1
|
Lin C, Chen DR, Kuo SJ, Feng CY, Chen DR, Hsieh WC, Lin PH. Profiling of Protein Adducts of Estrogen Quinones in 5-Year Survivors of Breast Cancer Without Recurrence. Cancer Control 2022; 29:10732748221084196. [PMID: 35303784 PMCID: PMC8935573 DOI: 10.1177/10732748221084196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims The aim of this study was to simultaneously analyze estrogen quinone-derived adducts, including 17β-estradiol-2,3-quinone (E2-2,3-Q) and 17β-estradiol-3,4-quinone (E2-3,4-Q), in human albumin (Alb) and hemoglobin (Hb) derived from breast cancer patients with five-year postoperative treatment without recurrence in Taiwan and to evaluate the treatment-related effects on the production of these adducts. Settings and Design Cohort Methods and Material: Blood samples derived from breast cancer 5-year survivors without recurrence were collected. Albumin and hemoglobin adducts of E2-3,4-Q and E2-2,3-Q were analyzed to evaluate the degree of disposition of estrogen to quinones and to compare these adduct levels with those in patients before treatment. Statistical Analysis All data are expressed as mean ± standard deviation of three determinations. We used Student’s t-test to examine subgroups. Data were transformed to the natural logarithm and tested for normal distribution for parametric analyses. Linear correlations were investigated between individual adduct levels by simple regression. Statistical analysis was performed using the SPSS Statistics 20.0. Results Result confirmed that logged levels of E2-2,3-Q-derived adducts correlated significantly with those of E2-3,4-Q-derived adducts (correlation coefficient r=.336-.624). Mean levels of E2-2,3-Q-4-S-Alb and E2-3,4-Q-2-S-Alb in 5-year survivors were reduced by 60-70% when compared to those in the breast cancer patients with less than one year of diagnosis/preoperative treatment (P<.001). Conclusions Our findings add support to the theme that hormonal therapy including aromatase inhibitors and Tamoxifen may dramatically reduce burden of estrogen quinones. We hypothesize that combination of treatment-related effects and environmental factors may modulate estrogen homeostasis and diminish the production of estrogen quinones in breast cancer patients.
Collapse
Affiliation(s)
- Che Lin
- Comprehensive Breast Cancer Center, 36596Changhua Christian Hospital, Changhua, Taiwan.,Department of Optometry, 89578Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Ding-Ru Chen
- Comprehensive Breast Cancer Center, 36596Changhua Christian Hospital, Changhua, Taiwan
| | - Shou-Jen Kuo
- Comprehensive Breast Cancer Center, 36596Changhua Christian Hospital, Changhua, Taiwan
| | - Chi-Yen Feng
- Department of Surgery, 89578Da-Chien Health Medical System, Taiwan
| | - Dar-Ren Chen
- Comprehensive Breast Cancer Center, 36596Changhua Christian Hospital, Changhua, Taiwan
| | - Wei-Chung Hsieh
- Department of Laboratory Medicine, 384207Da-Chien General Hospital, Miaoli, Taiwan
| | - Po-Hsiung Lin
- Department of Environmental Engineering, 34916National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Modulatory Effect of Fermented Papaya Extracts on Mammary Gland Hyperplasia Induced by Estrogen and Progestin in Female Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8235069. [PMID: 29359010 PMCID: PMC5735651 DOI: 10.1155/2017/8235069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/24/2017] [Accepted: 09/25/2017] [Indexed: 01/16/2023]
Abstract
Fermented papaya extracts (FPEs) are obtained by fermentation of papaya by Aspergillus oryzae and yeasts. In this study, we investigated the protective effects of FPEs on mammary gland hyperplasia induced by estrogen and progestogen. Rats were randomly divided into 6 groups, including a control group, an FPE-alone group, a model group, and three FPE treatment groups (each receiving 30, 15, or 5 ml/kg FPEs). Severe mammary gland hyperplasia was induced upon estradiol benzoate and progestin administration. FPEs could improve the pathological features of the animal model and reduce estrogen levels in the serum. Analysis of oxidant indices revealed that FPEs could increase superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, decrease malondialdehyde (MDA) level in the mammary glands and serum of the animal models, and decrease the proportion of cells positive for the oxidative DNA damage marker 8-oxo-dG in the mammary glands. Additionally, estradiol benzoate and progestin altered the levels of serum biochemical compounds such as aspartate transaminase (AST), total bilirubin (TBIL), and alanine transaminase (ALT), as well as hepatic oxidant indices such as SOD, GSH-Px, MDA, and 8-oxo-2′-deoxyguanosine (8-oxo-dG). These indices reverted to normal levels upon oral administration of a high dose of FPEs. Taken together, our results indicate that FPEs can protect the mammary glands and other visceral organs from oxidative damage.
