1
|
Zheng X, Zhang Y, Wang Y, He Z, Zhang Q, Ren D, Yan X, Yuan X. Effect of N6-methyladenosine methylation-related gene signature for predicting the prognosis of hepatocellular carcinoma patients. Front Surg 2023; 10:1052100. [PMID: 36936652 PMCID: PMC10022825 DOI: 10.3389/fsurg.2023.1052100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Background and aims Hepatocellular carcinoma (HCC) is a common cause of cancer-related death in humans. Increasing evidence indicates that an imbalance in N6-methyladenosine (m6A) methylation is linked to the occurrence and development of cancer. We then developed a prognostic model as an independent risk factor with which predict the prognosis of HCC. Methods We obtained the gene expression and clinical data of HCC patients from the TCGA databases. The prognostic value of m6A methylation-related genes in patients who had HCC were subjected to comprehensive bioinformatics analysis. We use Risk Score = ∑ i = 1 n Coe f i × X i to construct the risk scoring formula. We collected pathological specimens from 68 patients who had HCC, and conducted immunohistochemical staining experiments on the specimens. Results There was a significant correlation between candidate m6A methylation-related genes (YTHDF2, METTL14 and ZC3H13) overall survival of HCC patients. Among the 68 HCC patient specimens that underwent immunohistochemical staining, all cancer tissues were positive for METTL14, YTHDF2, and ZC3H13 staining in contrast to the adjacent tissues. We conducted a Kaplan-Meier survival analysis. The results showed that patients who had low METTL14 expression had a longer survival time than those of patients who had high METTL14 expression. Also, patients with low YTHDF2 expression had a longer survival time than patients with high YTHDF2 expression. Finally, patients with high ZC3H13 expression lived longer than those with low ZC3H13 expression. This result is consistent with the bioinformatics analysis conclusion above. Conclusions Generally, the prognostic model that was based on m6A methylation-related genes in this study can effectively predict the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyu Zheng
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yingyue Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yun Wang
- QiLu Hospital of Shandong University, Qingdao, China
| | - Zijing He
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
- Correspondence: Xiao Yuan
| |
Collapse
|
2
|
Wang SY, Huang YH, Liang YJ, Wu JC. Gene coexpression network analysis identifies hubs in hepatitis B virus-associated hepatocellular carcinoma. J Chin Med Assoc 2022; 85:972-980. [PMID: 35801949 DOI: 10.1097/jcma.0000000000000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related death worldwide. The molecular pathogenesis of HCC involves multiple signaling pathways. This study utilizes systems and bioinformatic approaches to investigate the pathogenesis of HCC. METHODS Gene expression microarray data were obtained from 50 patients with chronic hepatitis B and HCC. There were 1649 differentially expressed genes inferred from tumorous and nontumorous datasets. Weighted gene coexpression network analysis (WGCNA) was performed to construct clustered coexpressed gene modules. Statistical analysis was used to study the correlation between gene coexpression networks and demographic features of patients. Functional annotation and pathway inference were explored for each coexpression network. Network analysis identified hub genes of the prognostic gene coexpression network. The hub genes were further validated with a public database. RESULT Five distinct gene coexpression networks were identified by WGCNA. A distinct coexpressed gene network was significantly correlated with HCC prognosis. Pathway analysis of this network revealed extensive integration with cell cycle regulation. Ten hub genes of this gene network were inferred from protein-protein interaction network analysis and further validated in an external validation dataset. Survival analysis showed that lower expression of the 10-gene signature had better overall survival and recurrence-free survival. CONCLUSION This study identified a crucial gene coexpression network associated with the prognosis of hepatitis B virus-related HCC. The identified hub genes may provide insights for HCC pathogenesis and may be potential prognostic markers or therapeutic targets.
Collapse
Affiliation(s)
- Shen-Yung Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Yen-Hua Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yuh-Jin Liang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jaw-Ching Wu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
The Clinical Value of Long Noncoding RNA DDX11-AS1 as a Biomarker for the Diagnosis and Prognosis of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5735462. [PMID: 36072974 PMCID: PMC9444391 DOI: 10.1155/2022/5735462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a high-mortality malignant tumor with genetic and phenotypic heterogeneity, making predicting clinical outcomes challenging. The purpose of this investigation was to examine the potential usefulness of lncRNA DDX11 antisense RNA 1 (DDX11-AS1) as a biomarker for diagnosis and prognosis in hepatocellular carcinoma (HCC). The TCGA-LIHC datasets were searched for patients’ clinical information and RNA-seq data, which were then collected. Relative expression levels of DDX11-AS1 in HCC tissues were determined by qRT-PCR. In order to test the sensitivity and specificity of the DDX11-AS1 receiver, receiver operating characteristic curves were utilized. The association of DDX11-AS1 expression with clinicopathological factors or prognosis was statistically analyzed. We found that the levels of DDX11-AS1 were higher in HCC specimens than in normal specimens. ROC analysis showed that DDX11-AS1 was a useful marker for discriminating HCC tissues from normal nontumor specimens. According to the results of clinical tests, a high level of DDX11-AS1 expressions was significantly related to the pathologic stage (
) and the histologic grade (
). Survival studies indicated that patients with higher DDX11-AS1 expression had a significantly poorer overall survival (
) and progression-free interval (
) than those with lower DDX11-AS1 expression. Multivariate survival analysis verified that DDX11-AS1 expression level was an independent predictor for HCC patients. Overall, DDX11-AS1 may serve as a tumor promotor during HCC progression, and its high level may be a potential marker for HCC patients.
Collapse
|
4
|
Prognostic Significance of CCDC137 Expression and Its Association with Immune Infiltration in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:5638675. [PMID: 36061359 PMCID: PMC9433253 DOI: 10.1155/2022/5638675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Globally, hepatocellular carcinoma (HCC) is one of the most common causes of cancer-associated mortalities. The clinical outcome of HCC patients remains poor due to distant metastasis and recurrence. In recent years, growing evidences have confirmed that the coiled-coil domain-containing (CCDC) family proteins are involved in the progression of several diseases. However, the expression and clinical significance of the coiled-coil domain-containing 137 (CCDC137) in hepatocellular carcinoma (HCC) have not been investigated. Level 3 mRNA expression profiles and clinicopathological data were obtained in TCGA-LIHC. Differentially expressed genes (DEGs) were screened between 371 HCC and 50 nontumor specimens. The prognostic value of CCDC137 was analyzed in HCC patients. The correlations between CCDC137 and cancer immune infiltrates were investigated. In this study, a total of 2897 DEGs were obtained: 2451 genes were significantly upregulated and 446 genes were significantly downregulated. KEGG assays revealed that these DEGs were involved in tumor progression. Among 2897 DEGs, we found that CCDC137 expression was distinctly increased in HCC specimens compared with nontumor specimens. A high level of CCDC137 expression was related to an advanced tumor stage and grade. Moreover, patients with higher levels of CCDC137 expression had a shorter overall survival and disease-free survival than patients with lower CCDC137 levels. CCDC137 expression was positively correlated with infiltrating levels of several immune cells, such as CD8 T cells and Th2 cells. Finally, in vitro experiments confirmed that CCDC137 expression was highly expressed in HCC cells, and its knockdown suppressed the proliferation of HCC cells. Taken together, our findings revealed that CCDC137 might be used as a biomarker for immune infiltration and poor prognosis in HCC, which offered fresh insight on potential therapies for HCC.
Collapse
|
5
|
Cokan KB, Hancock JM, Spindelböck W, Režen T, Juvan P, Rozman D. Matching mouse models to specific human liver disease states by comparative functional genomics of mouse and human datasets. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194785. [PMID: 34971790 DOI: 10.1016/j.bbagrm.2021.194785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Omics has broadened our view of transcriptional and gene regulatory networks of multifactorial diseases, such as metabolism associated liver disease and its advanced stages including hepatocellular carcinoma. Identifying liver disease biomarkers and potential treatment targets makes use of experimental models, e.g. genetically engineered mice, which show molecular features of human pathologies but are experimentally tractable. We compared gene expression profiling data from human to our studies on transgenic mice with hepatocyte deletion of Cyp51 from cholesterol synthesis with the aim of identifying the human liver disease state best matched by the Cyp51 knockout model. Gene Expression Omnibus was used to identify relevant human datasets. We identified enriched and deregulated genes, pathways and transcription factors of mouse and human disease samples. Analysis showed a closer match of the Cyp51 knockout to the female patient samples. Importantly, CYP51 was depleted in both mouse and female human data. Among the enriched genes were the oxysterol-binding protein-related protein 3 (OSBPL3), which was enriched in all datasets, and the collagen gene COL1A2, which was enriched in both the mouse and one human dataset. KEGG and Reactome analyses revealed the most enriched pathway to be ECM-receptor interaction. Numerous transcription factors were differentially expressed in mice of both sexes and in the human female dataset, while depleted HNF4α and RXRα:PPARα-isoform1 were a hallmark in all cases. Our analysis exposed novel potential biomarkers, which may provide new avenues towards more personalized approaches and different targets in females and males. The analysis was only possible because of availability of open data resources and tools and broadly consistent annotation.
Collapse
Affiliation(s)
- Kaja Blagotinšek Cokan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - John M Hancock
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Walter Spindelböck
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Juvan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Memon A, Pyao Y, Jung Y, Lee JI, Lee WK. A Modified Protocol of Diethylnitrosamine Administration in Mice to Model Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21155461. [PMID: 32751728 PMCID: PMC7432842 DOI: 10.3390/ijms21155461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
We aimed to create an animal model for hepatocellular carcinoma (HCC) with a short time, a high survival rate, as well as a high incidence of HCC in both males and females than previously reported. The Diethylnitrosamine (DEN) model has an age-related effect. A single dose of DEN treatment is not enough in young mice up to 50 weeks. The same pattern is shown in an adult with multiple-dose trials whether or not there is some promotion agent. In this study, two-week old C57BL6 mice were given a total of eight doses of DEN, initially 20mg/kg body weight, and then 30mg/kg in the third week, followed by 50mg/kg for the last six weeks. The first group is DEN treatment only and the other two groups received thioacetamide (TAA) treatment for four or eight weeks after one week of rest from the last DEN treatment. An autopsy was performed after 24 weeks of the initial dose of DEN in each group. The cellular arrangement of HCC in the entire group was well-differentiated carcinoma and tumor presence with no significant impact on the survival of mice. Increased levels of the biochemical markers in serum, loss of tissue architecture, hepatocyte death, and proliferation were highly activated in all tumor-induced groups. This finding demonstrates an improved strategy to generate an animal model with a high occurrence of tumors combined with cirrhosis in a short time regardless of sex for researchers who want to investigate liver cancer-related.
Collapse
Affiliation(s)
- Azra Memon
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.); (Y.J.)
| | - Yuliya Pyao
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.); (Y.J.)
| | - Yerin Jung
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.); (Y.J.)
| | - Jung Il Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Woon Kyu Lee
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.); (Y.J.)
