most common genetic defect in corticotrophinomas, especially in females, while variants in TP53 or ATRX are associated with a subset of aggressive tumours. Germline defects have also been identified in patients with Cushing's disease: some are well-established (MEN1, CDKN1B, DICER1), while others are rare and could represent coincidences. In this review, we summarise the current knowledge on the genetic drivers of corticotroph tumorigenesis, their molecular consequences, and their impact on the clinical presentation and prognosis.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
6
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
7
|
Wysota M, Konopleva M, Mitchell S. Novel Therapeutic Targets in Acute Myeloid Leukemia (AML). Curr Oncol Rep 2024; 26:409-420. [PMID: 38502417 PMCID: PMC11021231 DOI: 10.1007/s11912-024-01503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE OF REVIEW This review seeks to identify and describe novel genetic and protein targets and their associated therapeutics currently being used or studied in the treatment of acute myeloid leukemia (AML). RECENT FINDINGS Over the course of the last 5-6 years, several targeted therapies have been approved by the FDA, for the treatment of both newly diagnosed as well as relapsed/refractory AML. These novel therapeutics, as well as several others currently under investigation, have demonstrated activity in AML and have improved outcomes for many patients. Patient outcomes in AML have slowly improved over time, though for many patients, particularly elderly patients or those with relapsed/refractory disease, mortality remains very high. With the identification of several molecular/genetic drivers and protein targets and development of therapeutics which leverage those mechanisms to target leukemic cells, outcomes for patients with AML have improved and continue to improve significantly.
Collapse
Affiliation(s)
- Michael Wysota
- Department of Oncology, Montefiore Medical Center, 111 East 210 Street, Bronx, NY, 10467, USA.
| | - Marina Konopleva
- Montefiore Medical Center/Albert Einstein College of Medicine, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Ullmann Building, 1300 Morris Park AvenueRoom 915, Bronx, NY, 10461, USA.
| | | |
Collapse
|
8
|
Thomas X. Small Molecule Menin Inhibitors: Novel Therapeutic Agents Targeting Acute Myeloid Leukemia with KMT2A Rearrangement or NPM1 Mutation. Oncol Ther 2024; 12:57-72. [PMID: 38300432 PMCID: PMC10881917 DOI: 10.1007/s40487-024-00262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Recent advances have included insights into the clinical value of genomic abnormalities in acute myeloid leukemia (AML) and consequently the development of numerous targeted therapeutic agents that have improved clinical outcome. In this setting, various clinical trials have recently explored novel therapeutic agents either used alone or in combination with intensive chemotherapy or low-intensity treatments. Among them, menin inhibitors could represent a novel group of targeted therapies in AML driven by rearrangement of the lysine methyltransferase 2A (KMT2A) gene, previously known as mixed-lineage leukemia (MLL), or by mutation of the nucleophosmin 1 (NPM1) gene. Recent phase 1/2 clinical trials confirmed the efficacy of SNDX-5613 (revumenib) and KO-539 (ziftomenib) and their acceptable tolerability. Several small molecule menin inhibitors are currently being evaluated as a combination therapy with standard of care treatments. The current paper reviews the recent progress in exploring the inhibitors of menin-KMT2A interactions and their application prospects in the treatment of acute leukemias.
Collapse
Affiliation(s)
- Xavier Thomas
- Department of Clinical Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Bâtiment 1G, 165 Chemin du Grand Revoyet, 69495, Pierre-Bénite Cedex, France.
| |
Collapse
|
9
|
Massey S, Khan MA, Rab SO, Mustafa S, Khan A, Malik Z, Shaik R, Verma MK, Deo S, Husain SA. Evaluating the role of MEN1 gene expression and its clinical significance in breast cancer patients. PLoS One 2023; 18:e0288482. [PMID: 37437063 DOI: 10.1371/journal.pone.0288482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Breast cancer is a multifactorial disease which involves number of molecular factors that are critically involved in proliferation of breast cancer cells. MEN1 gene that is traditionally known for its germline mutations in neuroendocrine tumors is associated with high risk of developing breast cancer in females with MEN1 syndrome. However, the paradoxical role of MEN1 is reported in sporadic breast cancer cases. The previous studies indicate the functional significance of MEN1 in regulating breast cells proliferation but its relevance in development and progression of breast cancer is still not known. Our study targets to find the role of MEN1 gene aberration and its clinical significance in breast cancer. METHODS Breast tumor and adjacent normal tissue of 142 sporadic breast cancer patients were collected at the time of surgery. The expression analysis of MEN1 mRNA and protein was done through RT-PCR, immunohistochemistry and western blotting. Further to find the genetic and epigenetic alterations, automated sequencing and MS-PCR was performed respectively. Correlation between our findings and clinical parameters was determined using appropriate statistical tests. RESULTS MEN1 expression was found to be significantly increased in the breast tumor tissue with its predominant nuclear localization. The elevated expression of MEN1 mRNA (63.38% cases) and protein (60.56% cases) exhibited a significant association with ER status of the patients. Most of the cases had unmethylated (53.52%) MEN1 promoter region, which can be a key factor responsible for dysregulated expression of MEN1 in breast cancer cases. Our findings also revealed the significant association of MEN1 mRNA overexpression with Age and lymph node status of the patients. CONCLUSION Our results indicate upregulated expression of MEN1 in sporadic breast cancer patients and it could be critically associated with development and advancement of the disease.
Collapse
Affiliation(s)
- Sheersh Massey
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Aasif Khan
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, United States of America
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saad Mustafa
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Asifa Khan
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Zoya Malik
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rahimunnisa Shaik
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohit Kumar Verma
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Svs Deo
- Department of Surgical Oncology BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Syed Akhtar Husain
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
10
|
Pierotti L, Pardi E, Dinoi E, Piaggi P, Borsari S, Della Valentina S, Sardella C, Michelucci A, Caligo MA, Bogazzi F, Marcocci C, Cetani F. Cutaneous lesions and other non-endocrine manifestations of Multiple Endocrine Neoplasia type 1 syndrome. Front Endocrinol (Lausanne) 2023; 14:1191040. [PMID: 37484956 PMCID: PMC10360178 DOI: 10.3389/fendo.2023.1191040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background Multiple Endocrine Neoplasia type 1 is a rare genetic syndrome mainly caused by mutations of MEN1 gene and characterized by a combination of several endocrine and non-endocrine manifestations. The objective of this study was to describe cutaneous lesions and other non-endocrine manifestations of MEN1 in a cohort of patients with familial (F) and sporadic (S) MEN1, compare the prevalence of these manifestations between the two cohorts, and investigate the correlation with MEN1 mutation status. Methods We collected phenotypic and genotypic data of 185 patients with F-MEN1 and S-MEN1 followed from 1997 to 2022. The associations between F-MEN1 and S-MEN1 or MEN1 mutation-positive and mutation-negative patients and non-endocrine manifestations were determined using chi-square or Fisher's exact tests or multivariate exact logistic regression analyses. Results The prevalence of angiofibromas was significantly higher in F-MEN1 than in S-MEN1 in both the whole (p < 0.001) and index case (p = 0.003) cohorts. The prevalence of lipomas was also significantly higher in F-MEN1 than in S-MEN1 (p = 0.009) and in MEN1 mutation-positive than in MEN1 mutation-negative (p = 0.01) index cases. In the whole cohort, the prevalence of lipomas was significantly higher in MEN1 mutation-positive compared to MEN1 mutation-negative patients (OR = 2.7, p = 0.02) and in F-MEN1 than in S-MEN1 (p = 0.03), only after adjustment for age. No significant differences were observed for the other non-endocrine manifestations between the two cohorts. Hibernoma and collagenoma were each present in one patient (0.5%) and meningioma and neuroblastoma in 2.7% and 0.5%, respectively. Gastric leiomyoma was present in 1.1% of the patients and uterine leiomyoma in 14% of women. Thyroid cancer, breast cancer, lung cancer, basal cell carcinoma, melanoma, and colorectal cancer were present in 4.9%, 2.7%, 1.6%, 1.6%, 2.2%, and 0.5% of the whole series, respectively. Conclusions We found a significantly higher prevalence of angiofibromas and lipomas in F-MEN1 compared with S-MEN1 and in MEN1 mutation-positive compared to MEN1 mutation-negative patients. In patients with one major endocrine manifestation of MEN1 , the presence of cutaneous lesions might suggest the diagnosis of MEN1 and a possible indication for genetic screening.