Collapse
|
3
|
Alvarado A, Faustino-Rocha AI, Colaço B, Oliveira PA. Experimental mammary carcinogenesis - Rat models. Life Sci 2017; 173:116-134. [PMID: 28188729 DOI: 10.1016/j.lfs.2017.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Mammary cancer is one of the most common cancers, victimizing more than half a million of women worldwide every year. Despite all the studies in this field, the current therapeutic approaches are not effective and have several devastating effects for patients. In this way, the need to better understand the mammary cancer biopathology and find effective therapies led to the development of several rodent models over years. With this review, the authors intended to provide the readers with an overview of the rat models used to study mammary carcinogenesis, with a special emphasis on chemically-induced models.
Collapse
Affiliation(s)
- Antonieta Alvarado
- Área de Patología, Decanato de Ciencias Veterinarias, Universidad Centroccidental "Lisandro Alvarado", UCLA, Lara, Venezuela; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Zootechnics, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal
| | - Paula A Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, Vila Real, Portugal.
| |
Collapse
|
4
|
Bak MJ, Das Gupta S, Wahler J, Lee HJ, Li X, Lee MJ, Yang CS, Suh N. Inhibitory Effects of γ- and δ-Tocopherols on Estrogen-Stimulated Breast Cancer In Vitro and In Vivo. Cancer Prev Res (Phila) 2017; 10:188-197. [PMID: 28096236 DOI: 10.1158/1940-6207.capr-16-0223] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/24/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Estrogens have been implicated as complete carcinogens for breast and other tissues through mechanisms involving increased cell proliferation, oxidative stress, and DNA damage. Because of their potent antioxidant activity and other effects, tocopherols have been shown to exert antitumor activities in various cancers. However, limited information is available on the effect of different forms of tocopherols in estrogen-mediated breast cancer. To address this, we examined the effects of α-, γ-, and δ-tocopherols as well as a natural γ-tocopherol-rich mixture of tocopherols, γ-TmT, on estrogen-stimulated MCF-7 cells in vitro and in vivo For the in vivo studies, MCF-7 cells were injected into the mammary fat pad of immunodeficient mice previously implanted with estrogen pellets. Mice were then administered diets containing 0.2% α-, γ-, δ-tocopherol, or γ-TmT for 5 weeks. Treatment with α-, γ-, δ-tocopherols, and γ-TmT reduced tumor volumes by 29% (P < 0.05), 45% (P < 0.05), 41% (P < 0.05), and 58% (P < 0.01), as well as tumor weights by 20%, 37% (P < 0.05), 39% (P < 0.05), and 52% (P < 0.05), respectively. γ- and δ-tocopherols and γ-TmT inhibited the expression of cell proliferation-related genes such as cyclin D1 and c-Myc, and estrogen-related genes such as TFF/pS2, cathepsin D, and progesterone receptor in estrogen-stimulated MCF-7 cells in vitro Further, γ- and δ-tocopherols decreased the levels of estrogen-induced oxidative stress and nitrosative stress markers, 8-hydroxy-2'-deoxyguanosine and nitrotyrosine, as well as the DNA damage marker, γ-H2AX. Our results suggest that γ- and δ-tocopherols and the γ-tocopherol-rich mixture are effective natural agents for the prevention and treatment of estrogen-mediated breast cancer. Cancer Prev Res; 10(3); 188-97. ©2017 AACR.
