1
|
Di Zazzo E, Rienzo M, Casamassimi A, Gazzerro P, Abbondanza C. Recent Updates on PRDM2 in Colorectal Cancer. FRONT BIOSCI-LANDMRK 2024; 29:316. [PMID: 39344327 DOI: 10.31083/j.fbl2909316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024]
Affiliation(s)
- Erika Di Zazzo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
2
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Di Zazzo E, Rienzo M, Casamassimi A, De Rosa C, Medici N, Gazzerro P, Bifulco M, Abbondanza C. Exploring the putative role of PRDM1 and PRDM2 transcripts as mediators of T lymphocyte activation. J Transl Med 2023; 21:217. [PMID: 36964555 PMCID: PMC10039509 DOI: 10.1186/s12967-023-04066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND T cell activation and programming from their naïve/resting state, characterized by widespread modifications in chromatin accessibility triggering extensive changes in transcriptional programs, is orchestrated by several cytokines and transcription regulators. PRDM1 and PRDM2 encode for proteins with PR/SET and zinc finger domains that control several biological processes, including cell differentiation, through epigenetic regulation of gene expression. Different transcripts leading to main protein isoforms with (PR +) or without (PR-) the PR/SET domain have been described. Although many studies have established the critical PRDM1 role in hematopoietic cell differentiation, maintenance and/or function, the single transcript contribution has not been investigated before. Otherwise, very few evidence is currently available on PRDM2. Here, we aimed to analyze the role of PRDM1 and PRDM2 different transcripts as mediators of T lymphocyte activation. METHODS We analyzed the transcription signature of the main variants from PRDM1 (BLIMP1a and BLIMP1b) and PRDM2 (RIZ1 and RIZ2) genes, in human T lymphocytes and Jurkat cells overexpressing PRDM2 cDNAs following activation through different signals. RESULTS T lymphocyte activation induced an early increase of RIZ2 and RIZ1 followed by BLIMP1b increase and finally by BLIMP1a increase. The "first" and the "second" signals shifted the balance towards the PR- forms for both genes. Interestingly, the PI3K signaling pathway modulated the RIZ1/RIZ2 ratio in favor of RIZ1 while the balance versus RIZ2 was promoted by MAPK pathway. Cytokines mediating different Jak/Stat signaling pathways (third signal) early modulated the expression of PRDM1 and PRDM2 and the relationship of their different transcripts confirming the early increase of the PR- transcripts. Different responses of T cell subpopulations were also observed. Jurkat cells showed that the acute transient RIZ2 increase promoted the balancing of PRDM1 forms towards BLIMP1b. The stable forced expression of RIZ1 or RIZ2 induced a significant variation in the expression of key transcription factors involved in T lymphocyte differentiation. The BLIMP1a/b balance shifted in favor of BLIMP1a in RIZ1-overexpressing cells and of BLIMP1b in RIZ2-overexpressing cells. CONCLUSIONS This study provides the first characterization of PRDM2 in T-lymphocyte activation/differentiation and novel insights on PRDM1 and PRDM2 transcription regulation during initial activation phases.
Collapse
Affiliation(s)
- Erika Di Zazzo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Caterina De Rosa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Nicola Medici
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084, Salerno, Fisciano (SA), Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131, Naples, Italy
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| |
Collapse
|
4
|
Pokorny R, Stenehjem DD, Gilreath JA. Impact of metformin on tyrosine kinase inhibitor response in chronic myeloid leukemia. J Oncol Pharm Pract 2022; 28:916-923. [PMID: 35132891 PMCID: PMC9047107 DOI: 10.1177/10781552221077254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective Oral tyrosine kinase inhibitors (TKIs) are first line therapy for chronic myeloid leukemia (CML). A complete cytogenetic response (CCyR) correlates with increased overall survival, however only 66%–88% of patients achieve CCyR after one year of TKI treatment. Because TKI therapy alone cannot eliminate CML stem cells, strategies aimed at achieving faster and deeper responses are needed to improve long-term survival. Metformin is a widely prescribed glucose-lowering agent for patients with diabetes and in preclinical studies, has been shown to suppress cell viability, induce apoptosis, and downregulate the mTORC1 signaling pathway in imatinib resistant CML cell lines (K562R). This study aims to investigate the utility of metformin added to TKI therapy in patients with CML. Data Sources An observational study at an academic medical center (Salt Lake City, UT) was performed for adults with newly diagnosed, chronic-phase CML to evaluate attainment of CCyR from TKI therapy with or without concomitant metformin use. Descriptive analyses were used to describe baseline characteristics and attainment of response to TKI therapy. Data Summary Fifty-nine patients were evaluated. One hundred percent (5 of 5) in the metformin group and 73.6% (39 of 54) in the non-metformin group achieved CCyR. Approximately 20% of patients in both groups relapsed (defined by a loss of CCyR during study) after a median 34.5 months of follow-up. Conclusions Future research is warranted to validate these findings and determine the utility of metformin added to TKI therapy.
Collapse
Affiliation(s)
- Rebecca Pokorny
- Department of Pharmacy, 20270Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David D Stenehjem
- Department of Pharmacy Practice and Pharmaceutical Sciences, 14713University of Minnesota, College of Pharmacy, Duluth, MN, USA
| | - Jeffrey A Gilreath
- Department of Pharmacotherapy, College of Pharmacy and 20270Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Di Tullio F, Schwarz M, Zorgati H, Mzoughi S, Guccione E. The duality of PRDM proteins: epigenetic and structural perspectives. FEBS J 2021; 289:1256-1275. [PMID: 33774927 DOI: 10.1111/febs.15844] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/26/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
PRDF1 and RIZ1 homology domain containing (PRDMs) are a subfamily of Krüppel-like zinc finger proteins controlling key processes in metazoan development and in cancer. PRDMs exhibit unique dualities: (a) PR domain/ZNF arrays-their structure combines a SET-like domain known as a PR domain, typically found in methyltransferases, with a variable array of C2H2 zinc fingers (ZNF) characteristic of DNA-binding transcription factors; (b) transcriptional activators/repressors-their physiological function is context- and cell-dependent; mechanistically, some PRDMs have a PKMT activity and directly catalyze histone lysine methylation, while others are rather pseudomethyltransferases and act by recruiting transcriptional cofactors; (c) oncogenes/tumor suppressors-their pathological function depends on the specific PRDM isoform expressed during tumorigenesis. This duality is well known as the 'Yin and Yang' of PRDMs and involves a complex regulation of alternative splicing or alternative promoter usage, to generate full-length or PR-deficient isoforms with opposing functions in cancer. In conclusion, once their dualities are fully appreciated, PRDMs represent a promising class of targets in oncology by virtue of their widespread upregulation across multiple tumor types and their somatic dispensability, conferring a broad therapeutic window and limited toxic side effects. The recent discovery of a first-in-class compound able to inhibit PRDM9 activity has paved the way for the identification of further small molecular inhibitors able to counteract PRDM oncogenic activity.