Collapse
Affiliation(s)
- Laura Pierotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Dinoi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Chiara Sardella
- Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Angela Michelucci
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | | | - Fausto Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Filomena Cetani
- Unit of Endocrinology, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Molina‐Céspedes P, Ruiz‐Golcher EJ, Badilla‐Barboza O, Sedó‐Mejía G, Barboza‐Rodríguez L, Badilla‐Porras R. Multiple endocrine neoplasia type 1 familial case in a patient with insulinoma and primary hyperparathyroidism: First report in literature and in the Costa Rican population of the c.1224_1225insGTCC pathogenic variant. Clin Case Rep 2023; 11:e7041. [PMID: 36911651 PMCID: PMC9994136 DOI: 10.1002/ccr3.7041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant disorder without a good genotype-phenotype correlation, characterized by tumor predisposition in the parathyroid gland, anterior pituitary, and pancreatic islet cells. Here, we describe a 37-year-old male with previous history of nephrolithiasis, with a 1-year history of recurrent hypoglycemic episodes. Physical examination revealed the presence of two lipomas. Family history revealed primary hyperparathyroidism (PHPT), hyperprolactinemia, and multiple non-functioning pancreatic neuroendocrine tumors. Initial laboratories revealed hypoglycemia and primary hyperparathyroidism. A fasting test was positive after 3 hours of initiation. An abdominal CT Scan demonstrated a 28 × 27 mm mass in the pancreatic tail and bilateral nephrolithiasis. A distal pancreatectomy was done. After surgery, the patient persisted with hypoglycemic episodes that were managed with diazoxide and frequent feedings. A parathyroid Tc-99 m MIBI scan with SPECT/CT imaging demonstrated two hot uptake lesions compatible with abnormally functioning parathyroid tissue. Surgical treatment was offered; however, the patient decided to postpone the procedure. Direct sequence analysis of MEN1 gene revealed heterozygosity for a pathogenic insertion c.1224_1225insGTCC (p.Cys409Valfs*41). DNA sequence analysis was done to six of his first-degree relatives. A sister with clinical diagnosis of MEN1 and a pre-symptomatic brother were positive for the same MEN1 variant. To our knowledge, this is the first report of a genetically confirmed case of MEN1 in our country and is the first report in literature of the c.1224_1225insGTCC variant related to a clinically affected family.
Collapse
|
12
|
Lu Y, Zhao J, Tian Y, Shao D, Zhang Z, Li S, Li J, Zhang H, Wang W, Jiao P, Ma J. Dichotomous Roles of Men1 in Macrophages and Fibroblasts in Bleomycin-Induced Pulmonary Fibrosis. Int J Mol Sci 2022; 23:ijms23105385. [PMID: 35628193 PMCID: PMC9140697 DOI: 10.3390/ijms23105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis therapy is limited by the unclear mechanism of its pathogenesis. C57BL/6 mice were used to construct the pulmonary fibrosis model in this study. The results showed that Men1, which encodes menin protein, was significantly downregulated in bleomycin (BLM)—induced pulmonary fibrosis. Mice were made to overexpress or had Men1 knockdown with adeno-associated virus (AAV) infection and then induced with pulmonary fibrosis. BLM—induced pulmonary fibrosis was attenuated by Men1 overexpression and exacerbated by Men1 knockdown. Further analysis revealed the distinct roles of Men1 in fibroblasts and macrophages. Men1 inhibited fibroblast activation and extracellular matrix (ECM) protein expression while promoting macrophages to be profibrotic (M2) phenotype and enhancing their migration. Accordingly, pyroptosis was potentiated by Men1 in mouse peritoneal macrophages (PMCs) and lung tissues upon BLM stimulation. Furthermore, the expression of profibrotic factor OPN was positively regulated by menin in Raw264.7 cells and lung tissues by binding to the OPN promoter region. Taken together, although Men1 showed antifibrotic properties in BLM—induced pulmonary fibrosis mice, conflictive roles of Men1 were displayed in fibroblasts and macrophages. The profibrotic role of Men1 in macrophages may occur via the regulation of macrophage pyroptosis and OPN expression. This study extends the current pathogenic understanding of pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ping Jiao
- Correspondence: (P.J.); (J.M.); Tel.: +86-431-8561-9289 (P.J.); +86-431-8561-9719 (J.M.)
| | - Jie Ma
- Correspondence: (P.J.); (J.M.); Tel.: +86-431-8561-9289 (P.J.); +86-431-8561-9719 (J.M.)
| |
Collapse
|
13
|
Biancaniello C, D'Argenio A, Giordano D, Dotolo S, Scafuri B, Marabotti A, d'Acierno A, Tagliaferri R, Facchiano A. Investigating the Effects of Amino Acid Variations in Human Menin. Molecules 2022; 27:1747. [PMID: 35268848 PMCID: PMC8911756 DOI: 10.3390/molecules27051747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Human menin is a nuclear protein that participates in many cellular processes, as transcriptional regulation, DNA damage repair, cell signaling, cell division, proliferation, and migration, by interacting with many other proteins. Mutations of the gene encoding menin cause multiple endocrine neoplasia type 1 (MEN1), a rare autosomal dominant disorder associated with tumors of the endocrine glands. In order to characterize the structural and functional effects at protein level of the hundreds of missense variations, we investigated by computational methods the wild-type menin and more than 200 variants, predicting the amino acid variations that change secondary structure, solvent accessibility, salt-bridge and H-bond interactions, protein thermostability, and altering the capability to bind known protein interactors. The structural analyses are freely accessible online by means of a web interface that integrates also a 3D visualization of the structure of the wild-type and variant proteins. The results of the study offer insight into the effects of the amino acid variations in view of a more complete understanding of their pathological role.
Collapse
Affiliation(s)
- Carmen Biancaniello
- Dipartimento di Scienze Aziendali, Management and Innovation Systems, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Antonia D'Argenio
- National Research Council, Institute of Food Science, 83100 Avellino, Italy
| | - Deborah Giordano
- National Research Council, Institute of Food Science, 83100 Avellino, Italy
| | - Serena Dotolo
- Dipartimento di Scienze Aziendali, Management and Innovation Systems, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Bernardina Scafuri
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Anna Marabotti
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Antonio d'Acierno
- National Research Council, Institute of Food Science, 83100 Avellino, Italy
| | - Roberto Tagliaferri
- Dipartimento di Scienze Aziendali, Management and Innovation Systems, Università degli Studi di Salerno, 84084 Fisciano, Italy
| | - Angelo Facchiano
- National Research Council, Institute of Food Science, 83100 Avellino, Italy
| |
Collapse
|
14
|
Wagener N, Buchholz M, Bertolino P, Zhang CX, Di Fazio P. Exploring the MEN1 dependent modulation of caspase 8 and caspase 3 in human pancreatic and murine embryo fibroblast cells. Apoptosis 2022; 27:70-79. [PMID: 34878630 PMCID: PMC8863690 DOI: 10.1007/s10495-021-01700-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
MEN1 mutation causes pancreatic neuroendocrine neoplasia and benign malignancies of the parathyroid, the adrenal cortex and pituitary gland. The transcriptional activity of its product menin promotes the expression of genes deputed to several cellular mechanism including cell death. Here, we focused on its implication in the activation of the initiator and executioner caspases after staurosporine mediated cell death in 2D and 3D human and murine cell models. The administration of staurosporine, a well-known inducer of apoptotic cell death, caused a significant reduction of BON1, QGP1 and HPSC2.2 cell viability. The transient knockdown of MEN1, performed by using a specific siRNA, caused a significant down-regulation of CDKN1A and TP53 transcripts. The treatment with 1 µM of staurosporine caused also a significant down-regulation of MEN1 and was able to restore the basal expression of TP53 only in QGP1 cells. Transient or permanent MEN1 inactivation caused a decrease of caspase 8 activity in BON1, HPSC2.2 cells and MEN1-/- MEFs treated with staurosporine. Caspase 3/7 activity was suppressed after administration of staurosporine in MEN1 knocked down HPSC2.2 and MEN1-/- MEFs as well. The cleaved caspase 8 and caspase 3 decreased in human cells after MEN1 knockdown and in MEN1-/- MEFs. The treatment with staurosporine caused a reduction of the size of MEN1+/+ MEFs spheroids. Instead, MEN1-/- MEFs spheroids did not show any significant reduction of their size. In conclusion, MEN1 controls the activity of the initiator caspase 8 and the executioner caspase 3 in human and murine cells. Restoring of a functional MEN1 and interfering with the apoptotic mechanism could represent a future strategy for the treatment of MEN1-related malignancies.
Collapse
Affiliation(s)
- Nele Wagener
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology and Metabolism, Philipps-University Marburg, 35043, Marburg, Germany
| | - Philippe Bertolino
- Cancer Research Center of Lyon CRCL, French Institute of Health and Medical Research, 69008, Lyon, France
| | - Chang X Zhang
- Cancer Research Center of Lyon CRCL, French Institute of Health and Medical Research, 69008, Lyon, France
| | - Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany.
| |
Collapse
|
15
|
Cherif C, Nguyen DT, Paris C, Le TK, Sefiane T, Carbuccia N, Finetti P, Chaffanet M, Kaoutari AE, Vernerey J, Fazli L, Gleave M, Manai M, Barthélémy P, Birnbaum D, Bertucci F, Taïeb D, Rocchi P. Menin inhibition suppresses castration-resistant prostate cancer and enhances chemosensitivity. Oncogene 2021; 41:125-137. [PMID: 34711954 PMCID: PMC8724010 DOI: 10.1038/s41388-021-02039-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Disease progression and therapeutic resistance of prostate cancer (PC) are linked to multiple molecular events that promote survival and plasticity. We previously showed that heat shock protein 27 (HSP27) acted as a driver of castration-resistant phenotype (CRPC) and developed an oligonucleotides antisense (ASO) against HSP27 with evidence of anti-cancer activity in men with CRPC. Here, we show that the tumor suppressor Menin (MEN1) is highly regulated by HSP27. Menin is overexpressed in high-grade PC and CRPC. High MEN1 mRNA expression is associated with decreased biochemical relapse-free and overall survival. Silencing Menin with ASO technology inhibits CRPC cell proliferation, tumor growth, and restores chemotherapeutic sensitivity. ChIP-seq analysis revealed differential DNA binding sites of Menin in various prostatic cells, suggesting a switch from tumor suppressor to oncogenic functions in CRPC. These data support the evaluation of ASO against Menin for CRPC. ![]()
Collapse
Affiliation(s)
- Chaïma Cherif
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.,Laboratory of Biochemistry and Molecular Biology, Science University of Tunis, 2092, El Manar, Tunis, Tunisia
| | - Dang Tan Nguyen
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Clément Paris
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Thi Khanh Le
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Thibaud Sefiane
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Nadine Carbuccia
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Max Chaffanet
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Abdessamad El Kaoutari
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Julien Vernerey
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - Ladan Fazli
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Mohamed Manai
- Laboratory of Biochemistry and Molecular Biology, Science University of Tunis, 2092, El Manar, Tunis, Tunisia
| | - Philippe Barthélémy
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, University of Bordeaux, F-33076 Bordeaux, France
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France
| | - David Taïeb
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.,Biophysics and Nuclear Medicine Department, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, F-13005 Marseille, France
| | - Palma Rocchi
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille, Inserm UMR 1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille University, 27 Bd. Leï Roure, F-13009 Marseille, France.