Collapse
Affiliation(s)
- Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hong Jin Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Xiaowei Li
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mao-Jung Lee
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
5
|
Szaefer H, Krajka-Kuźniak V, Licznerska B, Bartoszek A, Baer-Dubowska W. Cabbage Juices and Indoles Modulate the Expression Profile of AhR, ERα, and Nrf2 in Human Breast Cell Lines. Nutr Cancer 2015; 67:1342-54. [DOI: 10.1080/01635581.2015.1082111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Maayah ZH, Ghebeh H, Alhaider AA, El-Kadi AO, Soshilov AA, Denison MS, Ansari MA, Korashy HM. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway. Toxicol Appl Pharmacol 2015; 284:217-26. [DOI: 10.1016/j.taap.2015.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
7
|
Hartikainen JM, Tengström M, Winqvist R, Jukkola-Vuorinen A, Pylkäs K, Kosma VM, Soini Y, Mannermaa A. KEAP1 Genetic Polymorphisms Associate with Breast Cancer Risk and Survival Outcomes. Clin Cancer Res 2015; 21:1591-601. [PMID: 25589623 DOI: 10.1158/1078-0432.ccr-14-1887] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/07/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Defective oxidative stress response may increase cancer susceptibility. In tumors, these rescue mechanisms may cause chemo- and radioresistance impacting patient outcome. We previously showed that genetic variation in the nuclear factor erythroid 2-related factor 2 (NFE2L2) is associated with breast cancer risk and prognosis. Here we further studied this pathway by investigating Kelch-like ECH-associated protein 1 (KEAP1). EXPERIMENTAL DESIGN Five tagging SNPs in the KEAP1 gene were genotyped in 996 breast cancer cases and 880 controls from two Finnish case-control sets. KEAP1 protein expression was studied in 373 invasive breast cancer tumors. RESULTS rs34197572 genotype TT was associated with increased risk of breast cancer in the KBCP samples [P = 1.8×10(-4); OR, 7.314; confidence interval (CI), 2.185-24.478]. rs11085735 allele A was associated with lower KEAP1 protein expression (P = 0.040; OR,= 3.545) and high nuclear NRF2 expression (P = 0.009; OR, 2.445) and worse survival in all invasive cases (P = 0.023; HR, 1.634). When including treatment data, rs11085735 was associated with recurrence-free survival (RFS; P = 0.020; HR, 1.545) and breast cancer-specific survival (P = 0.016; HR, 1.683) and rs34197572 with overall survival (P = 0.045; HR, 1.304). rs11085735 associated with RFS also among tamoxifen-treated cases (P = 0.003; HR, 3.517). Among radiotherapy-treated cases, overall survival was associated with rs34197572 (P = 0.018; HR, 1.486) and rs8113472 (P = 0.025; HR, 1.455). RFS was associated with rs9676881 (P = 0.024; HR, 1.452) and rs1048290 (P = 0.020; HR, 1.468) among all invasive cases and among estrogen receptor (ER)-positive tamoxifen-treated cases (P = 0.018; HR, 2.407 and P = 0.015; HR, 2.476, respectively). CONCLUSIONS The present findings suggest that the investigated SNPs have effects related to oxidative stress induced by cancer treatment, supporting involvement of the NRF2/KEAP1 pathway in breast cancer susceptibility and patient outcome.