Collapse
Affiliation(s)
- Federico Di Tullio
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan Schwarz
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Habiba Zorgati
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Slim Mzoughi
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ernesto Guccione
- Department of Oncological Sciences and Pharmacological Sciences, Center for Therapeutics Discovery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Zhou M, Yin X, Zheng L, Fu Y, Wang Y, Cui Z, Gao Z, Wang X, Huang T, Jia J, Chen C. miR-181d/RBP2/NF-κB p65 Feedback Regulation Promotes Chronic Myeloid Leukemia Blast Crisis. Front Oncol 2021; 11:654411. [PMID: 33842368 PMCID: PMC8027495 DOI: 10.3389/fonc.2021.654411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023] Open
Abstract
Background Chronic myeloid leukemia (CML) is a malignant clonal proliferative disease. Once it progresses into the phase of blast crisis (CML-BP), the curative effect is poor, and the fatality rate is extremely high. Therefore, it is urgent to explore the molecular mechanisms of blast crisis and identify new therapeutic targets. Methods The expression levels of miR-181d, RBP2 and NF-κB p65 were assessed in 42 newly diagnosed CML-CP patients and 15 CML-BP patients. Quantitative real-time PCR, Western blots, and cell proliferation assay were used to characterize the changes induced by overexpression or inhibition of miR-181d, RBP2 or p65. Luciferase reporter assay and ChIP assay was conducted to establish functional association between miR-181d, RBP2 and p65. Inhibition of miR-181d expression and its consequences in tumor growth was demonstrated in vivo models. Results We found that miR-181d was overexpressed in CML-BP, which promoted leukemia cell proliferation. Histone demethylase RBP2 was identified as a direct target of miR-181d which downregulated RBP2 expression. Moreover, RBP2 inhibited transcriptional expression of NF-κB subunit, p65 by binding to its promoter and demethylating the tri/dimethylated H3K4 region in the p65 promoter locus. In turn, p65 directly bound to miR-181d promoter and upregulated its expression. Therefore, RBP2 inhibition resulting from miR-181d overexpression led to p65 upregulation which further forwarded miR-181d expression. This miR-181d/RBP2/p65 feedback regulation caused sustained NF-κB activation, which contributed to the development of CML-BP. Conclusions Taken together, the miR-181d/RBP2/p65 feedback regulation promoted CML-BP and miR-181d may serve as a potential therapeutic target of CML-BP.
Collapse
Affiliation(s)
- Minran Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaolin Yin
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yue Fu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Wang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, China
| | - Zelong Cui
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhenxing Gao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoming Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Huang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Jones R, Wijesinghe S, Wilson C, Halsall J, Liloglou T, Kanhere A. A long intergenic non-coding RNA regulates nuclear localization of DNA methyl transferase-1. iScience 2021; 24:102273. [PMID: 33851096 PMCID: PMC8022221 DOI: 10.1016/j.isci.2021.102273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/21/2020] [Accepted: 03/02/2021] [Indexed: 01/10/2023] Open
Abstract
DNA methyl transferase-1 or DNMT1 maintains DNA methylation in the genome and is important for regulating gene expression in cells. Aberrant changes in DNMT1 activity and DNA methylation are commonly observed in cancers and many other diseases. Recently, a number of long intergenic non-protein-coding RNAs or lincRNAs have been shown to play a role in regulating DNMT1 activity. CCDC26 is a nuclear lincRNA that is frequently mutated in cancers and is a hotbed for disease-associated single nucleotide changes. However, the functional mechanism of CCDC26 is not understood. Here, we show that this lincRNA is concentrated on the nuclear periphery. Strikingly, in the absence of CCDC26 lincRNA, DNMT1 is mis-located in the cytoplasm, and the genomic DNA is significantly hypomethylated. This is accompanied by double-stranded DNA breaks and increased cell death. These results point to a previously unrecognized mechanism of lincRNA-mediated subcellular localization of DNMT1 and regulation of DNA methylation.
Collapse
Affiliation(s)
- Rhian Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Susanne Wijesinghe
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK
| | - Claire Wilson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - John Halsall
- Institute of Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Triantafillos Liloglou
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Chi C, Ye Y, Chen B, Huang H. Bipartite graph-based approach for clustering of cell lines by gene expression-drug response associations. Bioinformatics 2021; 37:2617-2626. [PMID: 33682877 PMCID: PMC8428606 DOI: 10.1093/bioinformatics/btab143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 01/29/2023] Open
Abstract
MOTIVATION In pharmacogenomic studies, the biological context of cell lines influences the predictive ability of drug-response models and the discovery of biomarkers. Thus, similar cell lines are often studied together based on prior knowledge of biological annotations. However, this selection approach is not scalable with the number of annotations, and the relationship between gene-drug association patterns and biological context may not be obvious. RESULTS We present a procedure to compare cell lines based on their gene-drug association patterns. Starting with a grouping of cell lines from biological annotation, we model gene-drug association patterns for each group as a bipartite graph between genes and drugs. This is accomplished by applying sparse canonical correlation analysis (SCCA) to extract the gene-drug associations, and using the canonical vectors to construct the edge weights. Then, we introduce a nuclear norm-based dissimilarity measure to compare the bipartite graphs. Accompanying our procedure is a permutation test to evaluate the significance of similarity of cell line groups in terms of gene-drug associations. In the pharmacogenomics datasets CTRP2, GDSC2, and CCLE, hierarchical clustering of carcinoma groups based on this dissimilarity measure uniquely reveals clustering patterns driven by carcinoma subtype rather than primary site. Next, we show that the top associated drugs or genes from SCCA can be used to characterize the clustering patterns of haematopoietic and lymphoid malignancies. Finally, we confirm by simulation that when drug responses are linearly-dependent on expression, our approach is the only one that can effectively infer the true hierarchy compared to existing approaches. AVAILABILITY Bipartite graph-based hierarchical clustering is implemented in R and can be obtained from CRAN: https://CRAN.R-project.org/package=hierBipartite. The source code is available at https://github.com/CalvinTChi/hierBipartite. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Calvin Chi
- Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Yuting Ye
- Division of Biostatistics, University of California, Berkeley, CA 94720, USA
| | - Bin Chen
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 48912, USA.,Department of Pharmacology and Toxicology, Michigan State University, Grand Rapids, MI 48824, USA
| | - Haiyan Huang
- Center for Computational Biology, University of California, Berkeley, CA 94720, USA.,Department of Statistics, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
10
|
The intrinsically disordered E-domains regulate the IGF-1 prohormones stability, subcellular localisation and secretion. Sci Rep 2018; 8:8919. [PMID: 29891966 PMCID: PMC5995926 DOI: 10.1038/s41598-018-27233-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 02/08/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is synthesised as a prohormone (proIGF-1) requiring enzymatic activity to yield the mature IGF-1. Three proIGF-1s are encoded by alternatively spliced IGF-1 mRNAs: proIGF-1Ea, proIGF-1Eb and proIGF-1Ec. These proIGF-1s have a common IGF-1 mature sequence but different E-domains. The structure of the E-domains has not been resolved, and their molecular functions are still unclear. Here, we show that E-domains are Intrinsically Disordered Regions that have distinct regulatory functions on proIGF-1s production. In particular, we identified a highly conserved N-glycosylation site in the Ea-domain, which regulated intracellular proIGF-1Ea level preventing its proteasome-mediated degradation. The inhibition of N-glycosylation by tunicamycin or glucose starvation markedly reduced proIGF-1Ea and mature IGF-1 production. Interestingly, 2-deoxyglucose, a glucose and mannose analogue, increased proIGF-1Ea and mature IGF-1 levels, probably leading to an accumulation of an under-glycosylated proIGF-1Ea that was still stable and efficiently secreted. The proIGF-1Eb and proIGF-1Ec were devoid of N-glycosylation sites, and hence their production was unaffected by N-glycosylation inhibitors. Moreover, we demonstrated that alternative Eb- and Ec-domains controlled the subcellular localisation of proIGF-1s, leading to the nuclear accumulation of both proIGF-1Eb and proIGF-1Ec. Our results demonstrated that E-domains are regulatory elements that control IGF-1 production and secretion.