| |
Collapse
|
16
|
Therapeutic implications of menin inhibition in acute leukemias. Leukemia 2021; 35:2482-2495. [PMID: 34131281 DOI: 10.1038/s41375-021-01309-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/31/2023]
Abstract
Menin inhibitors are novel targeted agents currently in clinical development for the treatment of genetically defined subsets of acute leukemia. Menin has a tumor suppressor function in endocrine glands. Germline mutations in the gene encoding menin cause the multiple endocrine neoplasia type 1 (MEN1) syndrome, a hereditary condition associated with tumors of the endocrine glands. However, menin is also critical for leukemogenesis in subsets driven by rearrangement of the Lysine Methyltransferase 2A (KMT2A) gene, previously known as mixed-lineage leukemia (MLL), which encodes an epigenetic modifier. These seemingly opposing functions of menin can be explained by its various roles in gene regulation. Therefore, leukemias with rearrangement of KMT2A are predicted to respond to menin inhibition with early clinical data validating this proof-of-concept. These leukemias affect infants, children and adults, and lead to adverse outcomes with current standard therapies. Recent studies have identified novel targets in acute leukemia that are susceptible to menin inhibition, such as mutated Nucleophosmin 1 (NPM1), the most common genetic alteration in adult acute myeloid leukemia (AML). In addition to these alterations, other leukemia subsets with similar transcriptional dependency could be targeted through menin inhibition. This led to rationally designed clinical studies, investigating small-molecule oral menin inhibitors in relapsed acute leukemias with promising early results. Herein, we discuss the physiologic and malignant biology of menin, the mechanisms of leukemia in these susceptible subsets, and future therapeutic strategies using these inhibitors in acute leukemia.
Collapse
|
17
|
Brandi ML, Agarwal SK, Perrier ND, Lines KE, Valk GD, Thakker RV. Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocr Rev 2021; 42:133-170. [PMID: 33249439 PMCID: PMC7958143 DOI: 10.1210/endrev/bnaa031] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1), a rare tumor syndrome that is inherited in an autosomal dominant pattern, is continuing to raise great interest for endocrinology, gastroenterology, surgery, radiology, genetics, and molecular biology specialists. There have been 2 major clinical practice guidance papers published in the past 2 decades, with the most recent published 8 years ago. Since then, several new insights on the basic biology and clinical features of MEN1 have appeared in the literature, and those data are discussed in this review. The genetic and molecular interactions of the MEN1-encoded protein menin with transcription factors and chromatin-modifying proteins in cell signaling pathways mediated by transforming growth factor β/bone morphogenetic protein, a few nuclear receptors, Wnt/β-catenin, and Hedgehog, and preclinical studies in mouse models have facilitated the understanding of the pathogenesis of MEN1-associated tumors and potential pharmacological interventions. The advancements in genetic diagnosis have offered a chance to recognize MEN1-related conditions in germline MEN1 mutation-negative patients. There is rapidly accumulating knowledge about clinical presentation in children, adolescents, and pregnancy that is translatable into the management of these very fragile patients. The discoveries about the genetic and molecular signatures of sporadic neuroendocrine tumors support the development of clinical trials with novel targeted therapies, along with advancements in diagnostic tools and surgical approaches. Finally, quality of life studies in patients affected by MEN1 and related conditions represent an effort necessary to develop a pharmacoeconomic interpretation of the problem. Because advances are being made both broadly and in focused areas, this timely review presents and discusses those studies collectively.
Collapse
Affiliation(s)
| | | | - Nancy D Perrier
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gerlof D Valk
- University Medical Center Utrecht, CX Utrecht, the Netherlands
| | | |
Collapse
|
18
|
Nelakurti DD, Pappula AL, Rajasekaran S, Miles WO, Petreaca RC. Comprehensive Analysis of MEN1 Mutations and Their Role in Cancer. Cancers (Basel) 2020; 12:cancers12092616. [PMID: 32937789 PMCID: PMC7565326 DOI: 10.3390/cancers12092616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancers are characterized by accumulation of genetic mutations in key cell cycle regulators that alter or disable the function of these genes. Such mutations can be inherited or arise spontaneously during the life of the individual. The MEN1 gene prevents uncontrolled cell division and it is considered a tumor suppressor. Inherited MEN1 mutations are associated with certain parathyroid and pancreatic syndromes while spontaneous mutations have been detected in cancer cells. We investigated whether inherited mutations appear in cancer cells which would suggest that patients with parathyroid and pancreatic syndromes have a predisposition to develop cancer. We find a weak correlation between the spectrum of inherited mutations and those appearing spontaneously. Thus, inherited MEN1 mutations may not be a good predictor of tumorigenesis. Abstract MENIN is a scaffold protein encoded by the MEN1 gene that functions in multiple biological processes, including cell proliferation, migration, gene expression, and DNA damage repair. MEN1 is a tumor suppressor gene, and mutations that disrupts MEN1 function are common to many tumor types. Mutations within MEN1 may also be inherited (germline). Many of these inherited mutations are associated with a number of pathogenic syndromes of the parathyroid and pancreas, and some also predispose patients to hyperplasia. In this study, we cataloged the reported germline mutations from the ClinVar database and compared them with the somatic mutations detected in cancers from the Catalogue of Somatic Mutations in Cancer (COSMIC) database. We then used statistical software to determine the probability of mutations being pathogenic or driver. Our data show that many confirmed germline mutations do not appear in tumor samples. Thus, most mutations that disable MEN1 function in tumors are somatic in nature. Furthermore, of the germline mutations that do appear in tumors, only a fraction has the potential to be pathogenic or driver mutations.
Collapse
Affiliation(s)
- Devi D. Nelakurti
- Biomedical Science Undergraduate Program, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Amrit L. Pappula
- Computer Science and Engineering Undergraduate Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Swetha Rajasekaran
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
| | - Wayne O. Miles
- Department of Cancer Biology and Genetics, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
- Correspondence:
| |
Collapse
|
19
|
Zheng H, Zhou S, Tang W, Wang Q, Zhang X, Jin X, Yuan Y, Fu J. p.L105Vfs mutation in a family with thymic neuroendocrine tumor combined with MEN1: a case report. BMC Neurol 2020; 20:76. [PMID: 32126984 PMCID: PMC7055077 DOI: 10.1186/s12883-020-01659-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/26/2020] [Indexed: 11/24/2022] Open
Abstract
Background Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant disorder arising from mutations of the MEN1 tumor suppressor gene on chromosome 11q13; MEN1 is characterized by the development of neuroendocrine tumors, including those of the parathyroid, gastrointestinal endocrine tissue and anterior pituitary. Additionally, thymic neuroendocrine tumors in MEN1 are also rarely reported. Case presentation This case report observed a family that presented with MEN1 p.L105Vfs mutation, and two of the family members had been diagnosed with thymic neuroendocrine tumor combined with MEN1. To the best of our knowledge, this is the first time such a mutation in the MEN1 gene has been reported. The proband presented with thymic neuroendocrine tumor, parathyroid adenoma and rectum adenocarcinoma. The son of the proband presented with thymic neuroendocrine tumor, gastrinoma, hypophysoma and parathyroid adenoma. Genetic testing revealed the frameshift mutation p.L105Vfs, leading to the identification of one carrier in the pedigree (the patient’s younger sister). The proband then underwent parathyroidectomy at the age of 26 years (in 1980) for a parathyroid adenoma. Subsequently, the patient underwent thymectomy, radiotherapy and chemotherapy. The patient is now 64 years old, still alive and still undergoing Lanreotide therapy. Conclusion Thymic neuroendocrine MEN1 is rare, but it accounts for almost 20% of MEN1-associated mortality. Consequently, we should focus on regular clinical screening of the thymus in MEN1 patients.