Collapse
Affiliation(s)
- Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.
| | - Maria Tengström
- School of Medicine, Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland. Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu, Finland. Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Arja Jukkola-Vuorinen
- Department of Oncology, University of Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu, Finland. Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland. Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Ylermi Soini
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland. Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland. Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
8
|
Cavalieri E, Rogan E. The molecular etiology and prevention of estrogen-initiated cancers: Ockham's Razor: Pluralitas non est ponenda sine necessitate. Plurality should not be posited without necessity. Mol Aspects Med 2014; 36:1-55. [PMID: 23994691 PMCID: PMC3938998 DOI: 10.1016/j.mam.2013.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022]
Abstract
Elucidation of estrogen carcinogenesis required a few fundamental discoveries made by studying the mechanism of carcinogenesis of polycyclic aromatic hydrocarbons (PAH). The two major mechanisms of metabolic activation of PAH involve formation of radical cations and diol epoxides as ultimate carcinogenic metabolites. These intermediates react with DNA to yield two types of adducts: stable adducts that remain in DNA unless removed by repair and depurinating adducts that are lost from DNA by cleavage of the glycosyl bond between the purine base and deoxyribose. The potent carcinogenic PAH benzo[a]pyrene, dibenzo[a,l]pyrene, 7,12-dimethylbenz[a]anthracene and 3-methylcholanthrene predominantly form depurinating DNA adducts, leaving apurinic sites in the DNA that generate cancer-initiating mutations. This was discovered by correlation between the depurinating adducts formed in mouse skin by treatment with benzo[a]pyrene, dibenzo[a,l]pyrene or 7,12-dimethylbenz[a]anthracene and the site of mutations in the Harvey-ras oncogene in mouse skin papillomas initiated by one of these PAH. By applying some of these fundamental discoveries in PAH studies to estrogen carcinogenesis, the natural estrogens estrone (E1) and estradiol (E2) were found to be mutagenic and carcinogenic through formation of the depurinating estrogen-DNA adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua. These adducts are generated by reaction of catechol estrogen quinones with DNA, analogously to the DNA adducts obtained from the catechol quinones of benzene, naphthalene, and the synthetic estrogens diethylstilbestrol and hexestrol. This is a weak mechanism of cancer initiation. Normally, estrogen metabolism is balanced and few estrogen-DNA adducts are formed. When estrogen metabolism becomes unbalanced, more catechol estrogen quinones are generated, resulting in higher levels of estrogen-DNA adducts, which can be used as biomarkers of unbalanced estrogen metabolism and, thus, cancer risk. The ratio of estrogen-DNA adducts to estrogen metabolites and conjugates has repeatedly been found to be significantly higher in women at high risk for breast cancer, compared to women at normal risk. These results indicate that formation of estrogen-DNA adducts is a critical factor in the etiology of breast cancer. Significantly higher adduct ratios have been observed in women with breast, thyroid or ovarian cancer. In the women with ovarian cancer, single nucleotide polymorphisms in the genes for two enzymes involved in estrogen metabolism indicate risk for ovarian cancer. When polymorphisms produce high activity cytochrome P450 1B1, an activating enzyme, and low activity catechol-O-methyltransferase, a protective enzyme, in the same woman, she is almost six times more likely to have ovarian cancer. These results indicate that formation of estrogen-DNA adducts is a critical factor in the etiology of ovarian cancer. Significantly higher ratios of estrogen-DNA adducts to estrogen metabolites and conjugates have also been observed in men with prostate cancer or non-Hodgkin lymphoma, compared to healthy men without cancer. These results also support a critical role of estrogen-DNA adducts in the initiation of cancer. Starting from the perspective that unbalanced estrogen metabolism can lead to increased formation of catechol estrogen quinones, their reaction with DNA to form adducts, and generation of cancer-initiating mutations, inhibition of estrogen-DNA adduct formation would be an effective approach to preventing a variety of human cancers. The dietary supplements resveratrol and N-acetylcysteine can act as preventing cancer agents by keeping estrogen metabolism balanced. These two compounds can reduce the formation of catechol estrogen quinones and/or their reaction with DNA. Therefore, resveratrol and N-acetylcysteine provide a widely applicable, inexpensive approach to preventing many of the prevalent types of human cancer.