Collapse
|
11
|
Sorrentino A, Rienzo M, Ciccodicola A, Casamassimi A, Abbondanza C. Human PRDM2: Structure, function and pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30071-3. [PMID: 29883756 DOI: 10.1016/j.bbagrm.2018.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
PRDM2/RIZ is a member of a superfamily of histone/protein methyltransferases (PRDMs), which are characterized by the conserved N-terminal PR domain, with methyltransferase activity and zinc finger arrays at the C-terminus. Similar to other family members, two main protein types, known as RIZ1 and RIZ2, are produced from the PRDM2 locus differing by the presence or absence of the PR domain. The imbalance in their respective amounts may be an important cause of malignancy, with the PR-positive isoform commonly lost or downregulated and the PR-negative isoform always being present at higher levels in cancer cells. Interestingly, the RIZ1 isoform also represents an important target of estradiol action downstream of the interaction with hormone receptor. Furthermore, the imbalance between the two products could also be a molecular basis for other human diseases. Thus, understanding the molecular mechanisms underlying PRDM2 function could be useful in the pathophysiological context, with a potential to exploit this information in clinical practice.
Collapse
Affiliation(s)
- A Sorrentino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Department of Science and Technology, University of Naples "Parthenope", Naples, Italy
| | - M Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - A Ciccodicola
- Department of Science and Technology, University of Naples "Parthenope", Naples, Italy; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy
| | - A Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - C Abbondanza
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
12
|
Liu Q, Qu X, Xie X, He P, Huang S. Repression of Akt3 gene transcription by the tumor suppressor RIZ1. Sci Rep 2018; 8:1528. [PMID: 29367689 PMCID: PMC5784169 DOI: 10.1038/s41598-018-19943-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/10/2018] [Indexed: 12/04/2022] Open
Abstract
RIZ1 has been studied as a tumor suppressor and may play a role in metabolic diseases related to the Western style diet, such as cancer and obesity. The Akt pathway is known to play a role in both cancer and obesity, and a link between Akt and RIZ1 has also been found. To better understand the role of RIZ1 in obesity and cancer, we investigated how RIZ1 regulates the expression of Akt3. We found that overexpression of RIZ1 in HEK293 cells reduced the expression of Akt3 protein. Luciferase reporter activity of Akt3 gene promoter was significantly reduced in cells co-transfected with RIZ1. Recombinant proteins of RIZ1 was able to bind the Akt3 promoter in vitro, and chromatin immunoprecipitation assay also demonstrated the ability of RIZ1 binding to the Akt3 promoter in vivo. Overexpression of RIZ1 increased H3K9 methylation on the Akt3 promoter. These results identify Akt3 as a target of RIZ1 regulation and expand our understanding of the Akt pathway in cancer and obesity.
Collapse
Affiliation(s)
- Qingnan Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Department of Pathology, YiYang Medical College, Yiyang, Hunan, China
| | - Xiaotian Qu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaolei Xie
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Pei He
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Shi Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Pandzic T, Rendo V, Lim J, Larsson C, Larsson J, Stoimenov I, Kundu S, Ali MA, Hellström M, He L, Lindroth AM, Sjöblom T. Somatic PRDM2 c.4467delA mutations in colorectal cancers control histone methylation and tumor growth. Oncotarget 2017; 8:98646-98659. [PMID: 29228717 PMCID: PMC5716757 DOI: 10.18632/oncotarget.21713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/26/2017] [Indexed: 12/12/2022] Open
Abstract
The chromatin modifier PRDM2/RIZ1 is inactivated by mutation in several forms of cancer and is a putative tumor suppressor gene. Frameshift mutations in the C-terminal region of PRDM2, affecting (A)8 or (A)9 repeats within exon 8, are found in one third of colorectal cancers with microsatellite instability, but the contribution of these mutations to colorectal tumorigenesis is unknown. To model somatic mutations in microsatellite unstable tumors, we devised a general approach to perform genome editing while stabilizing the mutated nucleotide repeat. We then engineered isogenic cell systems where the PRDM2 c.4467delA mutation in human HCT116 colorectal cancer cells was corrected to wild-type by genome editing. Restored PRDM2 increased global histone 3 lysine 9 dimethylation and reduced migration, anchorage-independent growth and tumor growth in vivo. Gene set enrichment analysis revealed regulation of several hallmark cancer pathways, particularly of epithelial-to-mesenchymal transition (EMT), with VIM being the most significantly regulated gene. These observations provide direct evidence that PRDM2 c.4467delA is a driver mutation in colorectal cancer and confirms PRDM2 as a cancer gene, pointing to regulation of EMT as a central aspect of its tumor suppressive action.
Collapse
Affiliation(s)
- Tatjana Pandzic
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Veronica Rendo
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jinyeong Lim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Republic of Korea
| | - Chatarina Larsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jimmy Larsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ivaylo Stoimenov
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Snehangshu Kundu
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Muhammad Akhtar Ali
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mats Hellström
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Liqun He
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anders M. Lindroth
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang-si, Republic of Korea
| | - Tobias Sjöblom
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
RIZ1 is regulated by estrogen and suppresses tumor progression in endometrial cancer. Biochem Biophys Res Commun 2017; 489:96-102. [PMID: 28528974 DOI: 10.1016/j.bbrc.2017.05.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 11/22/2022]
Abstract
Endometrial cancer (EC) is the estrogen-dependent gynecologic malignancy, however the molecular mechanism involved in the development and progression of EC remain unclear. The aim of this study was to investigate the role of RIZ1 in EC. Immunohistochemical analysis revealed that RIZ1was decreased in EC than in normal endometrium. Lower RIZ1 level was correlated with high-grade carcinoma (p = 0.048) and positive expression of ERα (p = 0.004). In EC cells, estrogen could down regulated the expression of RIZ1, however, ICI182,780 could up regulated the expression of RIZ1. Besides, in vitro and in vivo, RIZ1 could remarkably suppress tumor proliferation, metastasis and invasion. Our data support that RIZ1 was a novel tumor suppressor and could provide a potential therapeutic target in human EC.
Collapse
|
15
|
Mori N, Ohwashi-Miyazaki M, Yoshinaga K, Okada M, Shiseki M, Motoji T, Tanaka J. Tumor suppressor gene methylation on the short arm of chromosome 1 in chronic myelogenous leukemia. Eur J Haematol 2017; 98:467-477. [PMID: 28129457 DOI: 10.1111/ejh.12857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We previously reported loss of heterozygosity on 1p in chronic myelogenous leukemia (CML). We analyzed promoter methylation and mutation of tumor suppressor genes on 1p36 in CML. METHODS We performed methylation-specific PCR (MS-PCR) analysis of the PRDM2, RUNX3, and TP73 genes in 61 patients with CML (43 chronic phase, CP; two accelerated phase; and 16 blast crisis, BC). Oxidative MS-PCR, PCR-single-strand conformation polymorphism, and real-time reverse transcriptase PCR were also analyzed. K-562 cells were grown in the presence of 5-Aza-dC and trichostatin A. RESULTS Methylation of the PRDM2, RUNX3, and TP73 genes was detected in 24/60 (40%), 21/61 (34%), and 28/60 (47%) patients, respectively. Methylation of all three genes was detected in 19/59 (32%) patients. Methylation was more frequent in BC than in CP. Oxidative MS-PCR analysis detected 5-mC in the PRDM2, RUNX3, and TP73 genes in 10/22 (45%), 15/21 (71%), and 16/26 (62%) samples with methylation detected by MS-PCR, respectively. Decreased expression was observed in several samples with methylation, while no mutations were found in the genes. Treatment of K-562 cells induced growth suppression, demethylation, and reexpression of the PRDM2 and RUNX3 genes. CONCLUSION Multiple tumor suppressor genes on 1p were inactivated in CML by methylation.