- Correspondence: ; Tel.:+82-32-860-9882; Fax: +82-32-885-8302
| |
Collapse
|
7
|
Dang H, Pomyen Y, Martin SP, Dominguez DA, Yim SY, Lee JS, Budhu A, Shah AP, Bodzin AS, Wang XW. NELFE-Dependent MYC Signature Identifies a Unique Cancer Subtype in Hepatocellular Carcinoma. Sci Rep 2019; 9:3369. [PMID: 30833661 PMCID: PMC6399236 DOI: 10.1038/s41598-019-39727-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
The MYC oncogene is dysregulated in approximately 30% of liver cancer. In an effort to exploit MYC as a therapeutic target, including in hepatocellular carcinoma (HCC), strategies have been developed on the basis of MYC amplification or gene translocation. Due to the failure of these strategies to provide accurate diagnostics and prognostic value, we have developed a Negative Elongation Factor E (NELFE)-Dependent MYC Target (NDMT) gene signature. This signature, which consists of genes regulated by MYC and NELFE, an RNA binding protein that enhances MYC-induced hepatocarcinogenesis, is predictive of NELFE/MYC-driven tumors that would otherwise not be identified by gene amplification or translocation alone. We demonstrate the utility of the NDMT gene signature to predict a unique subtype of HCC, which is associated with a poor prognosis in three independent cohorts encompassing diverse etiologies, demographics, and viral status. The application of gene signatures, such as the NDMT signature, offers patients access to personalized risk assessments, which may be utilized to direct future care.
Collapse
Affiliation(s)
- Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States. .,Department of Surgery, Division of Surgical Research, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Yotsawat Pomyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States.,Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Sean P Martin
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Dana A Dominguez
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Sun Young Yim
- Department of Systems Biology, Division of Cancer Medicine, UT MDACC, Houston, TX, United States
| | - Ju-Seog Lee
- Department of Systems Biology, Division of Cancer Medicine, UT MDACC, Houston, TX, United States
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Ashesh P Shah
- Department of Surgery, Division of Transplantation, Thomas Jefferson University, Philadelphia, PA, United States
| | - Adam S Bodzin
- Department of Surgery, Division of Transplantation, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States.
| |
Collapse
|
8
|
Immunonutritional consequences of different serine-type protease inhibitors in a C57BL/6 hepatocarcinoma model. Oncotarget 2019; 10:760-772. [PMID: 30774778 PMCID: PMC6366820 DOI: 10.18632/oncotarget.26605] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Imbalances in innate immunity and the activity of innate immune cells are implicated in the development of hepatocellular carcinoma (HCC). Plant seeds are good sources of protease inhibitors, which can have a significant influence on human health disorders, especially in the field of cancer prevention. To elucidate the impact and preventive effects of immunonutritional serine-type protease inhibitors (STPIs) on HCC, it was used an established model of chemically induced liver injury. Injured livers induced Akt as well as hepatic infiltration of NKG2D+ and CD74+ cells. Feeding STPIs reduced size and number of intrahepatic nodes of mononuclear. These animals showed an inverse association of the severity of HCC with bioactive hepcidin levels, which was significantly correlated with the hepatic myeloperoxidase activity. According to their origin, administration of STPIs significantly induce increased numbers of F4/80+ cells in injured livers that can be responsible for the biological effects detected on the parenchyma and inflammatory markers under DEN/TAA treatment. These findings can have direct implications in HCC immunotherapy where enhanced response(s) in inflammation-driven cancer patients could help promoting inflammation-driven processes and favor tumor growth. Altogether, this study demonstrates that oral administration of STPIs modulate innate immunity response influencing HCC aggressiveness and progression. These results represent a path forward to develop durable, long-lasting response against hepatocarcinoma and open a future research path in the development of coadjutant intervention strategies to pharmacological therapies.
Collapse
|
9
|
Zhu Q, Sun Y, Zhou Q, He Q, Qian H. Identification of key genes and pathways by bioinformatics analysis with TCGA RNA sequencing data in hepatocellular carcinoma. Mol Clin Oncol 2018; 9:597-606. [PMID: 30546887 PMCID: PMC6256287 DOI: 10.3892/mco.2018.1728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
Improved insight into the molecular characteristics of hepatocellular carcinoma (HCC) is required to predict prognosis and to develop a new rationale for targeted therapeutic strategy. Bioinformatics methods, including functional enrichment and network analysis combined with survival analysis, are required to process a large volume of data to obtain further information on differentially expressed genes (DEGs). The RNA sequencing data related to HCC in The Cancer Genome Atlas (TCGA) database were analyzed to screen DEGs, which were separately submitted to perform gene enrichment analysis to identify gene sets and signaling pathways, and to construct a protein-protein interaction (PPI) network. Subsequently, hub genes were selected by the core level in the network, and the top hub genes were focused on gene expression analysis and survival analysis. A total of 610 DEGs were identified, including 444 upregulated and 166 downregulated genes. The upregulated DEGs were significantly enriched in the Gene Ontology analysis (GO): Cell division and in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway: Cell cycle, whereas the downregulated DEGs were enriched in GO: Negative regulation of growth and in the KEGG pathway: Retinol metabolism, with significant differences. Cyclin-dependent kinase (CDK)1 was selected as the top hub gene by the PPI network, which exhibited a similar expression trend with the data from the Gene Expression Omnibus (GEO) database. Survival analysis revealed a significantly negative correlation between CDK1 expression level and overall survival in the TCGA group (P<0.01) and the GEO group (P<0.01). Therefore, high-throughput TCGA data analysis appears to be an effective method for screening tumor molecular markers, and high expression of CDK1 is a prognostic factor for HCC.
Collapse
Affiliation(s)
- Qiandong Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yunpeng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qingqing Zhou
- Department of Operation Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qikuan He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
10
|
Nasri B, Inokuchi M, Ishikawa T, Uetake H, Takagi Y, Otsuki S, Kojima K, Kawano T. High expression of EphA3 (erythropoietin-producing hepatocellular A3) in gastric cancer is associated with metastasis and poor survival. BMC Clin Pathol 2017; 17:8. [PMID: 28465671 PMCID: PMC5408411 DOI: 10.1186/s12907-017-0047-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/20/2017] [Indexed: 12/29/2022] Open
Abstract
Background As the major subfamily of receptor tyrosine, erythropoietin-producing hepatocellular (Eph) receptor has been related to progression and prognosis in different types of tumors. However, the role and mechanism of EPHA3 in gastric cancer is still not well understood. Methods Specimen were collected from 202 patients who underwent gastric resection for gastric adenocarcinoma. The expression of EphA3 was studied using immunohistochemistry. We analyzed the clinicopathological factors and prognostic relevance of EphA3 expression in gastric cancer. Results High expression of EphA3 was associated with male predominance (p = 0.031), differentiated histology (p < 0.001), depth of tumor (p = 0.002), lymph node metastasis (p = 0.001), distant metastasis (p = 0.021), liver metastasis (p = 0.024), advanced stage (p < 0.001), and high HER2 expression (p = 0.017). Relapse-free survival (RFS) was significantly worse in patients with high expression of EphA3 than in those with low expression of EphA3 (p = 0.014). Multivariate analysis for RFS showed that depth of tumor [hazard ratio (HR) 9.333, 95% confidence interval (CI) 2.183–39.911, p = 0.003] and lymph node metastasis [hazard ratio (HR) 5.734, 95% confidence interval (CI) 2.349–13.997, p < 0.001] were independent prognostic factors. Conclusions These findings suggest that high expression EphA3 may participate in metastasis and worse survival.
Collapse
Affiliation(s)
| | - Mikito Inokuchi
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Toshiaki Ishikawa
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Uetake
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoko Takagi
- Department of Translational Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Sho Otsuki
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Kojima
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
11
|
Ju HL, Han KH, Lee JD, Ro SW. Transgenic mouse models generated by hydrodynamic transfection for genetic studies of liver cancer and preclinical testing of anti-cancer therapy. Int J Cancer 2016; 138:1601-1608. [PMID: 26220477 DOI: 10.1002/ijc.29703] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide; however, the genetic mechanisms underlying its pathogenesis are incompletely understood. Genetically engineered mouse (GEM) models of HCC have been developed to elucidate the role of individual cancer-related genes in hepatocarcinogenesis. However, the expensive and time-consuming processes related to generating a GEM model discourage the development of diverse genotype models. Recently, a simple and inexpensive liver-specific transgenic approach was developed, in which a hydrodynamics-based transfection (HT) method was coupled with the Sleeping Beauty transposase system. Various HT models in which different oncogenic pathways are activated and/or tumor-suppressing pathways inactivated have been developed in recent years. The applicability of HT models in liver cancer research is expected to broaden and ultimately elucidate the cooperation between oncogenic signaling pathways and aid in designing molecular therapy to target altered pathways.
Collapse
Affiliation(s)
- Hye-Lim Ju
- Liver Cirrhosis Clinical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Doo Lee
- Department of Nuclear Medicine, Catholic Kwandong University, Seoul, Korea
| | - Simon Weonsang Ro
- Liver Cirrhosis Clinical Research Center, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Kessler SM, Laggai S, Barghash A, Schultheiss CS, Lederer E, Artl M, Helms V, Haybaeck J, Kiemer AK. IMP2/p62 induces genomic instability and an aggressive hepatocellular carcinoma phenotype. Cell Death Dis 2015; 6:e1894. [PMID: 26426686 PMCID: PMC4632283 DOI: 10.1038/cddis.2015.241] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the third leading cause of cancer-related deaths and commonly develops in inflammatory environments. The IGF2 mRNA-binding protein IMP2-2/IGF2BP2-2/p62 was originally identified as an autoantigen in HCC. Aim of this study was to investigate a potential pathophysiological role of p62 in hepatocarcinogenesis. Human HCC tissue showed overexpression of IMP2, which strongly correlated with the fetal markers AFP and DLK1/Pref-1/FA-1 and was particularly elevated in tumors with stem-like features and hypervascularization. Molecular classification of IMP2-overexpressing tumors revealed an aggressive phenotype. Livers of mice overexpressing the IMP2 splice variant p62 highly expressed the stem cell marker DLK1 and secreted DLK1 into the blood. p62 was oncogenic: diethylnitrosamine (DEN)-treated p62 transgenic mice exhibited a higher tumor incidence and multiplicity than wild types. Tumors of transgenics showed a more aggressive and stem-like phenotype and displayed more oncogenic chromosomal aberrations determined with aCGH analysis. DEN-treated p62 transgenic mice exhibited distinct signs of inflammation, such as inflammatory cytokine expression and oxidative stress markers, that is, thiobarbituric acid-reactive substance (TBARS) levels. Reactive oxygen species (ROS) production was elevated in HepG2 cells, which either overexpressed p62 or were treated with DLK1. p62 induced this ROS production by a DLK1-dependent induction and activation of the small Rho-GTPase RAC1, activating NADPH oxidase and being overexpressed in human HCC. Our data indicate that p62/IMP2 promotes hepatocarcinogenesis by an amplification of inflammation.