Collapse
Affiliation(s)
- Ercole Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, 984388 Nebraska Medical Center, Omaha, NE 68198-4388, USA.
| | - Eleanor Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, 984388 Nebraska Medical Center, Omaha, NE 68198-4388, USA.
| |
Collapse
|
9
|
Maria Zowczak-Drabarczyk M, Murawa D, Kaczmarek L, Połom K, Litwiniuk M. Total antioxidant status in plasma of breast cancer patients in relation to ERβ expression. Contemp Oncol (Pozn) 2013; 17:499-503. [PMID: 24592136 PMCID: PMC3934035 DOI: 10.5114/wo.2013.38782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/24/2013] [Accepted: 11/05/2013] [Indexed: 01/08/2023] Open
Abstract
AIM OF THE STUDY The aim of this pilot study was to evaluate the plasma total antioxidant capacity (TAS) in breast cancer patients in relation to ERβ expression. MATERIAL AND METHODS The study group consisted of newly diagnosed consecutive female breast cancer patients (n = 41) and controls (n = 28) randomly selected from women with benign breast disease. TAS was determined with the ABTS reagent. Immunostaining for ERβ was performed using polyclonal antibodies. ERα, PgR and HER-2 were measured routinely (immunostaining for ERα and PgR with monoclonal antibodies and EnVision detection system; immunohistochemical method/FISH for HER-2 expression). RESULTS The plasma TAS was significantly decreased in the breast cancer patients in comparison to the controls independently of hormonal and lymph node status. The TAS level was not significantly different between breast cancer subgroups either in relation to the ERβ expression (ERβ+ vs. ERβ-) or considering the steroid receptor status (ERα+, ERβ+, Pg+ vs. ERα+, ERβ-, Pg+) even in the selected lymph node negative subgroup. Similarly, HER-2 expression did not significantly affect the TAS concentration. A tendency towards higher TAS level in all ERβ negative breast cancer subgroups was observed. CONCLUSIONS The results might confirm enhanced consumption of plasma antioxidants in breast cancer patients. The determination of ERβ isoforms along with parameters of redox status might enable better understanding of their mutual influence.
Collapse
Affiliation(s)
| | - Dawid Murawa
- 1 Department of Surgical Oncology and General Surgery, Greater Poland Cancer Center in Poznań, Poland
| | - Leszek Kaczmarek
- Department of General Surgery with Urological and Surgical Oncology Units, Medical Center in Pleszew, Poland
| | - Karol Połom
- 1 Department of Surgical Oncology and General Surgery, Greater Poland Cancer Center in Poznań, Poland
| | - Maria Litwiniuk
- Chemotherapy Department, Greater Poland Cancer Center, Poznan, Poland
| |
Collapse
|
10
|
Montano MM, Krishnamurthy N, Sripathy S. TARGETING THE GENOTOXIC EFFECTS OF ESTROGENS. ACTA ACUST UNITED AC 2013; 9:e29-e33. [PMID: 23795205 DOI: 10.1016/j.ddmec.2012.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Our studies indicate that expression of antioxidative stress enzymes is upregulated by Selective Estrogen Receptor Modulators (SERMs) in breast epithelial cell lines, providing protection against the genotoxic effects of estrogens and against estrogen-induced mammary tumorigenesis. This upregulation of antioxidative stress enzymes requires Estrogen Receptor beta (ERβ) and human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2). Further studies indicate that hPMC2 has a functional exonuclease domain that is required for upregulation of antioxidative stress enzymes by SERMs and repair of estrogen-induced abasic sites.