Collapse
Affiliation(s)
- Naoki Mori
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Kentaro Yoshinaga
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Michiko Okada
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Shiseki
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiko Motoji
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
16
|
Mir R, Najar IA, Guru S, Javaid J, Yadav P, Masroor M, Zuberi M, Farooq S, Bhat M, Gupta N, Ray PC, Saxena A. A deletion polymorphism in the RIZ gene is associated with increased progression of imatinib treated chronic myeloid leukemia patients. Leuk Lymphoma 2016; 58:1694-1701. [PMID: 27830966 DOI: 10.1080/10428194.2016.1251589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
RIZ1 encodes a retinoblastoma (Rb)-interacting zinc finger protein, is commonly lost or expressed at reduced levels in cancer cells. The RIZ1 gene locus commonly undergoes LOH in many cancers. Here, we analyzed Proline insertion-deletion polymorphism at amino acid position 704 in the RIZ1 gene and its association with CML. The RIZ1 pro-704 LOH genotypes were determined by AS-PCR in 100 CML patients among which 50 were in CP-CML, 25 in AP-CML, and 25 in BC-CML. Pro704 ins/del polymorphism (LOH) was detected in 27% CML patients. Proline ins-ins homozygosity, del-del homozygosity and ins-del heterozygosity was detected in 9%, 18%, and 73% CML patients compared with 3%, 3%, and 94% in healthy controls, respectively (p < .0003). A four-fold increased risk was found to be associated del-del genotype. We found a statistically significant association between RIZ1 LOH and stage (p > .01) and hematological resistance (p > .001). However, there were no correlations found with other clinical parameters like age, gender, thrombocytopia, type of BCR-ABL, and molecular response. Our findings suggest that proline 704 del-del homozygosity phenotype can play an important role in progression of CML.
Collapse
Affiliation(s)
- Rashid Mir
- a Prince Fahd Bin Sultan Research Chair, Cancer Molecular Genetics, Faculty of Applied Medical Sciences , University of Tabuk , Tabuk , Saudi Arabia
| | - Imtiyaz Ah Najar
- b Department of Biochemistry , Maulana Azad Medical College and Associated Hospitals , New Delhi , India
| | - Sameer Guru
- b Department of Biochemistry , Maulana Azad Medical College and Associated Hospitals , New Delhi , India
| | - Jamsheed Javaid
- b Department of Biochemistry , Maulana Azad Medical College and Associated Hospitals , New Delhi , India
| | - Prasant Yadav
- b Department of Biochemistry , Maulana Azad Medical College and Associated Hospitals , New Delhi , India
| | - Mirza Masroor
- b Department of Biochemistry , Maulana Azad Medical College and Associated Hospitals , New Delhi , India
| | - Mariyam Zuberi
- b Department of Biochemistry , Maulana Azad Medical College and Associated Hospitals , New Delhi , India
| | - Shazia Farooq
- b Department of Biochemistry , Maulana Azad Medical College and Associated Hospitals , New Delhi , India
| | - Musadiq Bhat
- b Department of Biochemistry , Maulana Azad Medical College and Associated Hospitals , New Delhi , India
| | - Naresh Gupta
- c Department of Medicine , Maulana Azad Medical College and Associated Hospitals , New Delhi , India
| | - Prakash Chander Ray
- b Department of Biochemistry , Maulana Azad Medical College and Associated Hospitals , New Delhi , India
| | - Alpana Saxena
- b Department of Biochemistry , Maulana Azad Medical College and Associated Hospitals , New Delhi , India
| |
Collapse
|
17
|
Lei Q, Liu X, Fu H, Sun Y, Wang L, Xu G, Wang W, Yu Z, Liu C, Li P, Feng J, Li G, Wu M. miR-101 reverses hypomethylation of the PRDM16 promoter to disrupt mitochondrial function in astrocytoma cells. Oncotarget 2016; 7:5007-22. [PMID: 26701852 PMCID: PMC4826261 DOI: 10.18632/oncotarget.6652] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 12/05/2015] [Indexed: 01/17/2023] Open
Abstract
Our previous report identified PR domain containing 16 (PRDM16), a member of the PR-domain gene family, as a new methylation associated gene in astrocytoma cells. This previous study also reported that miR-101 is a tumor suppressor in glioma. The present study confirms that PRDM16 is a hypomethylated gene that can be overexpressed in astrocytoma patients and demonstrates that the hypomethylation status of the PRDM16 promoter can predict poor prognoses for astrocytoma patients. The results reported herein show that PRDM16 was inhibited by miR-101 directly and also through epigenetic regulation. PRDM16 was confirmed as a new target of miR-101 and shown to be directly inhibited by miR-101. miR-101 also decreased the expression of PRDM16 by altering the methylation status of the PRDM16 promoter. miR-101 was associated with a decrease in the methylation-related histones H3K4me2 and H3K27me3 and an increase in H3K9me3 and H4K20me3 on the PRDM16 promoter. In addition, EZH2, EED and DNMT3A were identified as direct targets of miR-101, and miR-101 suppressed PRDM16 expression by targeting DNMT3A which decreases histone H3K27me3 and H3K4me2 at the PRDM16 core promoter. The results reported here demonstrate that miR-101 disrupted cellular mitochondrial function and induced cellular apoptosis via the mitochondrial pathway; for example, MMP and ATP levels decreased, while there was an increase in ADP/ATP ratios and ROS levels, levels of cleaved Caspase-9 and cleaved-PARP, the Bax/Bcl-2 ratios, and Smac release from the mitochondria to the cytoplasm. Knockdown of PRDM16 reversed the anti-apoptotic effect of miR-101 inhibition. In summary, miR-101 reversed the hypomethylation of the PRDM16 promoter which suppressed the expression of PRDM16, disrupted cellular mitochondrial function, and induced cellular apoptosis.
Collapse
Affiliation(s)
- Qianqian Lei
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Xiaoping Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Haijuan Fu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Liping Wang
- Department of Oncology, The First Hospital of Chenzhou City, 423000, Hunan, China
| | - Gang Xu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Wei Wang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Zhibin Yu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Changhong Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Peiyao Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Jianbo Feng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| | - Minghua Wu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, Hunan, China
| |
Collapse
|
18
|
Xie X, Man X, Zhu Z, Yuan D, Huang S. Tumor suppressor RIZ1 in obesity and the PI3K/AKT/mTOR pathway. Obesity (Silver Spring) 2016; 24:389-97. [PMID: 26709097 DOI: 10.1002/oby.21364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the shared molecular pathways of obesity and cancer by exploring the role of RIZ1 in obesity and the phospatidylinositol 3-kinase (PI3K)/V-Akt murine thymoma viral oncogene homolog (PKB) (AKT)/mechanistic target of rapamycin (mTOR) pathway. METHODS Male wild type (WT) and Riz1(-/-) mice (KO) were fed a standard diet (STD) or a high-fat (HF) diet for up to 8 months. These mice were studied for phenotypic and molecular changes. RESULTS Riz1(-/-) mice gained more weight on a HF diet compared to WT mice, with higher free fatty acid and increased visceral fat. Metabolic cage analysis of Riz1(-/-) mice showed lower oxygen consumption but no changes in food intake and ambulatory activity. Riz1(-/-) mice showed impaired glucose regulation but no change in insulin sensitivity. RNA-seq and quantitative RT-PCR analysis found altered expression in certain glycolysis and ATP production genes such as Ubiad1, Atp5g2, and Cyp4a12. The PI3K/AKT/mTOR pathway was activated in the Riz1(-/-) mice fed a HF diet with higher Akt3 mRNA levels and increased phosphorylation of AKT (Ser473), mTOR, and S6. CONCLUSIONS The results identify RIZ1 as an important regulator of both Akt3 transcription and AKT phosphorylation and suggest a role for RIZ1 in HF-induced obesity and the AKT pathway.