Collapse
Affiliation(s)
- S M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany.,Institute of Pathology, Medical University of Graz, Graz, Austria
| | - S Laggai
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - A Barghash
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany.,Saarbruecken Graduate School of Computer Science, Saarbruecken, Germany
| | - C S Schultheiss
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - E Lederer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - M Artl
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - V Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - J Haybaeck
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - A K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| |
Collapse
|
13
|
Ho DWH, Kai AKL, Ng IOL. TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma. Front Med 2015; 9:322-30. [DOI: 10.1007/s11684-015-0408-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
14
|
Groß C, Steiger K, Sayyed S, Heid I, Feuchtinger A, Walch A, Heß J, Unger K, Zitzelsberger H, Settles M, Schlitter AM, Dworniczak J, Altomonte J, Ebert O, Schwaiger M, Rummeny E, Steingötter A, Esposito I, Braren R. Model Matters: Differences in Orthotopic Rat Hepatocellular Carcinoma Physiology Determine Therapy Response to Sorafenib. Clin Cancer Res 2015; 21:4440-50. [PMID: 25995341 DOI: 10.1158/1078-0432.ccr-14-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 05/08/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE Preclinical model systems should faithfully reflect the complexity of the human pathology. In hepatocellular carcinoma (HCC), the tumor vasculature is of particular interest in diagnosis and therapy. By comparing two commonly applied preclinical model systems, diethylnitrosamine induced (DEN) and orthotopically implanted (McA) rat HCC, we aimed to measure tumor biology noninvasively and identify differences between the models. EXPERIMENTAL DESIGN DEN and McA tumor development was monitored by MRI and PET. A slice-based correlation of imaging and histopathology was performed. Array CGH analyses were applied to determine genetic heterogeneity. Therapy response to sorafenib was tested in DEN and McA tumors. RESULTS Histologically and biochemically confirmed liver damage resulted in increased (18)F-fluorodeoxyglucose (FDG) PET uptake and perfusion in DEN animals only. DEN tumors exhibited G1-3 grading compared with uniform G3 grading of McA tumors. Array comparative genomic hybridization revealed a highly variable chromosomal aberration pattern in DEN tumors. Heterogeneity of DEN tumors was reflected in more variable imaging parameter values. DEN tumors exhibited lower mean growth rates and FDG uptake and higher diffusion and perfusion values compared with McA tumors. To test the significance of these differences, the multikinase inhibitor sorafenib was administered, resulting in reduced volume growth kinetics and perfusion in the DEN group only. CONCLUSIONS This work depicts the feasibility and importance of in depth preclinical tumor model characterization and suggests the DEN model as a promising model system of multifocal nodular HCC in future therapy studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia Heß
- Abteilung für Strahlenzytogenetik, Helmholtz-Zentrum München, Neuherberg, Germany
| | - Kristian Unger
- Abteilung für Strahlenzytogenetik, Helmholtz-Zentrum München, Neuherberg, Germany
| | - Horst Zitzelsberger
- Abteilung für Strahlenzytogenetik, Helmholtz-Zentrum München, Neuherberg, Germany
| | | | | | | | | | | | - Markus Schwaiger
- Nuklearmedizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Andreas Steingötter
- Abteilung für Gastroenterologie und Hepatologie, Universität Zürich, Zurich, Switzerland
| | - Irene Esposito
- Institut für Pathologie, Institut für Pathologie, Medizinische Universität Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
15
|
Raggi C, Invernizzi P, Andersen JB. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts. J Hepatol 2015; 62:198-207. [PMID: 25220250 DOI: 10.1016/j.jhep.2014.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
Abstract
Clinical complexity, anatomic diversity and molecular heterogeneity of cholangiocarcinoma (CCA) represent a major challenge in the assessment of effective targeted therapies. Molecular and cellular mechanisms underlying the diversity of CCA growth patterns remain a key issue of clinical concern. Crucial questions comprise the nature of the CCA-origin, the initial target for cellular transformation as well as the relationship with the cancer stem cells (CSC) concept. Additionally, since CCA often develops in the context of an inflammatory milieu (cirrhosis and cholangitis), the stromal compartment or tumour microenvironment (TME) likely promotes initiation and progression of this malignancy, contributing to its heterogeneity. This review will emphasize the dynamic interplay between stem-like intrinsic and TME-extrinsic pathways, which may represent novel options for multi-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chiara Raggi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Winkler J, Ori A, Holzer K, Sticht C, Dauch D, Eiteneuer EM, Pinna F, Geffers R, Ehemann V, Andres-Pons A, Breuhahn K, Longerich T, Bermejo JL, Gretz N, Zender L, Schirmacher P, Beck M, Singer S. Prosurvival function of the cellular apoptosis susceptibility/importin-α1 transport cycle is repressed by p53 in liver cancer. Hepatology 2014; 60:884-95. [PMID: 24799195 DOI: 10.1002/hep.27207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/02/2014] [Indexed: 01/05/2023]
Abstract
UNLABELLED Proteins of the karyopherin superfamily including importins and exportins represent an essential part of the nucleocytoplasmic transport machinery. However, the functional relevance and regulation of karyopherins in hepatocellular carcinoma (HCC) is poorly understood. Here we identified cellular apoptosis susceptibility (CAS, exportin-2) and its transport substrate importin-α1 (imp-α1) among significantly up-regulated transport factor genes in HCC. Disruption of the CAS/imp-α1 transport cycle by RNAi in HCC cell lines resulted in decreased tumor cell growth and increased apoptosis. The apoptotic phenotype upon CAS depletion could be recapitulated by direct knockdown of the X-linked inhibitor of apoptosis (XIAP) and partially reverted by XIAP overexpression. In addition, XIAP and CAS mRNA expression levels were correlated in HCC patient samples (r=0.463; P<0.01), supporting the in vivo relevance of our findings. Furthermore, quantitative mass spectrometry analyses of murine HCC samples (p53-/- versus p53+/+) indicated higher protein expression of CAS and imp-α1 in p53-/- tumors. Consistent with a role of p53 in regulating the CAS/imp-α1 transport cycle, we observed that both transport factors were repressed upon p53 induction in a p21-dependent manner. CONCLUSION The CAS/imp-α1 transport cycle is linked to XIAP and is required to maintain tumor cell survival in HCC. Moreover, CAS and imp-α1 are targets of p53-mediated repression, which represents a novel aspect of p53's ability to control tumor cell growth in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Juliane Winkler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Amer M, Elhefnawi M, El-Ahwany E, Awad AF, Gawad NA, Zada S, Tawab FMA. Hsa-miR-195 targets PCMT1 in hepatocellular carcinoma that increases tumor life span. Tumour Biol 2014; 35:11301-9. [PMID: 25119594 DOI: 10.1007/s13277-014-2445-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small 19-25 nucleotides which have been shown to play important roles in the regulation of gene expression in many organisms. Downregulation or accumulation of miRNAs implies either tumor suppression or oncogenic activation. In this study, differentially expressed hsa-miR-195 in hepatocellular carcinoma (HCC) was identified and analyzed. The prediction was done using a consensus approach of tools. The validation steps were done at two different levels in silico and in vitro. FGF7, GHR, PCMT1, CITED2, PEX5, PEX13, NOVA1, AXIN2, and TSPYL2 were detected with high significant (P < 0.005). These genes are involved in important pathways in cancer like MAPK signaling pathway, Jak-STAT signaling pathways, regulation of actin cytoskeleton, angiogenesis, Wnt signaling pathway, and TGF-beta signaling pathway. In vitro target validation was done for protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1). The co-transfection of pmirGLO-PCMT1 and pEGP-miR-195 showed highly significant results. Firefly luciferase was detected using Lumiscensor and t test analysis was done. Firefly luciferase expression was significantly decreased (P < 0.001) in comparison to the control. The low expression of firefly luciferase validates the method of target prediction that we used in this work by working on PCMT1 as a target for miR-195. Furthermore, the rest of the predicted genes are suspected to be real targets for hsa-miR-195. These target genes control almost all the hallmarks of liver cancer which can be used as therapeutic targets in cancer treatment.
Collapse
Affiliation(s)
- Marwa Amer
- Biotechnology Department, Faculty of Biotechnology, Misr University for Science and Technology, Giza, Egypt,
| | | | | | | | | | | | | |
Collapse
|
18
|
Fernando J, Malfettone A, Cepeda EB, Vilarrasa-Blasi R, Bertran E, Raimondi G, Fabra À, Alvarez-Barrientos A, Fernández-Salguero P, Fernández-Rodríguez CM, Giannelli G, Sancho P, Fabregat I. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells. Int J Cancer 2014; 136:E161-72. [PMID: 25053293 DOI: 10.1002/ijc.29097] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/18/2014] [Indexed: 12/11/2022]
Abstract
The multikinase inhibitor sorafenib is the only effective drug in advanced cases of hepatocellular carcinoma (HCC). However, response differs among patients and effectiveness only implies a delay. We have recently described that sorafenib sensitizes HCC cells to apoptosis. In this work, we have explored the response to this drug of six different liver tumor cell lines to define a phenotypic signature that may predict lack of response in HCC patients. Results have indicated that liver tumor cells that show a mesenchymal-like phenotype, resistance to the suppressor effects of transforming growth factor beta (TGF-β) and high expression of the stem cell marker CD44 were refractory to sorafenib-induced cell death in in vitro studies, which correlated with lack of response to sorafenib in nude mice xenograft models of human HCC. In contrast, epithelial-like cells expressing the stem-related proteins EpCAM or CD133 were sensitive to sorafenib-induced apoptosis both in vitro and in vivo. A cross-talk between the TGF-β pathway and the acquisition of a mesenchymal-like phenotype with up-regulation of CD44 expression was found in the HCC cell lines. Targeted CD44 knock-down in the mesenchymal-like cells indicated that CD44 plays an active role in protecting HCC cells from sorafenib-induced apoptosis. However, CD44 effect requires a TGF-β-induced mesenchymal background, since the only overexpression of CD44 in epithelial-like HCC cells is not sufficient to impair sorafenib-induced cell death. In conclusion, a mesenchymal profile and expression of CD44, linked to activation of the TGF-β pathway, may predict lack of response to sorafenib in HCC patients.