Collapse
Affiliation(s)
- Hongjuan Zheng
- Department of Medical Oncology, Jinhua Hospital, Zhejiang University School of Medicine, 351 Mingyue Road, Jinhua, 321000, Zhejiang Province, China
| | - Shishi Zhou
- Department of Medical Oncology, Jinhua Hospital, Zhejiang University School of Medicine, 351 Mingyue Road, Jinhua, 321000, Zhejiang Province, China
| | - Wanfen Tang
- Department of Medical Oncology, Jinhua Hospital, Zhejiang University School of Medicine, 351 Mingyue Road, Jinhua, 321000, Zhejiang Province, China
| | - Qinghua Wang
- Department of Medical Oncology, Jinhua Hospital, Zhejiang University School of Medicine, 351 Mingyue Road, Jinhua, 321000, Zhejiang Province, China
| | - Xia Zhang
- Department of Medical Oncology, Jinhua Hospital, Zhejiang University School of Medicine, 351 Mingyue Road, Jinhua, 321000, Zhejiang Province, China
| | - Xiayun Jin
- Department of Medical Oncology, Jinhua Hospital, Zhejiang University School of Medicine, 351 Mingyue Road, Jinhua, 321000, Zhejiang Province, China
| | - Ying Yuan
- Department of Medical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jianfei Fu
- Department of Medical Oncology, Jinhua Hospital, Zhejiang University School of Medicine, 351 Mingyue Road, Jinhua, 321000, Zhejiang Province, China.
| |
Collapse
|
20
|
|
21
|
Abstract
OBJECTIVES Menin, a chromatin binding protein, interacts with various epigenetic regulators to regulate gene transcription, whereas forkhead box protein O1 (FOXO1) is a transcription factor that can be regulated by multiple signaling pathways. Both menin and FOXO1 are crucial regulators of β-cell function and metabolism; however, whether or how they interplay to regulate β cells is not clear. METHODS To examine whether menin affects expression of FOXO1, we ectopically expressed menin complementary DNA and small hairpin RNA targeting menin via a retroviral vector in INS-1 cells. Western blotting was used to analyze protein levels. RESULTS Our current work shows that menin increases the expression of FOXO1. Menin stabilizes FOXO1 protein level in INS-1 cells, as shown by increased half-life of FOXO1 by menin expression. Moreover, menin represses ubiquitination of FOXO1 protein and AKT phosphorylation, We found that menin stabilizes FOXO1 by repressing FOXO1 degradation mediated by S-phase kinase-associated protein 2 (Skp2), an E3 ubiquitin ligase, promoting caspase 3 activation and apoptosis. CONCLUSIONS Because FOXO1 upregulates the menin gene transcription, our findings unravel a crucial menin and FOXO1 interplay, with menin and FOXO1 upregulating their expression reciprocally, forming a positive feedback loop to sustain menin and FOXO1 expression.
Collapse
|
22
|
Kamilaris CDC, Stratakis CA. Multiple Endocrine Neoplasia Type 1 (MEN1): An Update and the Significance of Early Genetic and Clinical Diagnosis. Front Endocrinol (Lausanne) 2019; 10:339. [PMID: 31263451 PMCID: PMC6584804 DOI: 10.3389/fendo.2019.00339] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare hereditary tumor syndrome inherited in an autosomal dominant manner and characterized by a predisposition to a multitude of endocrine neoplasms primarily of parathyroid, enteropancreatic, and anterior pituitary origin, as well as nonendocrine neoplasms. Other endocrine tumors in MEN1 include foregut carcinoid tumors, adrenocortical tumors, and rarely pheochromocytoma. Nonendocrine manifestations include meningiomas and ependymomas, lipomas, angiofibromas, collagenomas, and leiomyomas. MEN1 is caused by inactivating mutations of the tumor suppressor gene MEN1 which encodes the protein menin. This syndrome can affect all age groups, with 17% of patients developing MEN1-associated tumors before 21 years of age. Despite advances in the diagnosis and treatment of MEN1-associated tumors, patients with MEN1 continue to have decreased life expectancy primarily due to malignant neuroendocrine tumors. The most recent clinical practice guidelines for MEN1, published in 2012, highlight the need for early genetic and clinical diagnosis of MEN1 and recommend an intensive surveillance approach for both patients with this syndrome and asymptomatic carriers starting at the age of 5 years with the goal of timely detection and management of MEN1-associated neoplasms and ultimately decreased disease-specific morbidity and mortality. Unfortunately, there is no clear genotype-phenotype correlation and individual mutation-dependent surveillance is not possible currently.
Collapse
|
23
|
Cinque L, Pugliese F, Salcuni AS, Scillitani A, Guarnieri V. Molecular pathogenesis of parathyroid tumours. Best Pract Res Clin Endocrinol Metab 2018; 32:891-908. [PMID: 30477753 DOI: 10.1016/j.beem.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parathyroid tumors represent an elusive endocrine neoplasia, which lead to primary hyperparathyroidism, pHPT, a common endocrine calcium disorder characterized by hypercalcemia and normal-high parathormone secretion. Parathyroid tumours are benign adenomas or multiple glands hyperplasia in the vast majority (>99% of cases), while malignant neoplasms are rare (less than 1%). Despite pHPT is a common disorder, our knowledge about the genetic predisposition and molecular pathophysiology is limited to the familial syndromic forms of parathyroid tumour, that, however, represent not more than the 10% of all the cases; instead, the pathophysiology of sporadic forms remains an open field, although data about epigenetic mechanisms or private genes have been supposed. Here we present an overview of more recent acquisitions about the genetic causes along with their molecular mechanisms of benign, but also, malignant parathyroid tumours either in sporadic and familial presentation.
Collapse
Affiliation(s)
- Luigia Cinque
- Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, Division of Medical Genetics, Italy.
| | - Flavia Pugliese
- Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, Unit of Endocrinology, San Giovanni Rotondo, FG, Italy.
| | | | - Alfredo Scillitani
- Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, Unit of Endocrinology, San Giovanni Rotondo, FG, Italy.
| | - Vito Guarnieri
- Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, Division of Medical Genetics, Italy.
| |
Collapse
|
24
|
Palermo A, Capoluongo E, Del Toro R, Manfrini S, Pozzilli P, Maggi D, Defeudis G, Pantano F, Coppola R, Di Matteo FM, Raffaelli M, Concolino P, Falchetti A. A novel germline mutation at exon 10 of MEN1 gene: a clinical survey and positive genotype-phenotype analysis of a MEN1 Italian family, including monozygotic twins. Hormones (Athens) 2018; 17:427-435. [PMID: 30083881 DOI: 10.1007/s42000-018-0044-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/23/2018] [Indexed: 10/28/2022]
Abstract
CONTEXT Clinical phenotype variability in MEN1 syndrome exists and evidence for an established genotype-phenotype is lacking. However, a higher aggressiveness of MEN1-associated gastro-entero-pancreatic (GEP) (neuro)endocrine tumours (NETs) tumours has been reported when MEN1 gene truncating mutations are detected. We found a novel germline truncating mutation of MEN1 gene at exon 10 in a subject with an aggressive clinical behavior of GEP-NETs. Successively, other two mutant-affected familial members have been identified. OBJECTIVE The aim of this observational study was to investigate genotype-phenotype correlation in these three members, with attention to GPE-NETs behavior over the years. DESIGN The genetic and clinical data obtained and the follow-up screening program (2012-2016) were according to the International Guidelines in a multidisciplinary academic reference center. The familial history collected strongly suggested MEN1 GEP-NETs in at least other four members from different generations. PATIENTS Three MEN1 patients (aged 30-69 years at MEN1 diagnosis) were clinically screened for MEN1 GEP-NETs, both functioning and nonfunctioning. METHODS Biochemical, imaging, and nuclear medicine tests and fine-needle agobiopsy were performed, depending on found/emerging clinical symptoms/biochemical abnormalities, and made when necessary. RESULTS Our clinical survey found strong genotype-phenotype correlation with aggressive MEN1 GEP-NETs (G1, G2-NETs, and multiple ZES/gastrinomas) over the years. The familial history strongly suggested ZES/gastrinoma in progenitors from previous generations. CONCLUSIONS This novel MEN1 truncating mutation correlates with an aggressive evolution and behavior of MEN1 GEP-NETs in studied affected subjects, confirming the need for MEN1 individuals to be evaluated by a skilled multidisciplinary team, as also stated by International Guidelines.
Collapse
Affiliation(s)
- Andrea Palermo
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Ettore Capoluongo
- Laboratory of Molecular Biology, Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Rossella Del Toro
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Silvia Manfrini
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Paolo Pozzilli
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Daria Maggi
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Giuseppe Defeudis
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio Medico di Roma, Via Alvaro del Portillo 21, Rome, Italy.
| | - Francesco Pantano
- Medical Oncology Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Roberto Coppola
- Department of General Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | | | - Marco Raffaelli
- Unit of Endocrine and Metabolic Surgery, Catholic University, Rome, Italy
| | - Paola Concolino
- Laboratory of Molecular Biology, Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Alberto Falchetti
- EndOsmet Unit, Villa Donatello Private Hospital, Florence and Villalba Hospital, Bologna, Italy
| |
Collapse
|
25
|
Getz AM, Wijdenes P, Riaz S, Syed NI. Uncovering the Cellular and Molecular Mechanisms of Synapse Formation and Functional Specificity Using Central Neurons of Lymnaea stagnalis. ACS Chem Neurosci 2018. [PMID: 29528213 DOI: 10.1021/acschemneuro.7b00448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All functions of the nervous system are contingent upon the precise organization of neuronal connections that are initially patterned during development, and then continually modified throughout life. Determining the mechanisms that specify the formation and functional modulation of synaptic circuitry are critical to advancing both our fundamental understanding of the nervous system as well as the various neurodevelopmental, neurological, neuropsychiatric, and neurodegenerative disorders that are met in clinical practice when these processes go awry. Defining the cellular and molecular mechanisms underlying nervous system development, function, and pathology has proven challenging, due mainly to the complexity of the vertebrate brain. Simple model system approaches with invertebrate preparations, on the other hand, have played pivotal roles in elucidating the fundamental mechanisms underlying the formation and plasticity of individual synapses, and the contributions of individual neurons and their synaptic connections that underlie a variety of behaviors, and learning and memory. In this Review, we discuss the experimental utility of the invertebrate mollusc Lymnaea stagnalis, with a particular emphasis on in vitro cell culture, semi-intact and in vivo preparations, which enable molecular and electrophysiological identification of the cellular and molecular mechanisms governing the formation, plasticity, and specificity of individual synapses at a single-neuron or single-synapse resolution.