Collapse
Affiliation(s)
- Xiaolei Xie
- State Key Lab of Medical Genetics, Xiangya Medical School, Central South University, Changsha, China
| | - Xian Man
- State Key Lab of Medical Genetics, Xiangya Medical School, Central South University, Changsha, China
| | - Zuobin Zhu
- State Key Lab of Medical Genetics, Xiangya Medical School, Central South University, Changsha, China
| | - Dejian Yuan
- State Key Lab of Medical Genetics, Xiangya Medical School, Central South University, Changsha, China
| | - Shi Huang
- State Key Lab of Medical Genetics, Xiangya Medical School, Central South University, Changsha, China
| |
Collapse
|
19
|
The role of PRDMs in cancer: one family, two sides. Curr Opin Genet Dev 2016; 36:83-91. [DOI: 10.1016/j.gde.2016.03.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/24/2016] [Indexed: 12/24/2022]
|
20
|
Chi J, Cohen P. The Multifaceted Roles of PRDM16: Adipose Biology and Beyond. Trends Endocrinol Metab 2016; 27:11-23. [PMID: 26688472 DOI: 10.1016/j.tem.2015.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 01/07/2023]
Abstract
The PRDM [PRDI-BFI (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain containing] protein family is involved in a spectrum of biological processes including cell fate determination and development. These proteins regulate transcription through intrinsic chromatin-modifying activity or by complexing with histone-modifying or other nuclear proteins. Studies have indicated crucial roles for PRDM16 in the determination and function of brown and beige fat as well as in hematopoiesis and cardiac development, highlighting the importance of PRDM16 in developmental processes in different tissues. More recently, PRDM16 mutations were also identified in humans. The substantial progress in understanding the mechanism underlying the action of PRDM16 in adipose biology may have relevance to other PRDM family members, and this new knowledge has the potential to be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Jingyi Chi
- The Rockefeller University, Laboratory of Molecular Metabolism, New York, NY 10065, USA
| | - Paul Cohen
- The Rockefeller University, Laboratory of Molecular Metabolism, New York, NY 10065, USA.
| |
Collapse
|
21
|
Guo T, Chung J, Wang T, McDonald-McGinn D, Kates W, Hawuła W, Coleman K, Zackai E, Emanuel B, Morrow B. Histone Modifier Genes Alter Conotruncal Heart Phenotypes in 22q11.2 Deletion Syndrome. Am J Hum Genet 2015; 97:869-77. [PMID: 26608785 DOI: 10.1016/j.ajhg.2015.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/23/2015] [Indexed: 12/18/2022] Open
Abstract
We performed whole exome sequence (WES) to identify genetic modifiers on 184 individuals with 22q11.2 deletion syndrome (22q11DS), of whom 89 case subjects had severe congenital heart disease (CHD) and 95 control subjects had normal hearts. Three genes including JMJD1C (jumonji domain containing 1C), RREB1 (Ras responsive element binding protein 1), and SEC24C (SEC24 family member C) had rare (MAF < 0.001) predicted deleterious single-nucleotide variations (rdSNVs) in seven case subjects and no control subjects (p = 0.005; Fisher exact and permutation tests). Because JMJD1C and RREB1 are involved in chromatin modification, we investigated other histone modification genes. Eighteen case subjects (20%) had rdSNVs in four genes (JMJD1C, RREB1, MINA, KDM7A) all involved in demethylation of histones (H3K9, H3K27). Overall, rdSNVs were enriched in histone modifier genes that activate transcription (Fisher exact p = 0.0004, permutations, p = 0.0003, OR = 5.16); however, rdSNVs in control subjects were not enriched. This implicates histone modification genes as influencing risk for CHD in presence of the deletion.
Collapse
|
22
|
Ding MH, Wang Z, Jiang L, Fu HL, Gao J, Lin XB, Zhang CL, Liu ZY, Shi YF, Qiu GZ, Ma Y, Cui DX, Hu GH, Jin WL. The transducible TAT-RIZ1-PR protein exerts histone methyltransferase activity and tumor-suppressive functions in human malignant meningiomas. Biomaterials 2015; 56:165-78. [DOI: 10.1016/j.biomaterials.2015.03.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/29/2015] [Accepted: 03/29/2015] [Indexed: 01/22/2023]
|
23
|
Cheedipudi S, Puri D, Saleh A, Gala HP, Rumman M, Pillai MS, Sreenivas P, Arora R, Sellathurai J, Schrøder HD, Mishra RK, Dhawan J. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene. Nucleic Acids Res 2015; 43:6236-56. [PMID: 26040698 PMCID: PMC4513853 DOI: 10.1093/nar/gkv567] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/19/2015] [Indexed: 12/20/2022] Open
Abstract
Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells invivo and controls reversible quiescence in cultured myoblasts. We find that PRDM2 associates with >4400 promoters in G0 myoblasts, 55% of which are also marked with H3K9me2 and enriched for myogenic, cell cycle and developmental regulators. Knockdown of PRDM2 alters histone methylation at key promoters such as Myogenin and CyclinA2 (CCNA2), and subverts the quiescence program via global de-repression of myogenesis, and hyper-repression of the cell cycle. Further, PRDM2 acts upstream of the repressive PRC2 complex in G0. We identify a novel G0-specific bivalent chromatin domain in the CCNA2 locus. PRDM2 protein interacts with the PRC2 protein EZH2 and regulates its association with the bivalent domain in the CCNA2 gene. Our results suggest that induction of PRDM2 in G0 ensures that two antagonistic programs—myogenesis and the cell cycle—while stalled, are poised for reactivation. Together, these results indicate that epigenetic regulation by PRDM2 preserves key functions of the quiescent state, with implications for stem cell self-renewal.
Collapse
Affiliation(s)
- Sirisha Cheedipudi
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Deepika Puri
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Max Planck Institute of Immunobiology and Epigenetics, Freiburg D-79108, Germany
| | - Amena Saleh
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104 India
| | - Hardik P Gala
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Mohammed Rumman
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104 India
| | - Malini S Pillai
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India
| | - Prethish Sreenivas
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Reety Arora
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India
| | - Jeeva Sellathurai
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense 5000 C, Denmark
| | - Henrik Daa Schrøder
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense 5000 C, Denmark
| | - Rakesh K Mishra
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| |
Collapse
|
24
|
Ge P, Yu X, Wang ZC, Lin J. Aberrant Methylation of the 1p36 Tumor Suppressor Gene RIZ1 in Renal Cell Carcinoma. Asian Pac J Cancer Prev 2015; 16:4071-5. [DOI: 10.7314/apjcp.2015.16.9.4071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Di Zazzo E, De Rosa C, Abbondanza C, Moncharmont B. PRDM Proteins: Molecular Mechanisms in Signal Transduction and Transcriptional Regulation. BIOLOGY 2013; 2:107-41. [PMID: 24832654 PMCID: PMC4009873 DOI: 10.3390/biology2010107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/27/2012] [Accepted: 01/05/2013] [Indexed: 01/03/2023]
Abstract
PRDM (PRDI-BF1 and RIZ homology domain containing) protein family members are characterized by the presence of a PR domain and a variable number of Zn-finger repeats. Experimental evidence has shown that the PRDM proteins play an important role in gene expression regulation, modifying the chromatin structure either directly, through the intrinsic methyltransferase activity, or indirectly through the recruitment of chromatin remodeling complexes. PRDM proteins have a dual action: they mediate the effect induced by different cell signals like steroid hormones and control the expression of growth factors. PRDM proteins therefore have a pivotal role in the transduction of signals that control cell proliferation and differentiation and consequently neoplastic transformation. In this review, we describe pathways in which PRDM proteins are involved and the molecular mechanism of their transcriptional regulation.