Collapse
Affiliation(s)
- Monica M Montano
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | | | | |
Collapse
|
11
|
Singh B, Chatterjee A, Ronghe AM, Bhat NK, Bhat HK. Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer. BMC Cancer 2013; 13:253. [PMID: 23697596 PMCID: PMC3665669 DOI: 10.1186/1471-2407-13-253] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/07/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Estrogen metabolism-mediated oxidative stress is suggested to play an important role in estrogen-induced breast carcinogenesis. We have earlier demonstrated that antioxidants, vitamin C (Vit C) and butylated hydroxyanisole (BHA) inhibit 17β-estradiol (E2)-mediated oxidative stress and oxidative DNA damage, and breast carcinogenesis in female August Copenhagen Irish (ACI) rats. The objective of the present study was to characterize the mechanism by which above antioxidants prevent DNA damage during breast carcinogenesis. METHODS Female ACI rats were treated with E2; Vit C; Vit C + E2; BHA; and BHA + E2 for up to 240 days. mRNA and protein levels of a DNA repair enzyme 8-Oxoguanine DNA glycosylase (OGG1) and a transcription factor NRF2 were quantified in the mammary and mammary tumor tissues of rats after treatment with E2 and compared with that of rats treated with antioxidants either alone or in combination with E2. RESULTS The expression of OGG1 was suppressed in mammary tissues and in mammary tumors of rats treated with E2. Expression of NRF2 was also significantly suppressed in E2-treated mammary tissues and in mammary tumors. Vitamin C or BHA treatment prevented E2-mediated decrease in OGG1 and NRF2 levels in the mammary tissues. Chromatin immunoprecipitation analysis confirmed that antioxidant-mediated induction of OGG1 was through increased direct binding of NRF2 to the promoter region of OGG1. Studies using silencer RNA confirmed the role of OGG1 in inhibition of oxidative DNA damage. CONCLUSIONS Our studies suggest that antioxidants Vit C and BHA provide protection against oxidative DNA damage and E2-induced mammary carcinogenesis, at least in part, through NRF2-mediated induction of OGG1.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Room 5251, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
12
|
Kavitha K, Thiyagarajan P, Rathna Nandhini J, Mishra R, Nagini S. Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes. Biochimie 2013; 95:1629-39. [PMID: 23707664 DOI: 10.1016/j.biochi.2013.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 05/13/2013] [Indexed: 01/27/2023]
Abstract
Identifying agents that activate nuclear factor erythroid-2 related factor-2 (Nrf2), a key regulator of various cytoprotective antioxidant, and detoxifying enzymes has evolved as a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary supplementation of structurally diverse phytochemicals- astaxanthin, blueberry, chlorophyllin, ellagic acid, and theaphenon-E on Nrf2 signaling, and xenobiotic-metabolizing and antioxidant enzymes in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model. We observed that these phytochemicals induce nuclear accumulation of Nrf2 while downregulating its negative regulator, Keap-1. This was associated with reduced expression of CYP1A1 and CYP1B1, the cytochrome P450 isoforms involved in the activation of DMBA, and the oxidative stress marker 8-hydroxy-2'-deoxyguanosine coupled with upregulation of the phase II detoxification enzymes glutathione S-transferases and NAD(P)H:quinone oxidoreductase 1 and the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. In addition, these dietary phytochemicals also enhanced the DNA repair enzymes 8-oxoguanine glycosylase 1 (OGG1), xeroderma pigmentosum D (XPD), xeroderma pigmentosum G (XPG), and x-ray repair cross complementing group 1 (XRCC1). Our data provide substantial evidence that the dietary phytochemicals inhibit the development of HBP carcinomas through the activation of Nrf2/Keap-1 signaling and by upregulating cytoprotective enzymes. The extent of the chemopreventive effects of the phytochemicals was in the order: chlorophyllin > blueberry > ellagic acid > astaxanthin > theaphenon-E. Thus these dietary phytochemicals that function as potent activators of Nrf2 and its orchestrated response are novel candidates for cancer chemoprevention.