Collapse
Affiliation(s)
- Joan Fernando
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Identification of New Players in Hepatocarcinogenesis: Limits and Opportunities of Using Tissue Microarray (TMA). MICROARRAYS 2014; 3:91-102. [PMID: 27600338 PMCID: PMC5003443 DOI: 10.3390/microarrays3020091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/21/2014] [Indexed: 01/02/2023]
Abstract
Liver tumours are among the leading causes of cancer-related death worldwide and hepatocellular carcinoma (HCC) accounts for the vast majority of liver tumours. When detected at an early stage of disease, patients might still be eligible for surgical-based curative treatments. However, currently only small portion of HCC affected patients are diagnosed at an early stage. For late stage HCC no treatment option exists beside the multi-tyrosine kinase inhibitor Sorafenib. Thus new molecular targets and treatment options for HCC are urgently needed. Nevertheless, despite some improvements in diagnosis and patient management, the biology of liver tumour remains inadequately understood, mainly because these tumours have shown to harbour a highly complex genomic landscape. In addition, one major obstacle delaying the identification of new molecular targets in biomedical research is the necessity to validate them using a large collection of tissue specimens. Tissue microarray (TMA) technology allows the prompt molecular profiling of multiple tissue specimens and is therefore ideal to analyze presumptive candidate biomarkers in a fast an effective manner. The use of TMA has substantial benefits over standard techniques and represents a significant advancement in molecular pathology. For example, TMA technology reduces laboratory work, offers a high level of experimental uniformity and provides a judicious use of precious tissue. On the other hand, one potential limitation of using TMA is that the small cores sampled may not be representative of whole tumors. This issue is very critical in particularly heterogeneous cancers such as HCC. For liver focused studies, it is ideal to evaluate the staining patters of a determined marker over the structure of an entire acinus and to define staining in as many as possible anatomical regions. In this review we analyze the limits and opportunities offered by the usage of TMA technology in HCC research. In summary, TMA has revolutionized the histopathological analysis and will be of great help to further advance the knowledge in the field of hepatocarcinogenesis research.
Collapse
|
20
|
The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations. Cancers (Basel) 2014; 6:79-111. [PMID: 24419005 PMCID: PMC3980619 DOI: 10.3390/cancers6010079] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/24/2013] [Accepted: 01/03/2014] [Indexed: 12/14/2022] Open
Abstract
The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC). We also provide a brief summary of novel therapies connected to cell cycle regulation.
Collapse
|
21
|
Frau M, Feo F, Pascale RM. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. J Hepatol 2013; 59:830-41. [PMID: 23665184 DOI: 10.1016/j.jhep.2013.04.031] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/15/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
Downregulation of liver-specific MAT1A gene, encoding S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and upregulation of widely expressed MAT2A, encoding MATII isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellular carcinoma (HCC). Being inhibited by its reaction product, MATII isoform upregulation cannot compensate for MATI/III decrease. Therefore, MAT1A:MAT2A switch contributes to decrease in SAM level in rodent and human hepatocarcinogenesis. SAM administration to carcinogen-treated rats prevents hepatocarcinogenesis, whereas MAT1A-KO mice, characterized by chronic SAM deficiency, exhibit macrovesicular steatosis, mononuclear cell infiltration in periportal areas, and HCC development. This review focuses upon the pleiotropic changes, induced by MAT1A/MAT2A switch, associated with HCC development. Epigenetic control of MATs expression occurs at transcriptional and post-transcriptional levels. In HCC cells, MAT1A/MAT2A switch is associated with global DNA hypomethylation, decrease in DNA repair, genomic instability, and signaling deregulation including c-MYC overexpression, rise in polyamine synthesis, upregulation of RAS/ERK, IKK/NF-kB, PI3K/AKT, and LKB1/AMPK axis. Furthermore, decrease in MAT1A expression and SAM levels results in increased HCC cell proliferation, cell survival, and microvascularization. All of these changes are reversed by SAM treatment in vivo or forced MAT1A overexpression or MAT2A inhibition in cultured HCC cells. In human HCC, MAT1A:MAT2A and MATI/III:MATII ratios correlate negatively with cell proliferation and genomic instability, and positively with apoptosis and global DNA methylation. This suggests that SAM decrease and MATs deregulation represent potential therapeutic targets for HCC. Finally, MATI/III:MATII ratio strongly predicts patients' survival length suggesting that MAT1A:MAT2A expression ratio is a putative prognostic marker for human HCC.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Laboratory of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | |
Collapse
|
22
|
Yan H, Wang S, Yu H, Zhu J, Chen C. Molecular pathways and functional analysis of miRNA expression associated with paclitaxel-induced apoptosis in hepatocellular carcinoma cells. Pharmacology 2013; 92:167-74. [PMID: 24060847 DOI: 10.1159/000354585] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/17/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND We postulated that microRNAs (miRNAs) might be involved in hepatocellular carcinoma (HCC) targeted chemotherapy with paclitaxel. This study sought to generate a list of potential miRNA-based biomarkers and their potential targets to better understand the response to paclitaxel treatment in HCC. METHODS Cell viability proliferation assays were conducted to test the sensitivity of the HepG2 cells to paclitaxel. The morphological changes of apoptosis were assessed with 4',6-diamidino-2-phenylindole staining. Differential expression patterns of miRNA in the HepG2 cells either treated or not treated were analyzed using miRNA microarrays. RESULTS The array experiments have identified 54 miRNAs whose basal expression levels differed by >2-fold and p < 0.05 between the two phenotypic groups. The data were validated by a quantitative real-time PCR of 8 selected miRNAs (miR-21, miR-1274a, miR-1260, miR-1290, miR-508-5p, miR-877, miR-1246, miR-183*). The PI3K/Akt, mitogen-activated protein kinase (MAPK), TGF-β, ErbB, p53, cell cycle, mammalian target of rapamycin, and Jak-STAT signaling pathways were involved in paclitaxel-induced apoptosis. CONCLUSIONS The manipulation of one or more of these miRNAs could be an important approach for the improved management of paclitaxel therapy.
Collapse
Affiliation(s)
- H Yan
- National Engineering Research Center for Miniaturized Detection System, College of Life Sciences, Northwest University, Xi'an, China
| | | | | | | | | |
Collapse
|
23
|
Evaluation of Apoptotic Marker Bcl2, CD4+, Human Hepatocyte Growth Factor and Metalloproteinase-9 as Tumor Markers for Patients with Hepatocellular Carcinoma. Indian J Clin Biochem 2013; 29:351-6. [PMID: 24966485 DOI: 10.1007/s12291-013-0381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
To examine the possible involvement of human B cell leukemia/lymphoma 2 (Bcl-2), CD4+ cells, hepatocyte growth factor (HGF), and metalloproteinase-9 (MMP-9), as biomarkers in early diagnosis of hepatocellular carcinoma (HCC), activities of these biomarkers in serum were demonstrated by the method of Enzyme Linked Immunosorbant Assay. Two groups of subjects (60 for each), were examined in this study; healthy controls and patients with HCC. The present results declare that, significant decrease in Bcl-2 (p ≤ 0.0001), and CD 4+ (p ≤ 0.001), while significant increase in HGF and MMP-9 (p ≤ 0.05). These findings imply an influence of these biomarkers by the existence of hepatic carcinoma that might reflect the progression of disease and a distinction between the pathological mechanisms involved in hepatic carcinoma. Since, the serum MMP-9 activity was significantly varied between each stage of HCC. An individual profile of the present investigated parameters was detected that might serve as an easy accessing serum marker to monitor the progression of hepatic cell disorders.
Collapse
|
24
|
Marquardt JU, Fischer K, Baus K, Kashyap A, Ma S, Krupp M, Linke M, Teufel A, Zechner U, Strand D, Thorgeirsson SS, Galle PR, Strand S. Sirtuin-6-dependent genetic and epigenetic alterations are associated with poor clinical outcome in hepatocellular carcinoma patients. Hepatology 2013; 58:1054-64. [PMID: 23526469 PMCID: PMC3759627 DOI: 10.1002/hep.26413] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/15/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Sirtuin 6 (SIRT6) is a member of the sirtuin family of NAD+-dependent deacetylases. Genetic deletion of Sirt6 in mice results in a severe degenerative phenotype with impaired liver function and premature death. The role of SIRT6 in development and progression of hepatocellular carcinoma is currently unknown. We first investigated SIRT6 expression in 153 primary human liver cancers and in normal and cirrhotic livers using microarray analysis. SIRT6 was significantly down-regulated in both cirrhotic livers and cancer. A Sirt6 knockout (KO) gene expression signature was generated from primary hepatoctyes isolated from 3-week-old Sirt6-deficient animals. Sirt6-deficient hepatocytes showed up-regulation of established hepatocellular carcinoma (HCC) biomarkers alpha-fetoprotein (Afp), insulin-like growth factor 2 (Igf2), H19, and glypican-3. Furthermore, decreased SIRT6 expression was observed in hepatoma cell lines that are known to be apoptosis-insensitive. Re-expression of SIRT6 in HepG2 cells increased apoptosis sensitivity to CD95-stimulation or chemotherapy treatment. Loss of Sirt6 was characterized by oncogenic changes, such as global hypomethylation, as well as metabolic changes, such as hypoglycemia and increased fat deposition. The hepatocyte-specific Sirt6-KO signature had a prognostic impact and was enriched in patients with poorly differentiated tumors with high AFP levels as well as recurrent disease. Finally, we demonstrated that the Sirt6-KO signature possessed a predictive value for tumors other than HCC (e.g., breast and lung cancer). CONCLUSION Loss of SIRT6 induces epigenetic changes that may be relevant to chronic liver disease and HCC development. Down-regulation of SIRT6 and genes dysregulated by loss of SIRT6 possess oncogenic effects in hepatocarcinogenesis. Our data demonstrate that deficiency in one epigenetic regulator predisposes a tumorigenic phenotype that ultimately has relevance for outcome of HCC and other cancer patients.
Collapse
Affiliation(s)
- Jens U. Marquardt
- I. Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany,Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Kerstin Fischer
- I. Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Katharina Baus
- I. Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Anubha Kashyap
- I. Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Shengyun Ma
- I. Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Markus Krupp
- I. Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Andreas Teufel
- I. Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Dennis Strand
- I. Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Peter R. Galle
- I. Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Susanne Strand
- I. Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Germany,Corresponding author: Susanne Strand, PhD, I. Department of Internal Medicine, Molecular Hepatology, University Medical Center, Johannes Gutenberg University Mainz, Obere Zahlbacherstraße 63, 55131 Mainz, Germany, Phone: +49 6131 179782, Fax: +49 6131 179963,
| |
Collapse
|
25
|
Lu CY, Yang ZX, Zhou L, Huang ZZ, Zhang HT, Li J, Tao KS, Xie BZ. High levels of EphA3 expression are associated with high invasive capacity and poor overall survival in hepatocellular carcinoma. Oncol Rep 2013; 30:2179-86. [PMID: 23970317 DOI: 10.3892/or.2013.2679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/08/2013] [Indexed: 01/13/2023] Open
Abstract
Although EphA3 expression has been associated with progression or prognosis in several types of tumors, the role of EphA3 in hepatocellular carcinoma (HCC) remains unknown. This study sought to investigate the clinicopathological and prognostic relevance of EphA3 expression in HCC as well as the underlying mechanisms responsible. EphA3 protein was mainly localized within the cytoplasm and at the cell membrane. High EphA3 expression was correlated with tumor size, tumor grade, metastasis, venous invasion and AJCC TNM stage (P<0.05), and patients with high levels of EphA3 expression were at a significantly increased risk for shortened survival time (P<0.05). In vitro, the downregulation of EphA3 expression decreased the invasive capacity of HCC cells via the regulation of VEGF. EphA3 may represent a novel candidate marker for patient prognosis as well a molecular target for HCC therapy.