Collapse
Affiliation(s)
- Erika Di Zazzo
- Department of Medicine and health sciences, University of Molise, via De Sanctis snc, Campobasso 86100, Italy.
| | - Caterina De Rosa
- Department of Biochemistry, Biophysics and general Pathology, Second University of Naples, via L. De Crecchio 7, Napoli 80138, Italy.
| | - Ciro Abbondanza
- Department of Biochemistry, Biophysics and general Pathology, Second University of Naples, via L. De Crecchio 7, Napoli 80138, Italy.
| | - Bruno Moncharmont
- Department of Medicine and health sciences, University of Molise, via De Sanctis snc, Campobasso 86100, Italy.
| |
Collapse
|
26
|
Khaenam P, Niibori A, Okada S, Jearanaikoon P, Araki N, Limpaiboon T. Contribution of RIZ1 to regulation of proliferation and migration of a liver fluke-related cholangiocarcinoma cell. Asian Pac J Cancer Prev 2012; 13:4007-11. [PMID: 23098508 DOI: 10.7314/apjcp.2012.13.8.4007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Retinoblastoma-interacting zinc finger gene (RIZ1) is a tumor suppressor gene which is highly inactivated by promoter hypermethylation in patients with liver fluke-related cholangiocarcinoma (CCA). Epigenetic aberration of this gene might withdraw the ability to restrain tumor cell proliferation and migration. We aimed to define the role of RIZ1 on cell proliferation and migration in CCA cell line. MATERIALS AND METHODS Small interference RNA (siRNA) was used to knock down the expression of RIZ1 in a CCA-derived cell line in which cell proliferation and cell migration were performed. RESULTS A predominant nuclear localization of RIZ1 was observed. Reduction of RIZ1 by siRNA augmented cell proliferation and migration. CONCLUSION The result suggested that RIZ1 might play a role in regulating cell proliferation and migration in CCA. Reduction of RIZ1 expression may aggravate the progression of CCA.
Collapse
Affiliation(s)
- Prasong Khaenam
- Department of Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | |
Collapse
|
27
|
Abbondanza C, De Rosa C, D'Arcangelo A, Pacifico M, Spizuoco C, Piluso G, Di Zazzo E, Gazzerro P, Medici N, Moncharmont B, Puca GA. Identification of a functional estrogen-responsive enhancer element in the promoter 2 of PRDM2 gene in breast cancer cell lines. J Cell Physiol 2012; 227:964-75. [PMID: 21503890 DOI: 10.1002/jcp.22803] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retinoblastoma protein-interacting zinc-finger (RIZ) gene, also known as PRDM2, encodes two protein products, RIZ1 and RIZ2, differing for the presence of a 202 aa domain, called PR domain, at the N-terminus of the RIZ1 molecule. While the histone H3 K9 methyltransferase activity of RIZ1 is associated with the negative control of cell proliferation, no information is currently available on either expression regulation of the RIZ2 form or on its biological activity. RIZ proteins act as ER co-activators and promote optimal estrogen response in female reproductive tissues. In estrogen-responsive cells, 17-β estradiol modulates RIZ gene expression producing a shift in the balanced expression of the two forms. Here, we demonstrate that an estrogen-responsive element (ERE) within the RIZ promoter 2 is regulated in a ligand-specific manner by ERα, through both the AF1 and AF2 domains. The pattern of ERα binding, histone H4 acetylation, and histone H3 cyclical methylation of lysine 9 was comparable to other estrogen-regulated promoters. Association of topoisomerase IIβ with the RIZ promoter 2 confirmed the transcriptional activation induced by estrogen. We hypothesize that RIZ2, acting as a negative regulator of RIZ1 function, mediates the proliferative effect of estrogen through regulation of survival and differentiation gene expression.
Collapse
Affiliation(s)
- Ciro Abbondanza
- Dipartimento di Patologia generale, Seconda Università degli studi di Napoli, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Until recently, myeloid neoplasms have been attributed to genomic and genetic instability leading to clonal outgrowth. However, it is now increasingly evident that epigenetic abnormalities also play a fundamental role in development of these malignancies. A growing body of evidence has underlined the involvement of epigenetic machinery in the malignant transformation of hematopoietic cells. Epigenetic dysfunction can lead to genetic alterations, including microsatellite instability, nucleotide changes, and chromosomal alterations. Conversely, putative epigenetic instability may be related to mutations of genes involved in epigenetic regulation. Therefore, this review focuses on epigenetic processes, including DNA methylation, post-translational histone modifications, and RNA interference via small noncoding RNAs, which play a critical role in controlling gene expression and are targets of dysregulation in many hematologic malignancies. Further, recent literature identified somatic mutations in several epigenetic regulators with a high frequency in myeloid malignancies.
Collapse
Affiliation(s)
- Anna M Jankowska
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| | | |
Collapse
|
29
|
Fog CK, Galli GG, Lund AH. PRDM proteins: important players in differentiation and disease. Bioessays 2011; 34:50-60. [PMID: 22028065 DOI: 10.1002/bies.201100107] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The PRDM family has recently spawned considerable interest as it has been implicated in fundamental aspects of cellular differentiation and exhibits expanding ties to human diseases. The PRDMs belong to the SET domain family of histone methyltransferases, however, enzymatic activity has been determined for only few PRDMs suggesting that they act by recruiting co-factors or, more speculatively, confer methylation of non-histone targets. Several PRDM family members are deregulated in human diseases, most prominently in hematological malignancies and solid cancers, where they can act as both tumor suppressors or drivers of oncogenic processes. The molecular mechanisms have been delineated for only few PRDMs and little is known about functional redundancy within the family. Future studies should identify target genes of PRDM proteins and the protein complexes in which PRDM proteins reside to provide a more comprehensive understanding of the biological and biochemical functions of this important protein family.
Collapse
Affiliation(s)
- Cathrine K Fog
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Denmark
| | | | | |
Collapse
|
30
|
Schwarzenbach H. Impact of Physical Activity and Doping on Epigenetic Gene Regulation. Drug Test Anal 2011; 3:682-7. [DOI: 10.1002/dta.294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 12/31/2022]
|
31
|
Sun W, Qiao L, Liu Q, Chen L, Ling B, Sammynaiken R, Yang J. Anticancer activity of the PR domain of tumor suppressor RIZ1. Int J Med Sci 2011; 8:161-7. [PMID: 21369371 PMCID: PMC3047081 DOI: 10.7150/ijms.8.161] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/15/2011] [Indexed: 01/15/2023] Open
Abstract
Human tumor suppressor gene RIZ encodes two protein products, tumor suppressor RIZ1 and proto-oncoprotein RIZ2, which regulate cellular functions in a Yin-Yang fashion. The only structural difference between them is that RIZ2 lacks the N-terminal PR domain. In this study, we showed that RIZ1 mRNA expression level was elevated in stage IV of eight different types of cancer (stage III for prostate cancer), indicating that RIZ1 might play an important role in tumor metastasis, and the PR domain alone possessed anticancer activity.