Collapse
Affiliation(s)
- Angela M. Getz
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Pierre Wijdenes
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Saba Riaz
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Naweed I. Syed
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
26
|
Li JWY, Hua X, Reidy-Lagunes D, Untch BR. MENIN loss as a tissue-specific driver of tumorigenesis. Mol Cell Endocrinol 2018; 469:98-106. [PMID: 28965973 PMCID: PMC8064664 DOI: 10.1016/j.mce.2017.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
Abstract
The MEN1 gene encodes MENIN, a tumor suppressor that plays a role in multiple cellular processes. Germline and somatic mutations in MEN1 have been identified in hereditary and sporadic tumors of neuroendocrine origins suggesting context-specific functions. In this review, we focus on the development of mutational Men1 in vivo models, the known cellular activities of MENIN and efforts to identify vulnerabilities in tumors with MENIN loss.
Collapse
Affiliation(s)
- Janet W Y Li
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Diane Reidy-Lagunes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R Untch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Neuroendocrine tumors (NETs) were initially identified as a separate entity in the early 1900s as a unique malignancy that secretes bioactive amines. GI-NETs are the most frequent type and represent a unique subset of NETs, because at least 75% of these tumors represent gastrin stimulation of the enterochromaffin-like cell located in the body of the stomach. The purpose of this review is to understand the specific role of gastrin in the generation of Gastric NETs (G-NETs). RECENT FINDINGS We review here the origin of enterochromaffin cells gut and the role of hypergastrinemia in gastric enteroendocrine tumorigenesis. We describe generation of the first genetically engineered mouse model of gastrin-driven G-NETs that mimics the human phenotype. The common mechanism observed in both the hypergastrinemic mouse model and human carcinoids is translocation of the cyclin-dependent inhibitor p27kip to the cytoplasm and its subsequent degradation by the proteasome. Therapies that block degradation of p27kip, the CCKBR2 gastrin receptor, or gastrin peptide are likely to facilitate treatment.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, BSRB, 2051, 109 Zina Pitcher PL, Ann Arbor, MI, 48109-2200, USA
| | - Anthony J Kang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, BSRB, 2051, 109 Zina Pitcher PL, Ann Arbor, MI, 48109-2200, USA
| | - Juanita L Merchant
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, BSRB, 2051, 109 Zina Pitcher PL, Ann Arbor, MI, 48109-2200, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 2017; 24:T119-T134. [PMID: 28899949 PMCID: PMC5679100 DOI: 10.1530/erc-17-0199] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
The identification of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Feng Z, Ma J, Hua X. Epigenetic regulation by the menin pathway. Endocr Relat Cancer 2017; 24:T147-T159. [PMID: 28811300 PMCID: PMC5612327 DOI: 10.1530/erc-17-0298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
There is a trend of increasing prevalence of neuroendocrine tumors (NETs), and the inherited multiple endocrine neoplasia type 1 (MEN1) syndrome serves as a genetic model to investigate how NETs develop and the underlying mechanisms. Menin, encoded by the MEN1 gene, at least partly acts as a scaffold protein by interacting with multiple partners to regulate cellular homeostasis of various endocrine organs. Menin has multiple functions including regulation of several important signaling pathways by controlling gene transcription. Here, we focus on reviewing the recent progress in elucidating the key biochemical role of menin in epigenetic regulation of gene transcription and cell signaling, as well as posttranslational regulation of menin itself. In particular, we will review the progress in studying structural and functional interactions of menin with various histone modifiers and transcription factors such as MLL, PRMT5, SUV39H1 and other transcription factors including c-Myb and JunD. Moreover, the role of menin in regulating cell signaling pathways such as TGF-beta, Wnt and Hedgehog, as well as miRNA biogenesis and processing will be described. Further, the regulation of the MEN1 gene transcription, posttranslational modifications and stability of menin protein will be reviewed. These various modes of regulation by menin as well as regulation of menin by various biological factors broaden the view regarding how menin controls various biological processes in neuroendocrine organ homeostasis.
Collapse
Affiliation(s)
- Zijie Feng
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Ma
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xianxin Hua
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Getz AM, Xu F, Visser F, Persson R, Syed NI. Tumor suppressor menin is required for subunit-specific nAChR α5 transcription and nAChR-dependent presynaptic facilitation in cultured mouse hippocampal neurons. Sci Rep 2017; 7:1768. [PMID: 28496137 PMCID: PMC5432004 DOI: 10.1038/s41598-017-01825-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/04/2017] [Indexed: 01/14/2023] Open
Abstract
In the central nervous system (CNS), cholinergic transmission induces synaptic plasticity that is required for learning and memory. However, our understanding of the development and maintenance of cholinergic circuits is limited, as the factors regulating the expression and clustering of neuronal nicotinic acetylcholine receptors (nAChRs) remain poorly defined. Recent studies from our group have implicated calpain-dependent proteolytic fragments of menin, the product of the MEN1 tumor suppressor gene, in coordinating the transcription and synaptic clustering of nAChRs in invertebrate central neurons. Here, we sought to determine whether an analogous cholinergic mechanism underlies menin's synaptogenic function in the vertebrate CNS. Our data from mouse primary hippocampal cultures demonstrate that menin and its calpain-dependent C-terminal fragment (C-menin) regulate the subunit-specific transcription and synaptic clustering of neuronal nAChRs, respectively. MEN1 knockdown decreased nAChR α5 subunit expression, the clustering of α7 subunit-containing nAChRs at glutamatergic presynaptic terminals, and nicotine-induced presynaptic facilitation. Moreover, the number and function of glutamatergic synapses was unaffected by MEN1 knockdown, indicating that the synaptogenic actions of menin are specific to cholinergic regulation. Taken together, our results suggest that the influence of menin on synapse formation and synaptic plasticity occur via modulation of nAChR channel subunit composition and functional clustering.
Collapse
Affiliation(s)
- Angela M Getz
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Fenglian Xu
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Department of Biology, Saint Louis University, Saint Louis, Missouri, 63103, USA
| | - Frank Visser
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | | | - Naweed I Syed
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
31
|
Abstract
Despite its identification in 1997, the functions of the MEN1 gene-the main gene underlying multiple endocrine neoplasia type 1 syndrome-are not yet fully understood. In addition, unlike the RET-MEN2 causative gene-no hot-spot mutational areas or genotype-phenotype correlations have been identified. More than 1,300 MEN1 gene mutations have been reported and are mostly "private" (family specific). Even when mutations are shared at an intra- or inter-familial level, the spectrum of clinical presentation is highly variable, even in identical twins. Despite these inherent limitations for genetic counseling, identifying MEN1 mutations in individual carriers offers them the opportunity to have lifelong clinical surveillance schemes aimed at revealing MEN1-associated tumors and lesions, dictates the timing and scope of surgical procedures, and facilitates specific mutation analysis of relatives to define presymptomatic carriers.
Collapse
Affiliation(s)
- Alberto Falchetti
- EndOsMet Unit, Villa Donatello, Piazzale Donatello 2, Florence 50100, Italy; Hercolani Clinical Center, Via D'Azeglio 46, Bologna 40136, Italy
| |
Collapse
|
32
|
Hackeng WM, Brosens LAA, Poruk KE, Noë M, Hosoda W, Poling JS, Rizzo A, Campbell-Thompson M, Atkinson MA, Konukiewitz B, Klöppel G, Heaphy CM, Meeker AK, Wood LD. Aberrant Menin expression is an early event in pancreatic neuroendocrine tumorigenesis. Hum Pathol 2016; 56:93-100. [PMID: 27342911 DOI: 10.1016/j.humpath.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/18/2016] [Accepted: 06/11/2016] [Indexed: 12/17/2022]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are the second most common pancreatic malignancy and cause significant morbidity and mortality. Neuroendocrine microadenomas have been proposed as a potential precursor lesion for sporadic PanNETs. In this study, we applied telomere-specific fluorescent in situ hybridization (FISH) to a series of well-characterized sporadic neuroendocrine microadenomas and investigated the prevalence of alterations in known PanNET driver genes (MEN1 and ATRX/DAXX) in these same tumors using immunohistochemistry for the encoded proteins. We identified aberrant Menin expression in 14 of 19 (74%) microadenomas, suggesting that alterations in Menin, at least a subset of which was likely due to somatic mutation, are early events in pancreatic neuroendocrine tumorigenesis. In contrast, none of the microadenomas met criteria for the alternative lengthening of telomeres phenotype (ALT) based on telomere FISH, a phenotype that is strongly correlated to ATRX or DAXX mutations. Two of 13 microadenomas (15%) were noted to have very rare abnormal bright telomere foci on FISH, suggestive of early ALT, but these lesions did not show loss of ATRX or DAXX protein expression by immunohistochemistry. Overall, these data suggest that loss of Menin is an early event in pancreatic neuroendocrine tumorigenesis and that ATRX/DAXX loss and ALT are relatively late events.