Collapse
Affiliation(s)
- Cheng-Yi Lu
- Department of Information, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shannxi 710032, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Baddour N, Farrag E, Zeid A, Bedewy E, Taher Y. Decreased apoptosis in advanced-stage/high-grade hepatocellular carcinoma complicating chronic hepatitis C is mediated through the downregulation of p21 ras. Chin J Cancer Res 2013; 25:281-8. [PMID: 23825904 DOI: 10.3978/j.issn.1000-9604.2013.04.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE AND BACKGROUND Although p21 ras has been reported to be upregulated in hepatocellular carcinoma complicating chronic hepatitis C type I, p21 ras has a different role in advanced stages, as it has been found to be downregulated. The goal of this study was to investigate the status of p21 ras in early-stage/low-grade and late-stage/high-grade hepatocellular carcinoma and its possible link to apoptosis. MATERIAL AND METHODS Thirty-five cases each of chronic HCV hepatitis type 4 (group I) and cirrhosis with hepatocellular carcinoma (HCC) complicating chronic HCV hepatitis (groups II and III) were immunohistochemically evaluated using a p21 ras polyclonal antibody. The apoptotic index was determined in histologic sections using the terminal deoxynucleotidyl transferase-mediated d-UTP biotin nick end labeling (TUNEL) assay. RESULTS Significant differences (P=0.001) were detected in p21 ras protein expression between the three groups. A near 2-fold increase in p21 ras staining was observed in the cirrhotic cases compared to the hepatitis cases, and p21 ras expression was decreased in the HCC group. p21 ras expression correlated with stage (r=0.64, P=0.001) and grade (r=(-)0.65, P=0.001) in the HCC group and grade in the HCV group (r=0.44, P=0.008). Both p21 ras expression and TUNEL-LI were significantly lower in large HCCs compared to small HCCs (P=0.01 each). The TUNEL values were negatively correlated with stage in the HCC group (r=(-)0.85, P=0.001). The TUNEL values were also negatively correlated with grade in both the HCV and HCC groups (r=0.89, P=0.001 and r=(-)0.53, P=0.001, respectively). The p21 ras scores were significantly correlated with the TUNEL-LI values in the HCC group (r=0.63, P=0.001) and HCV group (r=0.88, P=0.001). CONCLUSIONS p21 ras acts as an initiator in HCC complicating type 4 chronic HCV and is downregulated with HCC progression, which most likely promotes tumor cell survival because it facilitates the downregulation of apoptosis with tumor progression.
Collapse
|
27
|
Overexpression of c-myc in hepatocytes promotes activation of hepatic stellate cells and facilitates the onset of liver fibrosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1765-75. [PMID: 23770341 DOI: 10.1016/j.bbadis.2013.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Liver fibrosis is a consequence of chronic liver injury and can further progress to hepatocellular carcinoma (HCC). Fibrogenesis involves activation of hepatic stellate cells (HSC) and proliferation of hepatocytes upon liver injury. HCC is frequently associated with overexpression of the proto-oncogene c-myc. However, the impact of c-myc for initiating pathological precursor stages such as liver fibrosis is poorly characterized. In the present study we thus investigated the impact of c-myc for liver fibrogenesis. METHODS Expression of c-myc was measured in biopsies of patients with liver fibrosis of different etiologies by quantitative real-time PCR (qPCR). Primary HSC were isolated from mice with transgenic overexpression of c-myc in hepatocytes (alb-myc(tg)) and wildtype (WT) controls and investigated for markers of cell cycle progression and fibrosis by qPCR and immunofluorescence microscopy. Liver fibrosis in WT and alb-myc(tg) mice was induced by repetitive CCl4 treatment. RESULTS We detected strong up-regulation of hepatic c-myc in patients with advanced liver fibrosis. In return, overexpression of c-myc in alb-myc(tg) mice resulted in increased liver collagen deposition and induction of α-smooth-muscle-actin indicating HSC activation. Primary HSC derived from alb-myc(tg) mice showed enhanced proliferation and accelerated transdifferentiation into myofibroblasts in vitro. Accordingly, fibrosis initiation in vivo after chronic CCl4 treatment was accelerated in alb-myc(tg) mice compared to controls. CONCLUSION Overexpression of c-myc is a novel marker of liver fibrosis in man and mice. We conclude that chronic induction of c-myc especially in hepatocytes has the potential to prime resident HSC for activation, proliferation and myofibroblast differentiation.
Collapse
|
28
|
Calvisi DF, Frau M, Tomasi ML, Feo F, Pascale RM. Deregulation of signalling pathways in prognostic subtypes of hepatocellular carcinoma: novel insights from interspecies comparison. Biochim Biophys Acta Rev Cancer 2013; 1826:215-37. [PMID: 23393659 DOI: 10.1016/j.bbcan.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is a frequent and fatal disease. Recent researches on rodent models and human hepatocarcinogenesis contributed to unravel the molecular mechanisms of hepatocellular carcinoma dedifferentiation and progression, and allowed the discovery of several alterations underlying the deregulation of cell cycle and signalling pathways. This review provides an interpretive analysis of the results of these studies. Mounting evidence emphasises the role of up-regulation of RAS/ERK, P13K/AKT, IKK/NF-kB, WNT, TGF-ß, NOTCH, Hedgehog, and Hippo signalling pathways as well as of aberrant proteasomal activity in hepatocarcinogenesis. Signalling deregulation often occurs in preneoplastic stages of rodent and human hepatocarcinogenesis and progressively increases in carcinomas, being most pronounced in more aggressive tumours. Numerous changes in signalling cascades are involved in the deregulation of carbohydrate, lipid, and methionine metabolism, which play a role in the maintenance of the transformed phenotype. Recent studies on the role of microRNAs in signalling deregulation, and on the interplay between signalling pathways led to crucial achievements in the knowledge of the network of signalling cascades, essential for the development of adjuvant therapies of liver cancer. Furthermore, the analysis of the mechanisms involved in signalling deregulation allowed the identification of numerous putative prognostic markers and novel therapeutic targets of specific hepatocellular carcinoma subtypes associated with different biologic and clinical features. This is of prime importance for the selection of patient subgroups that are most likely to obtain clinical benefit and, hence, for successful development of targeted therapies for liver cancer.
Collapse
Affiliation(s)
- Diego F Calvisi
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | | | | | |
Collapse
|
29
|
Latasa MU, Salis F, Urtasun R, Garcia-Irigoyen O, Elizalde M, Uriarte I, Santamaria M, Feo F, Pascale RM, Prieto J, Berasain C, Avila MA. Regulation of amphiregulin gene expression by β-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system. PLoS One 2012; 7:e52711. [PMID: 23285165 PMCID: PMC3527604 DOI: 10.1371/journal.pone.0052711] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/20/2012] [Indexed: 01/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent liver tumor and a deadly disease with limited therapeutic options. Dysregulation of cell signaling pathways is a common denominator in tumorigenesis, including hepatocarcinogenesis. The epidermal growth factor receptor (EGFR) signaling system is commonly activated in HCC, and is currently being evaluated as a therapeutic target in combination therapies. We and others have identified a central role for the EGFR ligand amphiregulin (AR) in the proliferation, survival and drug resistance of HCC cells. AR expression is frequently up-regulated in HCC tissues and cells through mechanisms not completely known. Here we identify the β-catenin signaling pathway as a novel mechanism leading to transcriptional activation of the AR gene in human HCC cells. Activation of β-catenin signaling, or expression of the T41A β-catenin active mutant, led to the induction of AR expression involving three specific β-catenin-Tcf responsive elements in its proximal promoter. We demonstrate that HCC cells expressing the T41A β-catenin active mutant show enhanced proliferation that is dependent in part on AR expression and EGFR signaling. We also demonstrate here a novel cross-talk of the EGFR system with fibroblast growth factor 19 (FGF19). FGF19 is a recently identified driver gene in hepatocarcinogenesis and an activator of β-catenin signaling in HCC and colon cancer cells. We show that FGF19 induced AR gene expression through the β-catenin pathway in human HCC cells. Importantly, AR up-regulation and EGFR signaling participated in the induction of cyclin D1 and cell proliferation elicited by FGF19. Finally, we demonstrate a positive correlation between FGF19 and AR expression in human HCC tissues, therefore supporting in clinical samples our experimental observations. These findings identify the AR/EGFR system as a key mediator of FGF19 responses in HCC cells involving β-catenin signaling, and suggest that combined targeting of FGF19 and AR/EGFR may enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Maria U. Latasa
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Fabiana Salis
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine & Oncology, University of Sassari, Sassari, Italy
| | - Raquel Urtasun
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Oihane Garcia-Irigoyen
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Maria Elizalde
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
| | - Monica Santamaria
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Francesco Feo
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine & Oncology, University of Sassari, Sassari, Italy
| | - Rosa M. Pascale
- Division of Experimental Pathology and Oncology, Department of Clinical and Experimental Medicine & Oncology, University of Sassari, Sassari, Italy
| | - Jesús Prieto
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
- * E-mail: (CB); (MAA)
| | - Matías A. Avila
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, University Clinic, University of Navarra, Pamplona, Spain
- * E-mail: (CB); (MAA)
| |
Collapse
|
30
|
Coban Z, Barton MC. Integrative genomics: liver regeneration and hepatocellular carcinoma. J Cell Biochem 2012; 113:2179-84. [PMID: 22345090 DOI: 10.1002/jcb.24104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Numerous genome wide profiles of gene expression changes in human hepatocellular carcinoma (HCC), compared to normal liver tissue, have been reported. Hierarchical clustering of these data reveal distinct patterns, which underscore conservation between human disease and mouse models of HCC, as well as suggest specific classification of subtypes within the heterogeneous disease of HCC. Global profiling of gene expression in mouse liver, challenged by partial hepatectomy to regenerate, reveals alterations in gene expression that occur in response to acute injury, inflammation, and re-entry into cell cycle. When we integrated datasets of gene expression changes in mouse models of HCC and those that are altered at specific times of liver regeneration, we saw shared, conserved alterations in gene expression within specific biological pathways, both up-regulated, for example, cell cycle, cell death, and cellular development, or down-regulated, for example, vitamin and mineral metabolism, lipid metabolism, and molecular transport. Additional molecular mechanisms shared by liver regeneration and HCC, as yet undiscovered, may have important implications in tumor development and recurrence. These comparisons may offer a way to judge how liver resection, in the treatment of HCC, introduces challenges to care of the disease. Further, uncovering the pathways conserved in inflammatory response, hypertrophy, proliferation, and architectural remodeling of the liver, which are shared in liver regeneration and HCC, versus those specific to tumor development and progression in HCC, may reveal new biomarkers or potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Zeynep Coban
- Graduate School for Biomedical Sciences, Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
31
|
Thompson SM, Callstrom MR, Knudsen B, Anderson JL, Butters KA, Grande JP, Roberts LR, Woodrum DA. AS30D model of hepatocellular carcinoma: tumorigenicity and preliminary characterization by imaging, histopathology, and immunohistochemistry. Cardiovasc Intervent Radiol 2012; 36:198-203. [PMID: 22923329 DOI: 10.1007/s00270-012-0466-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/29/2012] [Indexed: 12/13/2022]
Abstract
PURPOSE This study was designed to determine the tumorigenicity of the AS30D HCC cell line following orthotopic injection into rat liver and preliminarily characterize the tumor model by both magnetic resonance imaging (MRI) and ultrasound (US) as well as histopathology and immunohistochemistry. MATERIALS AS30D cell line in vitro proliferation was assessed by using MTT assay. Female rats (N = 5) underwent injection of the AS30D cell line into one site in the liver. Rats subsequently underwent MR imaging at days 7 and 14 to assess tumor establishment and volume. One rat underwent US of the liver at day 7. Rats were euthanized at day 7 or 14 and livers were subjected to gross, histopathologic (H&E), and immunohistochemical (CD31) analysis to assess for tumor growth and neovascularization. RESULTS AS30D cell line demonstrated an in vitro doubling time of 33.2 ± 5.3 h. MR imaging demonstrated hyperintense T2-weighted and hypointense T1-weighted lesions with tumor induction in five of five and three of three sites at days 7 and 14, respectively. The mean (SD) tumor volume was 126.1 ± 36.2 mm(3) at day 7 (N = 5). US of the liver demonstrated a well-circumscribed, hypoechoic mass and comparison of tumor dimensions agreed well with MRI. Analysis of H&E- and CD31-stained sections demonstrated moderate-high grade epithelial tumors with minimal tumor necrosis and evidence of diffuse intratumoral and peritumoral neovascularization by day 7. CONCLUSIONS AS30D HCC cell line is tumorigenic following orthotopic injection into rat liver and can be used to generate an early vascularizing, slower-growing rat HCC tumor model.