Collapse
Affiliation(s)
- Wanpeng Sun
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang C, Li H, Wang Y, Liu W, Zhang Q, Zhang T, Zhang X, Han B, Zhou G. Epigenetic inactivation of the tumor suppressor gene RIZ1 in hepatocellular carcinoma involves both DNA methylation and histone modifications. J Hepatol 2010; 53:889-95. [PMID: 20675009 DOI: 10.1016/j.jhep.2010.05.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 04/20/2010] [Accepted: 05/10/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The retinoblastoma-interacting zinc finger gene RIZ1 is inactivated in many cancers, but the underlying mechanisms remain unknown. This study aimed to investigate the epigenetic mechanisms of RIZ1 inactivation by analyzing the relationship between DNA methylation and histone modifications during regulation of RIZ1 expression. METHODS Methylation-specific PCR, RT-PCR, and immunohistochemistry were performed to examine RIZ1 methylation and expression. Dynamic changes in histone H3 lysine 9 (H3K9) modifications and histone deacetylases (HDACs) associated with the promoter were analyzed by chromatin immunoprecipitation (ChIP). RESULTS RIZ1 methylation was detected in 66.7% (32/48) HCC tissues, 6.3% (3/48) corresponding non-cancerous tissues, and 66.7% (4/6) HCC cell lines. All 32 HCC tissues with promoter methylation showed complete loss of RIZ1 protein, whereas RIZ1 protein was present in all the corresponding non-cancerous tissues. Neither 5-aza-2-deoxycitidine (5-Aza-dC) nor Trichostatin A (TSA) reversed promoter methylation, but did restore RIZ1 mRNA and resulted in the downregulation of HDAC1 but not HDAC3. However, 5-Aza-dC+TSA induced a partial reversal of promoter methylation and a markedly synergistic reactivation of RIZ1. Moreover, both HDAC1 and HDAC3 were downregulated. The ChIP assays showed 5-Aza-dC and/or TSA also contributed to the dynamic conversion of trimethylated to acetylated H3K9 at the promoter. Furthermore, a decrease in H3K9 trimethylation preceded an increase in H3K9 acetylation. CONCLUSIONS Our results suggest that promoter methylation and H3K9 modifications work together to silence the RIZ1 gene in HCC. 5-Aza-dC can restore the expression of RIZ1, as reflected by its effects on histone modification levels. This finding indicates that cooperative effects between these epigenetic modifications exist.
Collapse
Affiliation(s)
- Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shadat NMA, Koide N, Khuda IIE, Dagvadorj J, Tumurkhuu G, Naiki Y, Komatsu T, Yoshida T, Yokochi T. Retinoblastoma protein-interacting zinc finger 1 (RIZ1) regulates the proliferation of monocytic leukemia cells via activation of p53. Cancer Invest 2010; 28:806-12. [PMID: 20594067 DOI: 10.3109/07357907.2010.494323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The role of retinoblastoma protein-interacting zinc finger 1 (RIZ1) on the cell growth of mouse and human monocytic leukemia cells was examined. RIZ1 expression was induced in response to tumor necrosis factor (TNF)-α. The expression was dependent on the nuclear factor-κB and AKT signaling. Further, RIZ1 expression led to the augmentation of p53 expression and the silencing of RIZ1 prevented it. On the other hand, a p53 inhibitor enhanced the TNF-α-induced RIZ1 expression. Silencing of RIZ1 augmented the proliferative activity of TNF-α-treated cells. Therefore, it is suggested that RIZ1 negatively regulated the cell proliferation of monocytic leukemia cells via activation of p53.
Collapse
Affiliation(s)
- Noman Mohammod Abu Shadat
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Aberrant methylation of the RIZ1 gene in myelodysplastic syndrome and acute myeloid leukemia. Leuk Res 2010; 35:516-21. [PMID: 20828818 DOI: 10.1016/j.leukres.2010.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/25/2010] [Accepted: 08/03/2010] [Indexed: 12/31/2022]
Abstract
We performed methylation specific PCR analysis on the RIZ1 promoter in MDS and AML. Methylation was detected in 17 of 34 MDS (50%) and 22 of 72 AML (31%) (p=0.053). Methylation was detected in eleven of 17 secondary AML from MDS (65%), and eleven of 55 de novo AML (20%) (p=0.0005). Bisulfite sequence revealed methylation at many CpG sites in the promoter. Decreased RIZ1 expression was accompanied by methylation in six of nine samples examined, while it was also observed in seven of 13 without methylation. Treatment of AML cells, that have RIZ1 methylation, with 5-Aza-dC, induced growth suppression with RIZ1 restoration. Our results suggest that the RIZ1 gene is inactivated in MDS and AML in part by methylation, whereas another mechanism should be involved in others.
Collapse
|
35
|
Zhao F, Chen Y, Zeng LL, Li R, Zeng R, Wen L, Liu Y, Zhang C. Effects of triptolide on RIZ1 expression, proliferation, and apoptosis in multiple myeloma U266 cells. Acta Pharmacol Sin 2010; 31:733-40. [PMID: 20523343 DOI: 10.1038/aps.2010.49] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM To investigate the effects of triptolide on proliferation and apoptosis as well as on the expression of RIZ1 in the human multiple myeloma cell line U266 in vitro. METHODS The effect of triptolide on the growth of U266 cells was studied by MTT assay. Apoptosis was detected by Hoechst 33258 staining and Annexin V/PI double-labeled flow cytometry, and caspase-3 mRNA was measured by RT-PCR. Western blotting, flow cytometry and RT-PCR were used to assess the expression of RIZ1, and the location and expression of H3K9me1 were detected by confocal microscopy and Western blotting. RESULTS Triptolide significantly inhibited the proliferation of U266 cells in a time- and concentration-dependent manner (the IC(50) value for a 24-h exposure was 157.19+/-0.38 nmol/L). Triptolide induced typical apoptotic morphological changes. Triptolide 40, 80, and 160 nmol/L treatment induced significant caspase-3-dependent apoptosis compared with control group (10.5%+/-1.23%, 37.9%+/-2.45%, and 40.5%+/-2.30% vs 3.8%+/-1.98%, P<0.05). Compared with peripheral blood monocular cells (PBMC) from healthy donors, the protein expression of RIZ1 in U266 cells was relatively low, but the mRNA and protein expression of RIZ1 were strikingly increased by triptolide in a concentration-dependent manner. Triptolide increased the protein expression of RIZ1 and RIZ1 methylates histone H3 lysine 9 in U266 cells. CONCLUSION Triptolide increased the protein expression of RIZ1, inhibited the proliferation, and induced caspase-dependent apoptosis in U266 cells.