Collapse
Affiliation(s)
- Wenzel M Hackeng
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, University Medical Center Utrecht, Utrecht 3584, CX, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, University Medical Center Utrecht, Utrecht 3584, CX, the Netherlands
| | - Katherine E Poruk
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michaël Noë
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, University Medical Center Utrecht, Utrecht 3584, CX, the Netherlands
| | - Waki Hosoda
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin S Poling
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Anthony Rizzo
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Martha Campbell-Thompson
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610-0275, USA
| | - Mark A Atkinson
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610-0275, USA; Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610-0275, USA
| | - Björn Konukiewitz
- Department of Pathology, Technical University Munich, 81675 Munich, Germany
| | - Günter Klöppel
- Department of Pathology, Technical University Munich, 81675 Munich, Germany
| | - Christopher M Heaphy
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alan K Meeker
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
33
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. MEN1, MEN4, and Carney Complex: Pathology and Molecular Genetics. Neuroendocrinology 2016; 103:18-31. [PMID: 25592387 PMCID: PMC4497946 DOI: 10.1159/000371819] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/31/2014] [Indexed: 12/17/2022]
Abstract
Pituitary adenomas are a common feature of a subset of endocrine neoplasia syndromes, which have otherwise highly variable disease manifestations. We provide here a review of the clinical features and human molecular genetics of multiple endocrine neoplasia (MEN) type 1 and 4 (MEN1 and MEN4, respectively) and Carney complex (CNC). MEN1, MEN4, and CNC are hereditary autosomal dominant syndromes that can present with pituitary adenomas. MEN1 is caused by inactivating mutations in the MEN1 gene, whose product menin is involved in multiple intracellular pathways contributing to transcriptional control and cell proliferation. MEN1 clinical features include primary hyperparathyroidism, pancreatic neuroendocrine tumours and prolactinomas as well as other pituitary adenomas. A subset of patients with pituitary adenomas and other MEN1 features have mutations in the CDKN1B gene; their disease has been called MEN4. Inactivating mutations in the type 1α regulatory subunit of protein kinase A (PKA; the PRKAR1A gene), that lead to dysregulation and activation of the PKA pathway, are the main genetic cause of CNC, which is clinically characterised by primary pigmented nodular adrenocortical disease, spotty skin pigmentation (lentigines), cardiac and other myxomas and acromegaly due to somatotropinomas or somatotrope hyperplasia.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md., USA
| | | | | |
Collapse
|
34
|
Birla S, P Jyotsna V, Singla R, Tripathi M, Sharma A. Impact of a novel 14 bp MEN1 deletion in a patient with hyperparathyroidism and gastrinoma. Endocrinol Diabetes Metab Case Rep 2015; 2015:150011. [PMID: 26191410 PMCID: PMC4482156 DOI: 10.1530/edm-15-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 04/29/2015] [Indexed: 11/11/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN-1) is a rare autosomal-dominant disease characterized by tumors in endocrine and/or non endocrine organs due to mutations in MEN1 encoding a nuclear scaffold protein‘menin’ involved in regulation of different cellular activities. We report a novel 14 bp MEN1 deletion mutation in a 35-year-old female with history of recurrent epigastric pain, vomiting, loose stools and weight loss. On evaluation she was diagnosed to have multifocal gastro-duodenal gastrinoma with paraduodenal lymph nodes and solitary liver metastasis. She was also found to have primary hyperparathyroidism with bilateral inferior parathyroid adenoma. Pancreatico-duodenectomy with truncalvagotomy was performed. Four months later, radiofrequency ablation (RFA) of segment 4 of the liver was done followed by three and a half parathyroidectomy. MEN1 screening was carried out for the patient and her family members. MEN-1 sequencing in the patient revealed a heterozygous 14 bp exon 8 deletion. Evaluation for pathogenicity and protein structure prediction showed that the mutation led to a frameshift thereby causing premature termination resulting in a truncated protein. To conclude, a novel pathogenic MEN1 deletion mutation affecting its function was identified in a patient with hyperparathyroidism and gastrinoma. The report highlights the clinical consequences of the novel mutation and its impact on the structure and function of the protein. It also provides evidence for co-existence of pancreatic and duodenal gastrinomas in MEN1 syndrome. MEN1 testing provides important clues regarding etiology and therefore should be essentially undertaken in asymptomatic first degree relatives who could be potential carriers of the disease.
Collapse
Affiliation(s)
- Shweta Birla
- 1 Laboratory of Cyto-Molecular Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Viveka P Jyotsna
- 2 Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rajiv Singla
- 2 Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Madhavi Tripathi
- 3 Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Arundhati Sharma
- 1 Laboratory of Cyto-Molecular Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
35
|
Murakami T, Usui T, Nakajima A, Mochida Y, Saito S, Nambu T, Kato T, Matsuda Y, Yonemitsu S, Muro S, Oki S. A Novel Missense Mutation of the MEN1 Gene in a Patient with Multiple Endocrine Neoplasia Type 1 with Glucagonoma and Obesity. Intern Med 2015; 54:2475-81. [PMID: 26424307 DOI: 10.2169/internalmedicine.54.4886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 35-year-old obese diabetic man presented with recurrent primary hyperparathyroidism during a three-year outpatient follow-up. He was clinically diagnosed with multiple endocrine neoplasia type 1 (MEN1) due to the presence of a pituitary adenoma and multiple glucagonomas. The glucagonomas may have affected his glycemic control. However, he did not demonstrate weight loss, suggesting that the patient's obesity could have obscured the early diagnosis of a glucagonoma. Genetic testing revealed a novel missense mutation at codon 561 in exon 10, resulting in an amino acid substitution from methionine to arginine (M561R) in the MEN1 gene. This mutation appeared to be responsible for the MEN1 pathogenicity.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes and Endocrinology, Osaka Red Cross Hospital, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lin W, Watanabe H, Peng S, Francis JM, Kaplan N, Pedamallu CS, Ramachandran A, Agoston A, Bass AJ, Meyerson M. Dynamic epigenetic regulation by menin during pancreatic islet tumor formation. Mol Cancer Res 2014; 13:689-98. [PMID: 25537453 DOI: 10.1158/1541-7786.mcr-14-0457] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/26/2014] [Indexed: 11/16/2022]
Abstract
UNLABELLED The tumor suppressor gene MEN1 is frequently mutated in sporadic pancreatic neuroendocrine tumors (PanNET) and is responsible for the familial multiple endocrine neoplasia type 1 (MEN-1) cancer syndrome. Menin, the protein product of MEN1, associates with the histone methyltransferases (HMT) MLL1 (KMT2A) and MLL4 (KMT2B) to form menin-HMT complexes in both human and mouse model systems. To elucidate the role of methylation of histone H3 at lysine 4 (H3K4) mediated by menin-HMT complexes during PanNET formation, genome-wide histone H3 lysine 4 trimethylation (H3K4me3) signals were mapped in pancreatic islets using unbiased chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq). Integrative analysis of gene expression profiles and histone H3K4me3 levels identified a number of transcripts and target genes dependent on menin. In the absence of Men1, histone H3K27me3 levels are enriched, with a concomitant decrease in H3K4me3 within the promoters of these target genes. In particular, expression of the insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) gene is subject to dynamic epigenetic regulation by Men1-dependent histone modification in a time-dependent manner. Decreased expression of IGF2BP2 in Men1-deficient hyperplastic pancreatic islets is partially reversed by ablation of RBP2 (KDM5A), a histone H3K4-specific demethylase of the jumonji, AT-rich interactive domain 1 (JARID1) family. Taken together, these data demonstrate that loss of Men1 in pancreatic islet cells alters the epigenetic landscape of its target genes. IMPLICATIONS Epigenetic profiling and gene expression analysis in Men1-deficient pancreatic islet cells reveals vital insight into the molecular events that occur during the progression of pancreatic islet tumorigenesis.
Collapse
Affiliation(s)
- Wenchu Lin
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts. High Magnetic Field Laboratory, Chinese Academy of Sciences, 350 Shushanhu RD, Hefei, Anhui Province, 230031, P. R. China
| | - Hideo Watanabe
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Shouyong Peng
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Joshua M Francis
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Nathan Kaplan
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Chandra Sekhar Pedamallu
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Aruna Ramachandran
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Agoston Agoston
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Adam J Bass
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Cancer program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts.
| |
Collapse
|
37
|
Flynn N, Getz A, Visser F, Janes TA, Syed NI. Menin: a tumor suppressor that mediates postsynaptic receptor expression and synaptogenesis between central neurons of Lymnaea stagnalis. PLoS One 2014; 9:e111103. [PMID: 25347295 PMCID: PMC4210270 DOI: 10.1371/journal.pone.0111103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/27/2014] [Indexed: 11/19/2022] Open
Abstract
Neurotrophic factors (NTFs) support neuronal survival, differentiation, and even synaptic plasticity both during development and throughout the life of an organism. However, their precise roles in central synapse formation remain unknown. Previously, we demonstrated that excitatory synapse formation in Lymnaea stagnalis requires a source of extrinsic NTFs and receptor tyrosine kinase (RTK) activation. Here we show that NTFs such as Lymnaea epidermal growth factor (L-EGF) act through RTKs to trigger a specific subset of intracellular signalling events in the postsynaptic neuron, which lead to the activation of the tumor suppressor menin, encoded by Lymnaea MEN1 (L-MEN1) and the expression of excitatory nicotinic acetylcholine receptors (nAChRs). We provide direct evidence that the activation of the MAPK/ERK cascade is required for the expression of nAChRs, and subsequent synapse formation between pairs of neurons in vitro. Furthermore, we show that L-menin activation is sufficient for the expression of postsynaptic excitatory nAChRs and subsequent synapse formation in media devoid of NTFs. By extending our findings in situ, we reveal the necessity of EGFRs in mediating synapse formation between a single transplanted neuron and its intact presynaptic partner. Moreover, deficits in excitatory synapse formation following EGFR knock-down can be rescued by injecting synthetic L-MEN1 mRNA in the intact central nervous system. Taken together, this study provides the first direct evidence that NTFs functioning via RTKs activate the MEN1 gene, which appears sufficient to regulate synapse formation between central neurons. Our study also offers a novel developmental role for menin beyond tumour suppression in adult humans.