Collapse
Affiliation(s)
- Scott M Thompson
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yang H, He XX, Song QL, Chen M, Li J, Wang MY, Yu JL, Yao JJ, Liu LF, Lin JS. Association of Ephrin receptor A3 gene polymorphism with susceptibility to chronic severe hepatitis B. Hepatol Res 2012; 42:790-7. [PMID: 22780849 DOI: 10.1111/j.1872-034x.2012.00977.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Previous research has suggested that Ephrin receptor A3 (EphA3) plays signaling roles in the processes of inflammation by regulating lymphocyte migration and proliferation. In this study, we investigated whether the EphA3 gene polymorphism was associated with disease progression of chronic hepatitis B virus (HBV) infection. METHODS The EphA3 variant rs9310117 was genotyped in 1245 unrelated Han Chinese HBV carriers including 800 cases and 445 controls. χ(2) test was used to examine the difference in allele frequencies and genotype distributions between groups. The association between the polymorphism and disease progression of HBV infection was conducted by unconditional logistic regression analysis. RESULTS Statistical analysis revealed that the genetic variant was significantly associated with the occurrence of chronic severe hepatitis B (CSHB). We observed that subjects bearing at least one T allele (C/T or T/T genotype) had a decreased susceptibility to chronic severe hepatitis B compared with those bearing C/C genotype (P = 0.003, odds ratio = 0.560; 95% confidence interval, 0.381-0.824, recessive model). Genotype C/T had also been confirmed to protect subjects from suffering chronic severe hepatitis B (P = 0.001, odds ratio = 0.498; 95% confidence interval, 0.330-0.752, additive model). CONCLUSION Our results suggest that the genetic alteration at EphA3 locus plays a role in the occurrence of chronic severe hepatitis B.
Collapse
Affiliation(s)
- Hong Yang
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, Yu L, Bai S, La Perle K, Chivukula RR, Mao H, Wei M, Clark KR, Mendell JR, Caligiuri MA, Jacob ST, Mendell JT, Ghoshal K. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 2012; 122:2871-83. [PMID: 22820288 DOI: 10.1172/jci63539] [Citation(s) in RCA: 616] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/23/2012] [Indexed: 02/06/2023] Open
Abstract
miR-122, an abundant liver-specific microRNA (miRNA), regulates cholesterol metabolism and promotes hepatitis C virus (HCV) replication. Reduced miR-122 expression in hepatocellular carcinoma (HCC) correlates with metastasis and poor prognosis. Nevertheless, the consequences of sustained loss of function of miR-122 in vivo have not been determined. Here, we demonstrate that deletion of mouse Mir122 resulted in hepatosteatosis, hepatitis, and the development of tumors resembling HCC. These pathologic manifestations were associated with hyperactivity of oncogenic pathways and hepatic infiltration of inflammatory cells that produce pro-tumorigenic cytokines, including IL-6 and TNF. Moreover, delivery of miR-122 to a MYC-driven mouse model of HCC strongly inhibited tumorigenesis, further supporting the tumor suppressor activity of this miRNA. These findings reveal critical functions for miR-122 in the maintenance of liver homeostasis and have important therapeutic implications, including the potential utility of miR-122 delivery for selected patients with HCC and the need for careful monitoring of patients receiving miR-122 inhibition therapy for HCV.
Collapse
Affiliation(s)
- Shu-Hao Hsu
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Qu JH, Chang XJ, Lu YY, Bai WL, Chen Y, Zhou L, Zeng Z, Wang CP, An LJ, Hao LY, Xu GL, Gao XD, Lou M, Lv JY, Yang YP. Overexpression of metastasis-associated in colon cancer 1 predicts a poor outcome of hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol 2012; 18:2995-3003. [PMID: 22736924 PMCID: PMC3380328 DOI: 10.3748/wjg.v18.i23.2995] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 03/22/2012] [Accepted: 05/06/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the intratumoral expression of metastasis-associated in colon cancer 1 (MACC1) and c-Met and determine their clinical values associated with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC).
METHODS: A retrospective study admitted three hundred fifty-four patients with HBV-related HCC. The expression and distribution of MACC1 and c-Met were assessed by quantitative real-time polymerase chain reaction and immunohistochemistry staining. Prognostic factors influencing survival, metastasis and recurrence were assessed.
RESULTS: Intratumoral MACC1 level was found to be associated with HCC disease progression. Both median tumor-free survival (TFS) and overall survival (OS) were significantly shorter in the postoperative HCC patients with high intratumoral MACC1 expression, as compared to those with low intratumoral MACC1 levels (TFS: 34 mo vs 48.0 mo, P < 0.001; OS: 40 mo vs 48 mo, P < 0.01). Multivariable analysis indicated that high MACC1 expression or co-expression with c-Met were independent predictors for HCC clinic outcome (P < 0.001).
CONCLUSION: High intratumoral MACC1 expression can be associated with enhanced tumor progression and poor outcome of HBV-related HCC. MACC1 may serve as a prognostic biomarker for postoperative HCC.
Collapse
Affiliation(s)
- Jian-Hui Qu
- Center of Therapeutic Research for Liver Cancer, The 302nd Hospital, Beijing 100039, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wei W, Hu Z, Fu H, Tie Y, Zhang H, Wu Y, Zheng X. MicroRNA-1 and microRNA-499 downregulate the expression of the ets1 proto-oncogene in HepG2 cells. Oncol Rep 2012; 28:701-6. [PMID: 22664953 DOI: 10.3892/or.2012.1850] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/14/2012] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs may function to promote or suppress tumor development, depending on the cellular context. The important role of microRNAs in regulating molecular pathways underlying tumorigenesis has been emphasized in hepatocellular carcinoma (HCC). MicroRNAs regulate gene expression via post-transcriptional mechanisms by inhibiting translation or by degrading mRNA. In this study, we show that microRNA-1 (miR-1) and microRNA-499 (miR-499) are capable of repressing the expression of the ets1 proto-oncogene, which plays a fundamental role in the extracellular matrix (ECM) degradation, a process required for tumor cell invasion and migration. We used luciferase reporter assays to demonstrate that miR-1 and miR-499 target the 3' untranslated region (UTR) of ets1. Overexpression of miR-1 and miR-499 in HepG2 cells led to downregulation of ets1 mRNA and protein as assessed by quantitative reverse transcription PCR and western blot analysis. Furthermore, overexpression of miR-1 and miR-499 inhibited the invasion and migration of HepG2 cells in matrigel invasion and transwell migration assays, respectively. These results suggest that miR-1 and miR-499 may play an important role in the pathogenesis of HCC by regulating ets1.
Collapse
Affiliation(s)
- Wei Wei
- Beijing Institute of Radiation Medicine, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Frau M, Simile MM, Tomasi ML, Demartis MI, Daino L, Seddaiu MA, Brozzetti S, Feo CF, Massarelli G, Solinas G, Feo F, Lee JS, Pascale RM. An expression signature of phenotypic resistance to hepatocellular carcinoma identified by cross-species gene expression analysis. Cell Oncol (Dordr) 2012; 35:163-73. [PMID: 22434528 DOI: 10.1007/s13402-011-0067-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND AIMS Hepatocarcinogenesis is under polygenic control. We analyzed gene expression patterns of dysplastic liver nodules (DNs) and hepatocellular carcinomas (HCCs) chemically-induced in F344 and BN rats, respectively susceptible and resistant to hepatocarcinogenesis. METHODS Expression profiles were performed by microarray and validated by quantitative RT-PCR and Western blot. RESULTS Cluster analysis revealed two distinctive gene expression patterns, the first of which included normal liver of both strains and BN nodules, and the second one F344 nodules and HCC of both strains. We identified a signature predicting DN and HCC progression, characterized by highest expression of oncosuppressors Csmd1, Dmbt1, Dusp1, and Gnmt, in DNs, and Bhmt, Dmbt1, Dusp1, Gadd45g, Gnmt, Napsa, Pp2ca, and Ptpn13 in HCCs of resistant rats. Integrated gene expression data revealed highest expression of proliferation-related CTGF, c-MYC, and PCNA, and lowest expression of BHMT, DMBT1, DUSP1, GADD45g, and GNMT, in more aggressive rat and human HCC. BHMT, DUSP1, and GADD45g expression predicted patients' survival. CONCLUSIONS Our results disclose, for the first time, a major role of oncosuppressor genes as effectors of genetic resistance to hepatocarcinogenesis. Comparative functional genomic analysis allowed discovering an evolutionarily conserved gene expression signature discriminating HCC with different propensity to progression in rat and human.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, 07100, Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thompson SM, Callstrom MR, Knudsen B, Anderson JL, Carter RE, Grande JP, Roberts LR, Woodrum DA. Development and preliminary testing of a translational model of hepatocellular carcinoma for MR imaging and interventional oncologic investigations. J Vasc Interv Radiol 2012; 23:385-95. [PMID: 22265247 PMCID: PMC3904802 DOI: 10.1016/j.jvir.2011.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/28/2011] [Accepted: 11/06/2011] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To develop a translational rat hepatocellular carcinoma (HCC) disease model for magnetic resonance (MR) imaging and image-guided interventional oncologic investigations. MATERIALS AND METHODS Male rats underwent sham control surgery (n = 6), selective bile duct ligation (SBDL; n = 4), or common bile duct ligation (CBDL; n = 6), with procedure optimization in four rats and N1S1 hepatoma cell injection into two or three sites in the livers of 12 rats. All rats subsequently underwent MR imaging to assess tumor establishment and volume. Mesenteric angiography and percutaneous MR-guided laser ablation of the liver were performed in a subgroup of animals (n = 4). Animal weight and liver test results were monitored. After harvesting, the livers were subjected to gross and microscopic analysis. Tumor volume and laboratory parameters were assessed between ligation groups. RESULTS MR imaging demonstrated hyperintense T2 and hypointense T1 lesions with tumor induction in five of 10 (50.0%), seven of eight (87.5%), and 12 of 12 (100%) sites in the control, SBDL, and CBDL groups, respectively. Tumor volumes differed significantly by group (P < .02). Mesenteric angiography demonstrated an enhancing tumor stain. Clinical and laboratory assessment revealed a significant decrease in weight (P = .01) and albumin level (P < .01) and an increase in total bilirubin level (P = .02) in CBDL rats but not SBDL rats (P = 1.0). Histologic examination showed high-grade HCCs with local and vascular invasion within the context of early fibrosis in CBDL and SBDL rats. MR-guided laser ablation generated a 1-2-cm ablation zone with histologic findings consistent with reversible and irreversible injury. CONCLUSIONS A biologically relevant rat HCC disease model has been developed for MR imaging and preliminary interventional oncologic applications.