Collapse
|
36
|
Xie W, Li X, Chen X, Huang S, Huang S. Decreased expression of PRDM2 (RIZ1) and its correlation with risk stratification in patients with myelodysplastic syndrome. Br J Haematol 2010; 150:242-4. [PMID: 20346008 DOI: 10.1111/j.1365-2141.2010.08186.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Khaenam P, Jearanaikoon P, Pairojkul C, Bhudhisawasdi V, Limpaiboon T. Genetic and epigenetic alterations of RIZ1 and the correlation to clinicopathological parameters in liver fluke-related cholangiocarcinoma. Exp Ther Med 2010; 1:385-390. [PMID: 22993552 DOI: 10.3892/etm_00000060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/22/2009] [Indexed: 12/26/2022] Open
Abstract
The retinoblastoma interacting zinc finger (RIZ1) gene is adjacent to D1S228 where microsatellite instability has been associated with poor patient survival in liver fluke-associated cholangiocarcinoma (CCA). An understanding of the molecular mechanisms underlying the carcinogenesis and pathogenesis of CCA is necessary to improve patient survival. Therefore, we determined the genetic and epigenetic alterations of RIZ1 in 81 CCA samples and 69 matched non-tumor tissues. Methylation was found in 31 of 81 (38%) tumor samples and in 5 of 69 (7%) matched non-tumor tissues. Frameshift mutations (2 of 81) and loss of heterozygosity (LOH) (14 of 81) were not common. Statistical analysis found no significant correlation between RIZ1 alterations and clinicopathological features, but RIZPro704 LOH was associated with patient survival in the multivariate analysis. RIZ1 hypermethylation may be one of the crucial molecular events contributing to cholangiocarcinogenesis, and RIZPro704 LOH may adversely impact patient survival. The biological function of RIZ1 in CCA should be further investigated in order to verify its potential role in regulating this cancer.
Collapse
Affiliation(s)
- Prasong Khaenam
- Department of Biomedical Sciences, Graduate School ; Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, ; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | |
Collapse
|
38
|
Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene 2009; 29:576-88. [PMID: 19881540 DOI: 10.1038/onc.2009.361] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reexpression of hypermethylated tumor suppressor genes using DNA methyltransferase (DNMT) and histone deacetylase inhibitors occurs by a mechanism whereby promoter demethylation is the dominant event. In support of this model, we found in acute myeloid leukemia cells with hypermethylated p15INK4B and E-cadherin promoters that the DNMT inhibitor, 5-aza-2'-deoxycytidine, induced p15INK4B and E-cadherin expression, and decreased levels of DNA methylation, histone H3 lysine 9 (H3K9) methylation and SUV39H1 associated with p15INK4B and E-cadherin promoters. On the basis of these observations, we examined whether promoter demethylation was dominant to H3K9 demethylation in p15INK4B and E-cadherin reexpression. We observed that SUV39H1 short hairpin RNA and chaetocin, a SUV39H1 inhibitor, induced p15INK4B and E-cadherin expression and H3K9 demethylation without promoter demethylation. Reexpression of hypermethylated p15INK4B and E-cadherin required histone H3K9 demethylation that was achieved directly by inhibiting SUV39H1 expression or activity, or indirectly by decreasing the amount of SUV39H1 associated with the p15INK4B and E-cadherin promoters using 5-aza-2'-deoxycytidine. The results from this study highlight the potential of H3K9 methyltransferases as therapeutic targets for reactivating expression of hypermethylated genes.
Collapse
|
39
|
Lakshmikuttyamma A, Takahashi N, Pastural E, Torlakovic E, Amin HM, Garcia-Manero G, Voralia M, Czader M, DeCoteau JF, Geyer CR. RIZ1 is potential CML tumor suppressor that is down-regulated during disease progression. J Hematol Oncol 2009; 2:28. [PMID: 19602237 PMCID: PMC2719666 DOI: 10.1186/1756-8722-2-28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 07/14/2009] [Indexed: 12/03/2022] Open
Abstract
Background RIZ1 expression and activity are reduced in many cancers. In AML cell lines and patient material, RIZ1 expression is reduced relative to normal bone marrow. In chronic myelogenous leukemia (CML), blastic transformation is associated with loss of heterozygosity in the region where RIZ1 is located. RIZ1 is a PR domain methyltransferase that methylates histone H3 lysine 9, a modification important for transcriptional repression. In CML blast crisis cell lines RIZ1 represses insulin-like growth factor-1 expression and autocrine signaling. Together these observations suggest that RIZ1 may have a role in the chronic phase to blast crisis transition in CML. Results In CML patient material, we observed that RIZ1 expression was decreased during progression from chronic phase to blast crisis. RIZ1 was expressed in mature myeloid and CD34+ cells demonstrating that decreased RIZ1 expression in blast crisis is not due to an increased immature cell population. Expression of RIZ1 CML blast crisis cell lines decreased proliferation, increased apoptosis, and enhanced differentiation. Conclusion RIZ1 is a candidate tumor suppressor gene whose expression is decreased in blast crisis. Loss of RIZ1 activity results in decreased apoptosis and differentiation and enhanced proliferation. Together these results suggest that loss of RIZ1 expression will lead to an increase in myeloid blast cell population resulting in CML progression.
Collapse
|
40
|
|
41
|
Métais JY, Dunbar CE. The MDS1-EVI1 gene complex as a retrovirus integration site: impact on behavior of hematopoietic cells and implications for gene therapy. Mol Ther 2008; 16:439-49. [PMID: 18227842 DOI: 10.1038/sj.mt.6300372] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene therapy trials have been performed with virus-based vectors that have the ability to integrate permanently into genomic DNA and thus allow prolonged expression of corrective genes after transduction of hematopoietic stem and progenitor cells. Adverse events observed during the X-linked severe combined immunodeficiency gene therapy trial revealed a significant risk of genotoxicity related to retrovirus vector integration and activation of adjacent proto-oncogenes, with several cases of T-cell leukemia linked to vector activation of the LMO2 gene. In patients with chronic granulomatous disease (CGD), rhesus macaques, and mice receiving hematopoietic stem and progenitor cells transduced with retrovirus vectors, a highly non-random pattern of vector integration has been reported. The most striking finding has been overrepresentation of integrations in one specific genomic locus, a complex containing the MDS1 and the EVI1 genes. Most evidence suggests that this overrepresentation is primarily due to a modification of primitive myeloid cell behavior by overexpression of EVI1 or MDS1-EVI1, as opposed to a specific predilection for integration at this site. Three different proteins can be produced from this complex locus: MDS1, MDS1-EVI1, and EVI1. This review will summarize current knowledge regarding this locus and its gene products, with specific focus on issues with relevance to gene therapy, leukemogenesis, and hematopoiesis. Insights into the mechanisms that result in altered hematopoiesis and leukemogenesis when this locus is dysregulated could improve the safety of gene therapy in the future.
Collapse
Affiliation(s)
- Jean-Yves Métais
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
42
|
Rice KL, Hormaeche I, Licht JD. Epigenetic regulation of normal and malignant hematopoiesis. Oncogene 2007; 26:6697-714. [PMID: 17934479 DOI: 10.1038/sj.onc.1210755] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The molecular processes governing hematopoiesis involve the interplay between lineage-specific transcription factors and a series of epigenetic tags, including DNA methylation and covalent histone tail modifications, such as acetylation, methylation, phosphorylation, SUMOylation and ubiquitylation. These post-translational modifications, which collectively constitute the 'histone code', are capable of affecting chromatin structure and gene transcription and are catalysed by opposing families of enzymes, allowing the developmental potential of hematopoietic stem cells to be dynamically regulated. The essential role of these enzymes in regulating normal blood development is highlighted by the finding that members from all families of chromatin regulators are targets for dysregulation in many hematological malignancies, and that patterns of histone modification are globally affected in cancer as well as the regulatory regions of specific oncogenes and tumor suppressors. The discovery that these epigenetic marks can be reversed by compounds targeting aberrant transcription factor/co-activator/co-repressor interactions and histone-modifying activities, provides the basis for an exciting field in which the epigenome of cancer cells may be manipulated with potential therapeutic benefits.
Collapse
Affiliation(s)
- K L Rice
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|