Collapse
Affiliation(s)
- Nichole Flynn
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Angela Getz
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Frank Visser
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Tara A. Janes
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Naweed I. Syed
- Department of Cell Biology and Anatomy, and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
38
|
The role of tumor suppressor menin in IL-6 regulation in mouse islet tumor cells. Biochem Biophys Res Commun 2014; 451:308-13. [PMID: 25088994 DOI: 10.1016/j.bbrc.2014.07.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 11/23/2022]
Abstract
Menin is a gene product of multiple endocrine neoplasia type1 (Men1), an inherited familial cancer syndrome characterized by tumors of endocrine tissues. To gain insight about how menin performs an endocrine cell-specific tumor suppressor function, we investigated the possibility that menin was integrated in a cancer-associated inflammatory pathway in a cell type-specific manner. Here, we showed that the expression of IL-6, a proinflammatory cytokine, was specifically elevated in mouse islet tumor cells upon depletion of menin and Men(-/-) MEF cells, but not in hepatocellular carcinoma cells. Histone H3 lysine (K) 9 methylation, but not H3 K27 or K4 methylation, was involved in menin-dependent IL-6 regulation. Menin occupied the IL-6 promoter and recruited SUV39H1 to induce H3 K9 methylation. Our findings provide a molecular insight that menin-dependent induction of H3 K9 methylation in the cancer-associated interleukin gene might be linked to preventing endocrine-specific tumorigenesis.
Collapse
|
39
|
Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 2014; 386:2-15. [PMID: 23933118 PMCID: PMC4082531 DOI: 10.1016/j.mce.2013.08.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 01/03/2023]
Abstract
Multiple endocrine neoplasia (MEN) is characterized by the occurrence of tumors involving two or more endocrine glands within a single patient. Four major forms of MEN, which are autosomal dominant disorders, are recognized and referred to as: MEN type 1 (MEN1), due to menin mutations; MEN2 (previously MEN2A) due to mutations of a tyrosine kinase receptor encoded by the rearranged during transfection (RET) protoncogene; MEN3 (previously MEN2B) due to RET mutations; and MEN4 due to cyclin-dependent kinase inhibitor (CDNK1B) mutations. Each MEN type is associated with the occurrence of specific tumors. Thus, MEN1 is characterized by the occurrence of parathyroid, pancreatic islet and anterior pituitary tumors; MEN2 is characterized by the occurrence of medullary thyroid carcinoma (MTC) in association with phaeochromocytoma and parathyroid tumors; MEN3 is characterized by the occurrence of MTC and phaeochromocytoma in association with a marfanoid habitus, mucosal neuromas, medullated corneal fibers and intestinal autonomic ganglion dysfunction, leading to megacolon; and MEN4, which is also referred to as MENX, is characterized by the occurrence of parathyroid and anterior pituitary tumors in possible association with tumors of the adrenals, kidneys, and reproductive organs. This review will focus on the clinical and molecular details of the MEN1 and MEN4 syndromes. The gene causing MEN1 is located on chromosome 11q13, and encodes a 610 amino-acid protein, menin, which has functions in cell division, genome stability, and transcription regulation. Menin, which acts as scaffold protein, may increase or decrease gene expression by epigenetic regulation of gene expression via histone methylation. Thus, menin by forming a subunit of the mixed lineage leukemia (MLL) complexes that trimethylate histone H3 at lysine 4 (H3K4), facilitates activation of transcriptional activity in target genes such as cyclin-dependent kinase (CDK) inhibitors; and by interacting with the suppressor of variegation 3-9 homolog family protein (SUV39H1) to mediate H3K methylation, thereby silencing transcriptional activity of target genes. MEN1-associated tumors harbor germline and somatic mutations, consistent with Knudson's two-hit hypothesis. Genetic diagnosis to identify individuals with germline MEN1 mutations has facilitated appropriate targeting of clinical, biochemical and radiological screening for this high risk group of patients for whom earlier implementation of treatments can then be considered. MEN4 is caused by heterozygous mutations of CDNK1B which encodes the 196 amino-acid CDK1 p27Kip1, which is activated by H3K4 methylation.
Collapse
Affiliation(s)
- Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom.
| |
Collapse
|
40
|
The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun 2014; 5:3555. [PMID: 24694524 PMCID: PMC3988815 DOI: 10.1038/ncomms4555] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/05/2014] [Indexed: 02/08/2023] Open
Abstract
Although CD4 T-cell senescence plays an important role in immunosenescence, the mechanism behind this process remains unclear. Here we show that T cell-specific Menin deficiency results in the premature senescence of CD4 T cells, which is accompanied by the senescence-associated secretory phenotype after antigenic stimulation and dysregulated cytokine production. Menin is required for the expansion and survival of antigen-stimulated CD4 T cells in vivo and acts by targeting Bach2, which is known to regulate immune homeostasis and cytokine production. Menin binds to the Bach2 locus and controls its expression through maintenance of histone acetylation. Menin binding at the Bach2 locus and the Bach2 expression are decreased in the senescent CD4 T cells. These findings reveal a critical role of the Menin-Bach2 pathway in regulating CD4 T-cell senescence and cytokine homeostasis, thus indicating the involvement of this pathway in the inhibition of immunosenescence. Immunosenescence particularly affects the T-cell compartment and is involved in the age-related decline of immune functions. Here, the authors show that the absence of the tumour suppressor Menin results in premature senescence of CD4 T cells.
Collapse
|
41
|
Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem Sci 2013; 38:394-402. [PMID: 23850066 DOI: 10.1016/j.tibs.2013.05.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/22/2013] [Accepted: 05/31/2013] [Indexed: 12/22/2022]
Abstract
The protein menin is encoded by the MEN1 gene, which is mutated in patients with multiple endocrine neoplasia type 1 (MEN1) syndrome. Although menin acts as a tumor suppressor in endocrine organs, it is required for leukemic transformation in mouse models. Menin possesses these dichotomous functions probably because it can both positively and negatively regulate gene expression, as well as interact with a multitude of proteins with diverse functions. Here, we review the recent progress in understanding the molecular mechanisms by which menin functions. The crystal structures of menin with different binding partners reveal that menin is a key scaffold protein that functionally crosstalks with various partners to regulate gene transcription and interplay with multiple signaling pathways.
Collapse
|
42
|
Abstract
Menin, encoded by the multiple endocrine neoplasia type 1 (MEN1) gene, is a tumor suppressor that leads to multiple endocrine tumors upon loss of its function. Menin functions as a transcriptional activator by tethering MLL complex to mediate histone H3 K4 methylation. It also functions as a repressor. However, the molecular mechanism of how menin contributes to the opposite outcome in gene expression is largely unknown. Here, we investigated the role of menin in the epigenetic regulation of transcription mediated by histone covalent modification. We show that the global methylation level of histone H3 K9, as well as H3 K4, was decreased in Men1(-/-) MEF cells. Consistently, menin was able to interact with the suppressor of variegation 3-9 homolog family protein, SUV39H1, to mediate H3 K9 methylation. This interaction decreased when patient-derived MEN1 mutation was introduced into the SUV39H1-interaction domain. We show that menin mediated different chromatin changes depending on target genes. Chromatin immunoprecipitation studies showed that menin directly associated with the GBX2 promoter and menin-dependent recruitment of SUV39H1 was essential for chromatin remodeling and transcriptional regulation. These results provide a molecular basis of how menin functions as a transcriptional repressor and suggest that menin-dependent integration of H3 K9 methylation might play an important role in preventing tumors.
Collapse
|
43
|
Walls GV, Reed AAC, Jeyabalan J, Javid M, Hill NR, Harding B, Thakker RV. Proliferation rates of multiple endocrine neoplasia type 1 (MEN1)-associated tumors. Endocrinology 2012; 153:5167-79. [PMID: 23024266 PMCID: PMC4447856 DOI: 10.1210/en.2012-1675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by the combined occurrence of parathyroid and adrenocortical tumors, and neuroendocrine tumors (NETs) of the pancreas and pituitary. The pancreatic NETs are predominantly gastrinomas and insulinomas, and the pituitary NETs are mostly prolactinomas and somatotrophinomas. We postulated that the different types of pancreatic and pituitary NETs may be partly due to differences in their proliferation rates, and we therefore assessed these in MEN1-associated tumors and gonadal tumors that developed in mice deleted for an Men1 allele (Men1(+/-)). To label proliferating cells in vivo, Men1(+/-) and wild-type (Men1(+/+)) mice were given 5-bromo-2-deoxyuridine (BrdU) in drinking water from 1-12 wk, and tissue sections were immunostained using anti-BrdU and hormone-specific antibodies. Proliferation in the tumors of Men1(+/-) mice was significantly (P < 0.001) increased when compared with the corresponding normal Men1(+/+) tissues. Pancreatic, pituitary and adrenocortical proliferation fitted first- and second-order regression lines in Men1(+/+) tissues and Men1(+/-) tumors, respectively, R(2) = 0.999. Apoptosis was similar in Men1(+/-) pancreatic, pituitary, and parathyroid tumors when compared with corresponding normal tissues, decreased in Men1(+/-) adrenocortical tumors, but increased in Men1(+/-) gonadal tumors. Mathematical modeling of NET growth rates (proliferation minus apoptosis rates) predicted that in Men1(+/-) mice, only pancreatic β-cells, pituitary lactotrophs and somatotrophs could develop into tumors within a murine lifespan. Thus, our studies demonstrate that Men1(+/-) tumors have low proliferation rates (<2%), second-order kinetics, and the higher occurrence of insulinomas, prolactinomas, and somatotrophinomas in MEN1 is consistent with a mathematical model for NET proliferation.