Collapse
Affiliation(s)
- K Kavitha
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
13
|
Singh B, Ronghe AM, Chatterjee A, Bhat NK, Bhat HK. MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis 2013; 34:1165-72. [PMID: 23492819 DOI: 10.1093/carcin/bgt026] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that regulate the expression of approximately 60% of all human genes and play important roles in disease processes. Recent studies have demonstrated a link between dysregulated expression of miRNAs and breast carcinogenesis. Long-term estrogen exposure is implicated in development of human breast cancers, yet underlying mechanisms remain elusive. We have recently demonstrated that antioxidant vitamin C (vit C) prevents estrogen-induced breast tumor development. In this study, we investigated the role of vit C in the regulation of microRNA-93 (miR-93) and its target gene(s) in a rat model of mammary carcinogenesis. Female August Copenhagen Irish (ACI) rats were treated with vit C in the presence or absence of 17β-estradiol (E2) for 8 months. We demonstrate an increased expression of the miR-93 in E2-treated mammary tissues and in human breast cell lines and vit C treatment reverted E2-mediated increase in miR-93 levels. MiRNA target prediction programs suggest one of the target genes of miR-93 to be nuclear factor erythroid 2-related factor 2 (NRF2). In contrast with miR-93 expression, NRF2 protein expression was significantly decreased in E2-treated mammary tissues, mammary tumors, and in breast cancer cell lines, and its expression was significantly increased after vit C treatment. Ectopic expression of miR-93 decreased protein expression of NRF2 and NRF2-regulated genes. Furthermore, miR-93 decreased apoptosis, increased colony formation, mammosphere formation, cell migration and DNA damage in breast epithelial cells, whereas silencing of miR-93 in these cells inhibited these carcinogenic processes. Taken together, our findings suggest an oncogenic potential of miR-93 during E2-induced breast carcinogenesis.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
14
|
Selective estrogen receptor modulator BC-1 activates antioxidant signaling pathway in vitro via formation of reactive metabolites. Acta Pharmacol Sin 2013; 34:373-9. [PMID: 23334240 DOI: 10.1038/aps.2012.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM Benzothiophene compounds are selective estrogen receptor modulators (SERMs), which are recently found to activate antioxidant signaling. In this study the molecular mechanisms of antioxidant signaling activation by benzothiophene compound BC-1 were investigated. METHODS HepG2 cells were stably transfected with antioxidant response element (ARE)-luciferase reporter (HepG2-ARE cells). The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in HepG2-ARE cells was suppressed using siRNA. The metabolites of BC-1 in rat liver microsome incubation were analyzed using LC-UV and LC-MS. RESULTS Addition of BC-1 (5 μmol/L) in HepG2-ARE cells resulted in a 17-fold increase of ARE-luciferase activity. Pretreatment with the estrogen receptor agonist E2 (5 μmol/L) or antagonist ICI 182,780 (5 μmol/L) did not affect BC-1-induced ARE-luciferase activity. However, transfection of the cells with anti-Nrf2 siRNA suppressed this effect by 79%. Addition of BC-1 in rat microsome incubation resulted in formation of di-quinone methides and o-quinones, followed by formation of GSH conjugates. BC-1 analogues with hydrogen (BC-2) or fluorine (BC-3) at the 4' position did not form the di-quinone methides. Both BC-2 and BC-3 showed comparable estrogenic activity with BC-1, but did not induce ARE-luciferase activity in HepG2-ARE cells. CONCLUSION Benzothiophene compound BC-1 activates ARE signaling via reactive metabolite formation that is independent of estrogen receptors.