Collapse
MESH Headings
- Animals
- Aortography
- Bile Ducts/surgery
- Carcinoma, Hepatocellular/diagnostic imaging
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/surgery
- Cell Line, Tumor
- Laser Therapy
- Ligation
- Liver Cirrhosis/pathology
- Liver Neoplasms, Experimental/diagnostic imaging
- Liver Neoplasms, Experimental/etiology
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/surgery
- Magnetic Resonance Imaging
- Magnetic Resonance Imaging, Interventional
- Male
- Neoplasm Invasiveness
- Rats
- Rats, Sprague-Dawley
- Time Factors
- Translational Research, Biomedical
- Tumor Burden
Collapse
|
38
|
Abdalla MA, Haj-Ahmad Y. Promising Candidate Urinary MicroRNA Biomarkers for the Early Detection of Hepatocellular Carcinoma among High-Risk Hepatitis C Virus Egyptian Patients. J Cancer 2011; 3:19-31. [PMID: 22211142 PMCID: PMC3245605 DOI: 10.7150/jca.3.19] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 11/02/2011] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNA) are small endogenously expressed non-coding RNAs that negatively regulate expression of protein-coding genes at the translational level. Accumulating evidence, such as aberrant expression of miRNAs, suggests that they play a role in the development of cancer. They have been identified in various tumor types, demonstrating that different sets of miRNAs are usually deregulated in different cancers. To identify the miRNA signatures specific for Hepatitis C virus (HCV)-associated Hepatocellular carcinoma (HCC), miRNA expression profiling of 32 HCC post-HCV infected, 74 HCV-positive and 12 control individuals was carried out using whole genome expression profiling. Differential expression of two individual miRNAs between control and high risk HCV patients was detected and found to possibly target genes related to HCC development and progression. The sensitivity and specificity of miR-618 for detecting HCC among HCV-positive individuals was found to be 64% and 68%, respectively. Whereas, the sensitivity and specificity of miR-650 were 72% and 58%, respectively. Additionally, the sensitivity and specificity for miR-618/650 in tandem were 58% and 75%, respectively. These predictive values are greatly improved compared to the traditional α-feto protein (AFP) level-based detection method. The proposed HCC miRNA signatures may therefore be of great value for the early diagnosis of HCC, before the onset of disease in HCV-positive patients. The significance of this approach is amplified by the use of urine as a sample source as it offers a non-invasive approach for developing screening methods that can reduce mortality rates.
Collapse
Affiliation(s)
- Moemen Ak Abdalla
- Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | | |
Collapse
|
39
|
Abstract
Transforming growth factor-β (TGF-β) is a central regulator in chronic liver disease contributing to all stages of disease progression from initial liver injury through inflammation and fibrosis to cirrhosis and hepatocellular carcinoma. Liver-damage-induced levels of active TGF-β enhance hepatocyte destruction and mediate hepatic stellate cell and fibroblast activation resulting in a wound-healing response, including myofibroblast generation and extracellular matrix deposition. Being recognised as a major profibrogenic cytokine, the targeting of the TGF-β signalling pathway has been explored with respect to the inhibition of liver disease progression. Whereas interference with TGF-β signalling in various short-term animal models has provided promising results, liver disease progression in humans is a process of decades with different phases in which TGF-β or its targeting might have both beneficial and adverse outcomes. Based on recent literature, we summarise the cell-type-directed double-edged role of TGF-β in various liver disease stages. We emphasise that, in order to achieve therapeutic effects, we need to target TGF-β signalling in the right cell type at the right time.
Collapse
|
40
|
Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, Stiuso P, Abbruzzese A, Sperlongano R, Accardo M, Agresti M, Caraglia M, Sperlongano P. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med 2011; 9:171. [PMID: 21985599 PMCID: PMC3213217 DOI: 10.1186/1479-5876-9-171] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 10/10/2011] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex and heterogeneous tumor with multiple genetic aberrations. Several molecular pathways involved in the regulation of proliferation and cell death are implicated in the hepatocarcinogenesis. The major etiological factors for HCC are both hepatitis B virus (HBV) and hepatitis C virus infection (HCV). Continuous oxidative stress, which results from the generation of reactive oxygen species (ROS) by environmental factors or cellular mitochondrial dysfunction, has recently been associated with hepatocarcinogenesis. On the other hand, a distinctive pathological hallmark of HCC is a dramatic down-regulation of oxido-reductive enzymes that constitute the most important free radical scavenger systems represented by catalase, superoxide dismutase and glutathione peroxidase. The multikinase inhibitor sorafenib represents the most promising target agent that has undergone extensive investigation up to phase III clinical trials in patients with advanced HCC. The combination with other target-based agents could potentiate the clinical benefits obtained by sorafenib alone. In fact, a phase II multicenter study has demonstrated that the combination between sorafenib and octreotide LAR (So.LAR protocol) was active and well tolerated in advanced HCC patients. The detection of molecular factors predictive of response to anti-cancer agents such as sorafenib and the identification of mechanisms of resistance to anti-cancer agents may probably represent the direction to improve the treatment of HCC.
Collapse
Affiliation(s)
- Monica Marra
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Ignazio M Sordelli
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Angela Lombardi
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Monica Lamberti
- Departement of Experimental Medicine, Sezione di Medicina del lavoro, Igiene e Tossicologia Industriale, Second University of Naples, Naples, Italy
| | - Luciano Tarantino
- Interventional US Unit, Department of Medicine, S. Giovanni di Dio Hospital, 80059 Torre del Greco (Naples), Italy
| | - Aldo Giudice
- Animal Facility Unit, National Institute of Tumours "Fondazione G. Pascale" of Naples, Naples, Italy
| | - Paola Stiuso
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Alberto Abbruzzese
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Rossella Sperlongano
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Marina Accardo
- Department of Morphopathology, II University Naples, Napoli, Italy
| | - Massimo Agresti
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Pasquale Sperlongano
- Department of Anaesthesiology and Special Surgery, Second University of Naples, Naples, Italy
| |
Collapse
|
41
|
Ivanovska I, Zhang C, Liu AM, Wong KF, Lee NP, Lewis P, Philippar U, Bansal D, Buser C, Scott M, Mao M, Poon RTP, Fan ST, Cleary MA, Luk JM, Dai H. Gene signatures derived from a c-MET-driven liver cancer mouse model predict survival of patients with hepatocellular carcinoma. PLoS One 2011; 6:e24582. [PMID: 21949730 PMCID: PMC3174972 DOI: 10.1371/journal.pone.0024582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/14/2011] [Indexed: 02/06/2023] Open
Abstract
Biomarkers derived from gene expression profiling data may have a high false-positive rate and must be rigorously validated using independent clinical data sets, which are not always available. Although animal model systems could provide alternative data sets to formulate hypotheses and limit the number of signatures to be tested in clinical samples, the predictive power of such an approach is not yet proven. The present study aims to analyze the molecular signatures of liver cancer in a c-MET-transgenic mouse model and investigate its prognostic relevance to human hepatocellular carcinoma (HCC). Tissue samples were obtained from tumor (TU), adjacent non-tumor (AN) and distant normal (DN) liver in Tet-operator regulated (TRE) human c-MET transgenic mice (n = 21) as well as from a Chinese cohort of 272 HBV- and 9 HCV-associated HCC patients. Whole genome microarray expression profiling was conducted in Affymetrix gene expression chips, and prognostic significances of gene expression signatures were evaluated across the two species. Our data revealed parallels between mouse and human liver tumors, including down-regulation of metabolic pathways and up-regulation of cell cycle processes. The mouse tumors were most similar to a subset of patient samples characterized by activation of the Wnt pathway, but distinctive in the p53 pathway signals. Of potential clinical utility, we identified a set of genes that were down regulated in both mouse tumors and human HCC having significant predictive power on overall and disease-free survival, which were highly enriched for metabolic functions. In conclusions, this study provides evidence that a disease model can serve as a possible platform for generating hypotheses to be tested in human tissues and highlights an efficient method for generating biomarker signatures before extensive clinical trials have been initiated.