Collapse
Affiliation(s)
- Gerard V Walls
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
44
|
Belar O, De La Hoz C, Pérez-Nanclares G, Castaño L, Gaztambide S. Novel mutations in MEN1, CDKN1B and AIP genes in patients with multiple endocrine neoplasia type 1 syndrome in Spain. Clin Endocrinol (Oxf) 2012; 76:719-24. [PMID: 22026581 DOI: 10.1111/j.1365-2265.2011.04269.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CONTEXT Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant disorder mostly owing to a genetic defect in MEN1 gene. Not all patients with MEN1 phenotype present a defect in this gene. Thus, other genes like CDKN and AIP have been showed to be involved in MEN1-like patients. OBJECTIVE The aim of this study was to perform a genetic screening in our cohort or patients with suspected MEN1 syndrome by direct sequencing analysis of MEN1, CDKN1B and AIP, and dosage analysis of MEN1 and AIP. RESULTS A total of 79 different sporadic and familial cases with the MEN1 phenotype have been studied, in which 34 of them (48%) present a mutation in MEN1 gene. In two patients without a detectable mutation in MEN1 gene, we have identified a novel missense mutation (c.163G>A/p.Ala55Thr) in CDKN1B gene and a novel frameshift mutation (c.825_845delCGCGGCCGTGTGGAATGCCCA/p. His275GlnfsX49) in AIP gene, respectively. CONCLUSIONS Our data support that MEN1 gene is the main target for genetic analysis in clinical MEN1 syndrome. We confirm that in those patients without MEN1 gene mutation, other genes such as CDKN1B/p27Kip, or AIP in those including pituitary tumours should also be tested.
Collapse
Affiliation(s)
- Oihana Belar
- Endocrinology Research group, Cruces' Hospital, CIBERER, Barakaldo, Bizkaia, Spain
| | | | | | | | | |
Collapse
|
45
|
Wen Z, Liao Q, Hu Y, Zhao Y. Mutation analysis in two Chinese families with multiple endocrine neoplasia type 1. ACTA ACUST UNITED AC 2012; 56:184-9. [DOI: 10.1590/s0004-27302012000300006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/27/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: This study aimed at identifing mutations in two Chinese genealogies with MEN1. SUBJECTS AND METHODS: Three members of two Chinese families with MEN1 were enrolled in this study, and all of the coding regions and adjacent sequences of the MEN1 gene were amplified and sequenced. RESULTS: A recurrent mutation of heterozygous change T>A at IVS 4+1 was found in family I, and a novel insGAGGTGG mutation (c.703-709dup7bp) resulted in a frameshift (p.A237Gfsx13) in family II. CONCLUSION: We are able to add a new mutation of MEN1 gene in Chinese patients with MEN1 that will be useful for the diagnosis and treatment of the disease.
Collapse
|
46
|
Ren F, Xu HW, Hu Y, Yan SH, Wang F, Su BW, Zhao Q. Expression and subcellular localization of menin in human cancer cells. Exp Ther Med 2012; 3:1087-1091. [PMID: 22970022 DOI: 10.3892/etm.2012.530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/21/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to elucidate the expression and localization of menin, a protein encoded by the multiple endocrine neoplasia type I (MEN1) gene, in 13 human cancer cell lines. Reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the expression of the menin gene. The localization of the menin protein was detected by immunofluorescence microscopy. Western blotting was used to determine the quantity of menin in the nucleus, cytosol and membrane of the cells. RT-PCR revealed that menin was expressed in all the cell lines examined in this study. Immunofluorescence microscopy revealed that menin was located primarily in the nucleus. In the GES-1 (transformed human gastric epithelium), MCF-7 (breast cancer), SGH44 (brain glioma) and HeLa (cervical cancer) cell lines, menin was also found to be localized to the membrane, cytosol and nucleus. Moreover, in SGH44 cells more menin was located in the cytosol than the nucleus. Similar findings were obtained by western blotting. In the GES-1 and MKN-28 cells undergoing octreotide treatment, cytoplasmic menin was significantly increased compared with the control groups. Therefore, we suggest that menin is expressed in a number of human cancer cell lines and that the cytosolic distribution increases when the cells undergo octreotide treatment, indicating a new role for menin.
Collapse
Affiliation(s)
- Feng Ren
- Departments of Clinical Laboratory, and
| | | | | | | | | | | | | |
Collapse
|
47
|
Alvelos MI, Mendes M, Soares P. Molecular alterations in sporadic primary hyperparathyroidism. GENETICS RESEARCH INTERNATIONAL 2011; 2011:275802. [PMID: 22567348 PMCID: PMC3335633 DOI: 10.4061/2011/275802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/03/2011] [Accepted: 07/11/2011] [Indexed: 12/25/2022]
Abstract
Primary hyperparathyroidism (PHPT) is a frequent endocrine disorder
characterized by an excessive autonomous production and release of
parathyroid hormone (PTH) by the parathyroid glands. This
endocrinopathy may result from the development of a benign lesion
(adenoma or hyperplasia) or from a carcinoma. Most of the PHPT cases
occur sporadically; however, approximately 10% of the patients
present a familial form of the disease. The molecular mechanisms
underlying the pathogenesis of sporadic PHPT are incompletely
understood, even though somatic alterations in MEN1
gene and CCND1 protein overexpression are frequently observed. The
MEN1 gene is mutated in about 30% of the
parathyroid tumours and the protooncogene CCND1 is
implicated in parathyroid neoplasia by rearrangements, leading to an
overexpression of CCND1 protein in parathyroid cells. The aim of this
work is to briefly update the molecular alterations underlying
sporadic primary hyperparathyroidism.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
| | | | | |
Collapse
|
48
|
Wang Y, Ozawa A, Zaman S, Prasad NB, Chandrasekharappa SC, Agarwal SK, Marx SJ. The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization. Cancer Res 2010; 71:371-82. [PMID: 21127195 DOI: 10.1158/0008-5472.can-10-3221] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder associated mainly with tumors of multiple endocrine organs. Mutations in the MEN1 gene that encodes for the menin protein are the predominant cause for hereditary MEN1 syndrome. Though menin is a tumor suppressor, its molecular mechanism of action has not been defined. Here, we report that menin interacts with AKT1 in vitro and in vivo. Menin downregulates the level of active AKT and its kinase activity. Through interaction with AKT1, menin suppresses both AKT1-induced proliferation and antiapoptosis in nonendocrine and endocrine cells. Confocal microscopy analysis revealed that menin regulates AKT1 in part by reducing the translocation of AKT1 from the cytoplasm to the plasma membrane during growth factor stimulation. Our findings may be generalizable to other cancers, insofar as we found that loss of menin expression was also associated with AKT activation in a mouse model of pancreatic islet adenoma. Together, our results suggest menin as an important novel negative regulator of AKT kinase activity.
Collapse
Affiliation(s)
- Yan Wang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Multiple Endocrine Neoplasia type 1 (MEN1) is an autosomal-dominant disorder characterised by the occurrence of tumours of the parathyroids, pancreas and anterior pituitary. The MEN1 gene, consists of 10 exons that encode a 610-amino acid protein referred to as Menin. Menin is predominantly a nuclear protein that has roles in transcriptional regulation, genome stability, cell division and proliferation. Germ-line mutations usually result in MEN1 or occasionally in an allelic variant referred to as Familial Isolated Hyperparathyroidism (FIHP). MEN1 tumours frequently have loss of heterozygosity (LOH) of the MEN1 locus, which is consistent with a tumour suppressor role of MEN1. Furthermore, somatic abnormalities of MEN1 have been reported in MEN1 and non-MEN1 endocrine tumours. To date, over 1300 mutations have been reported, and the majority (>70%) of these are predicted to lead to truncated forms of Menin. The mutations are scattered throughout the >9 kb genomic sequence of the MEN1 gene. Four, which consist of c.249_252delGTCT (deletion at codons 83-84), c.1546_1547insC (insertion at codon 516), c.1378C>T (Arg460Ter) and c.628_631delACAG (deletion at codons 210-211) have been reported to occur frequently in 4.5%, 2.7%, 2.6% and 2.5% of families, respectively. However, a comparison of the clinical features in patients and their families with the same mutations reveals an absence of phenotype-genotype correlations. The majority of MEN1 mutations are likely to disrupt the interactions of Menin with other proteins and thereby alter critical events in cell cycle regulation and proliferation.
Collapse
Affiliation(s)
- Rajesh V Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom.
| |
Collapse
|
50
|
Abstract
Homeobox genes encode transcription factors that have crucial roles in embryogenesis. A recently discovered set of homeobox genes--the Rhox genes--are expressed during both embryogenesis and in adult reproductive tissues. The 33 known mouse Rhox genes are clustered together in a single region on the X chromosome, while likely descendents of the primodial Rhox cluster, Arx and Esx1, have moved to other positions on the X chromosome. Here, we summarize what is known about the regulation and function of Rhox cluster and Rhox-related genes during embryogenesis and gametogenesis. The founding member of the Rhox gene cluster--Rhox5 (previously known as Pem)--has been studied in the most depth and thus is the focus of this review. We also discuss the unusually rapid evolution of the Rhox gene cluster.
Collapse
Affiliation(s)
- James A MacLean
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | | |
Collapse
|