Collapse
Affiliation(s)
- Irena Ivanovska
- Rosetta Inpharmatics LLC, Merck & Co., Inc., Seattle, Washington, United States of America
- Merck Research Laboratories, Merck & Co., Inc., Boston, Massachusetts, United States of America
- * E-mail: (II) (II); (JML) (JL); (HD) (HD)
| | - Chunsheng Zhang
- Rosetta Inpharmatics LLC, Merck & Co., Inc., Seattle, Washington, United States of America
- Merck Research Laboratories, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Angela M. Liu
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology, Department of Surgery, and Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Kwong F. Wong
- Department of Pharmacology, Department of Surgery, and Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Nikki P. Lee
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Patrick Lewis
- Rosetta Inpharmatics LLC, Merck & Co., Inc., Seattle, Washington, United States of America
| | - Ulrike Philippar
- Merck Research Laboratories, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Dimple Bansal
- Merck Research Laboratories, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Carolyn Buser
- Molecular Profiling and Pharmacology, Merck & Co., Inc., North Wales, Pennsylvania, United States of America
| | - Martin Scott
- Merck Research Laboratories, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Mao Mao
- Rosetta Inpharmatics LLC, Merck & Co., Inc., Seattle, Washington, United States of America
| | - Ronnie T. P. Poon
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sheung Tat Fan
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Michele A. Cleary
- Rosetta Inpharmatics LLC, Merck & Co., Inc., Seattle, Washington, United States of America
| | - John M. Luk
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology, Department of Surgery, and Cancer Science Institute, National University of Singapore, Singapore, Singapore
- * E-mail: (II) (II); (JML) (JL); (HD) (HD)
| | - Hongyue Dai
- Rosetta Inpharmatics LLC, Merck & Co., Inc., Seattle, Washington, United States of America
- Merck Research Laboratories, Merck & Co., Inc., Boston, Massachusetts, United States of America
- * E-mail: (II) (II); (JML) (JL); (HD) (HD)
| |
Collapse
|
42
|
Viatour P, Ehmer U, Saddic LA, Dorrell C, Andersen JB, Lin C, Zmoos AF, Mazur PK, Schaffer BE, Ostermeier A, Vogel H, Sylvester KG, Thorgeirsson SS, Grompe M, Sage J. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. ACTA ACUST UNITED AC 2011; 208:1963-76. [PMID: 21875955 PMCID: PMC3182062 DOI: 10.1084/jem.20110198] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mice lacking all three Rb genes in the liver develop tumors resembling specific subgroups of human hepatocellular carcinomas, and Notch activity appears to suppress the growth and progression of these tumors. Hepatocellular carcinoma (HCC) is the third cancer killer worldwide with >600,000 deaths every year. Although the major risk factors are known, therapeutic options in patients remain limited in part because of our incomplete understanding of the cellular and molecular mechanisms influencing HCC development. Evidence indicates that the retinoblastoma (RB) pathway is functionally inactivated in most cases of HCC by genetic, epigenetic, and/or viral mechanisms. To investigate the functional relevance of this observation, we inactivated the RB pathway in the liver of adult mice by deleting the three members of the Rb (Rb1) gene family: Rb, p107, and p130. Rb family triple knockout mice develop liver tumors with histopathological features and gene expression profiles similar to human HCC. In this mouse model, cancer initiation is associated with the specific expansion of populations of liver stem/progenitor cells, indicating that the RB pathway may prevent HCC development by maintaining the quiescence of adult liver progenitor cells. In addition, we show that during tumor progression, activation of the Notch pathway via E2F transcription factors serves as a negative feedback mechanism to slow HCC growth. The level of Notch activity is also able to predict survival of HCC patients, suggesting novel means to diagnose and treat HCC.
Collapse
Affiliation(s)
- Patrick Viatour
- Department of Genetics, Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Medical Chemistry, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Maass T, Sfakianakis I, Staib F, Krupp M, Galle PR, Teufel A. Microarray-based gene expression analysis of hepatocellular carcinoma. Curr Genomics 2011; 11:261-8. [PMID: 21119890 PMCID: PMC2930665 DOI: 10.2174/138920210791233063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/13/2009] [Accepted: 01/06/2010] [Indexed: 01/12/2023] Open
Abstract
Microarray studies have successfully shed light on various aspects of the molecular mechanisms behind the development of hepatocellular carcinoma (HCC), such as the identification of novel molecular subgroups and the genetic profiles associated with metastasis and venous invasion. These experiments, mainly comprising genome wide profiling, potentially represent the basis of novel targeted therapeutic strategies in HCC. In response, we summarize the multiple reported expression profiles in HCC associated with HCC development, novel subgroups, venous invasion and metastasis.
Collapse
Affiliation(s)
- Thorsten Maass
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Shi Z, Moult J. Structural and functional impact of cancer-related missense somatic mutations. J Mol Biol 2011; 413:495-512. [PMID: 21763698 DOI: 10.1016/j.jmb.2011.06.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/13/2011] [Accepted: 06/28/2011] [Indexed: 01/11/2023]
Abstract
A number of large-scale cancer somatic genome sequencing projects are now identifying genetic alterations in cancers. Evaluation of the effects of these mutations is essential for understanding their contribution to tumorigenesis. We have used SNPs3D, a software suite originally developed for analyzing nonsynonymous germ-line variants, to identify single-base mutations with a high impact on protein structure and function. Two machine learning methods are used: one identifying mutations that destabilize protein three-dimensional structure and the other utilizing sequence conservation and detecting all types of effects on in vivo protein function. Incorporation of detailed structure information into the analysis allows detailed interpretation of the functional effects of mutations in specific cases. Data from a set of breast and colorectal tumors were analyzed. In known cancer genes, mutations approaching 100% of mutations are found to impact protein function, supporting the view that these methods are appropriate for identifying driver mutations. Overall, 50-60% of all somatic missense mutations are predicted to have a high impact on structural stability or to more generally affect the function of the corresponding proteins. This value is similar to the fraction of all possible missense mutations that have a high impact and is much higher than the corresponding one for human population single-nucleotide polymorphisms, at about 30%. The majority of mutations in tumor suppressors destabilize protein structure, while mutations in oncogenes operate in more varied ways, including destabilization of less active conformational states. The set of high-impact mutations encompasses the possible drivers.
Collapse
Affiliation(s)
- Zhen Shi
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | | |
Collapse
|
45
|
Frenette C, Gish RG. Hepatocellular carcinoma: molecular and genomic guideline for the clinician. Clin Liver Dis 2011; 15:307-21, vii-x. [PMID: 21689615 DOI: 10.1016/j.cld.2011.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Understanding of the genetic changes and molecular signaling pathways that are active in hepatocellular carcinoma has improved substantially over the last decade. As more information becomes available, it is clear that the prognostication of hepatocellular carcinoma will soon include molecular and genomic "fingerprints" that are unique to each cancer, which will allow more personalized treatment plans for patients as more targeted therapies become available. This article discusses the molecular and genomic changes that are important in hepatocellular carcinoma in order for clinicians to understand the current and forthcoming treatment options for patients with liver cancer.
Collapse
Affiliation(s)
- Catherine Frenette
- The Methodist Center for Liver Disease, J.C. Walter Transplant Center, Department of Medicine, The Methodist Hospital, 6550 Fannin Street, SM 1001, Houston, TX 77098, USA.
| | | |
Collapse
|
46
|
Abstract
Molecular and cell biology have revolutionized not only diagnosis, therapy and prevention of human diseases but also greatly contributed to the understanding of their pathogenesis. Based on modern molecular and biochemical methods it is possible to identify on the one hand point mutations and single nucleotide polymorphisms. On the other hand, using high throughput array technologies, it is possible to analyse thousands of genes or gene products simultaneously, resulting in an individual gene or gene expression profile (signature). These data increasingly allow to define the individual risk for a given disease and to predict the individual prognosis of a disease as well as the efficacy of therapeutic strategies (individualized medicine). In the following sections some of the recent advances of predictive medicine and their clinical relevance will be addressed.
Collapse
Affiliation(s)
- Hubert E Blum
- Department of Medicine II, University Hospital Freiburg, Germany.
| |
Collapse
|
47
|
Kirovski G, Stevens AP, Czech B, Dettmer K, Weiss TS, Wild P, Hartmann A, Bosserhoff AK, Oefner PJ, Hellerbrand C. Down-regulation of methylthioadenosine phosphorylase (MTAP) induces progression of hepatocellular carcinoma via accumulation of 5'-deoxy-5'-methylthioadenosine (MTA). THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1145-52. [PMID: 21356366 DOI: 10.1016/j.ajpath.2010.11.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 11/06/2010] [Accepted: 11/23/2010] [Indexed: 01/17/2023]
Abstract
Recently, we have shown that down-regulation of methylthioadenosine phosphorylase (MTAP) in hepatocellular carcinoma (HCC) cells enhances the invasive potential and the resistance against cytokines. Here, we aimed at investigating the molecular mechanism underlying this tumor-promoting effect and expanded the analysis to a large series of human HCC tissues. Liquid chromatography tandem mass spectrometry revealed that reduced MTAP expression resulted in higher intra- and extracellular concentrations of 5'-deoxy-5'-methylthioadenosine (MTA) in cultivated HCC cells and, concordantly, higher levels of MTA in HCC tissue. MTA induced matrix metalloproteinase (MMP) and interleukin-8 transcription in HCC cells in vitro, accompanied by enhanced proliferation and activation of the transcription factor NFκB. In addition, MTA secreted by HCC cells induced expression of fibroblast growth factor-2 and MMP1 in stromal myofibroblasts. In human HCC tissues, MTAP mRNA correlated inversely with MTA levels, and immunohistochemical analysis of a tissue microarray of 140 human HCCs revealed that low MTAP protein expression correlated with advanced tumor stages. In conclusion, MTAP deficiency results in accumulation of MTA, which is associated with increased tumorigenicity. These data further indicate MTAP as a tumor suppressor in HCC, and MTA as a potential biomarker for HCC progression.
Collapse
Affiliation(s)
- Georgi Kirovski
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu Z, Ma Y, Yang J, Qin H. Upregulated and Downregulated Proteins in Hepatocellular Carcinoma: A Systematic Review of Proteomic Profiling Studies. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:61-71. [PMID: 20726783 DOI: 10.1089/omi.2010.0061] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhihua Liu
- Evidence-Based Medicine Group, Department of Surgery, the Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yanlei Ma
- Evidence-Based Medicine Group, Department of Surgery, the Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jianjun Yang
- Evidence-Based Medicine Group, Department of Surgery, the Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Huanlong Qin
- Evidence-Based Medicine Group, Department of Surgery, the Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
49
|
Ozturk M, Oter S. Molecular approach to treatment of hepatocellular carcinoma: new hope for therapeutic targets. ACTA ACUST UNITED AC 2011. [DOI: 10.5455/jeim.130411.ed.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Park YY, Choi HS, Lee JS. Systems-level analysis of gene expression data revealed NR0B2/SHP as potential tumor suppressor in human liver cancer. Mol Cells 2010; 30:485-91. [PMID: 20853064 DOI: 10.1007/s10059-010-0136-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/02/2010] [Accepted: 08/16/2010] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors (NRs) play pivotal roles in cell growth, proliferation, differentiation and homeostasis. Recent progress demonstrates that NR is tightly linked to human disease such as cancer, diabetes and obesity. Here we explore NR expression profiles in human tissue using systematic approaches. NR gene profiles reveal that individual NR has its own gene expression signature depending on tissue type. Of many organs, NRs expression is enriched in liver. Expression of many NRs was significantly changed in liver cancer. Notably, NR0B2/SHP expression level was significantly decreased in human liver cancer but not in normal liver. In addition, expression of SHP is well associated with good prognosis. SHP gene network analysis based on microarray data in liver cancer shows that SHP regulates cell proliferation and metabolism related gene sets. Our systematic approaches suggest that loss of SHP expression in liver might be key genetic events during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yun-Yong Park
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | | | | |
Collapse
|