Collapse
|
15
|
Barbano R, Muscarella LA, Pasculli B, Valori VM, Fontana A, Coco M, la Torre A, Balsamo T, Poeta ML, Marangi GF, Maiello E, Castelvetere M, Pellegrini F, Murgo R, Fazio VM, Parrella P. Aberrant Keap1 methylation in breast cancer and association with clinicopathological features. Epigenetics 2012; 8:105-12. [PMID: 23249627 DOI: 10.4161/epi.23319] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Keap1 (Kelch-like ECH-associated protein 1) is an adaptor protein that mediates the ubiquitination/degradation of genes regulating cell survival and apoptosis under oxidative stress conditions. We determined methylation status of the KEAP1 promoter in 102 primary breast cancers, 14 pre-invasive lesions, 38 paired normal breast tissues and 6 normal breast from reductive mammoplasty by quantitative methylation specific PCR (QMSP). Aberrant promoter methylation was detected in 52 out of the 102 primary breast cancer cases (51%) and 10 out of 14 pre-invasive lesions (71%). No mutations of the KEAP1 gene were identified in the 20 breast cancer cases analyzed by fluorescence based direct sequencing. Methylation was more frequent in the subgroup of patients identified as ER positive-HER2 negative tumors (66.7%) as compared with triple-negative breast cancers (35%) (p = 0.05, Chi-square test). The impact of the interactions between Er, PgR, Her2 expression and KEAP1 methylation on mortality was investigated by RECPAM multivariable statistical analysis, identifying four prognostic classes at different mortality risks. Triple-negative breast cancer patients with KEAP1 methylation had higher mortality risk than patients without triple-negative breast cancer (HR = 14.73, 95%CI: 3.65-59.37). Both univariable and multivariable COX regressions analyses showed that KEAP1 methylation was associated with a better progression free survival in patients treated with epirubicin/cyclophosfamide and docetaxel as sequential chemotherapy (HR = 0.082; 95%CI: 0.007-0.934). These results indicate that aberrant promoter methylation of the KEAP1 gene is involved in breast cancerogenesis. In addition, identifying patients with KEAP1 epigenetic abnormalities may contribute to disease progression prediction in breast cancer patients.
Collapse
Affiliation(s)
- Raffaela Barbano
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Singh B, Bhat HK. Superoxide dismutase 3 is induced by antioxidants, inhibits oxidative DNA damage and is associated with inhibition of estrogen-induced breast cancer. Carcinogenesis 2012; 33:2601-10. [PMID: 23027624 DOI: 10.1093/carcin/bgs300] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epidemiological data and studies in rodent models strongly support the role of estrogens in the development of breast cancers. Oxidative stress has been implicated in this carcinogenic process. We have recently demonstrated that antioxidants vitamin C or butylated hydroxyanisole (BHA) severely inhibit 17β-estradiol (E2)-induced breast tumor development in female ACI rats. The objective of this study was to characterize the mechanism of antioxidant-mediated prevention of breast cancer. Female August Copenhagen Irish (ACI) rats were treated with E2, vitamin C, vitamin C + E2, BHA and BHA + E2 for up to 8 months. Superoxide dismutase 3 (SOD3) was suppressed in E2-exposed mammary tissues and in mammary tumors of rats treated with E2. This suppression was overcome by co-treatment of rats with E2 and vitamin C or BHA. 8-Hydroxydeoxyguanosine (8-OHdG) levels determined as a marker of oxidative DNA damage were higher in E2-exposed mammary tissues and in mammary tumors compared with age-matched controls. Vitamin C or BHA treatment significantly decreased E2-mediated increase in 8-OHdG levels in the mammary tissues and in MCF-10A cells. Increased DNA damage, colony and mammosphere formation, and migration in SOD3 knocked down MCF-10A cells, and nuclear translocation of SOD3 in vitamin C-treated mammary tissues and in MCF-10A cells suggest protective role of SOD3 against DNA damage and mammary carcinogenesis. Our studies further demonstrate that SOD3, but not SOD2 and SOD1, is induced by antioxidants and is regulated through NRF2. SOD3 may thus be an important gene in defense against oxidative stress and in the prevention of estrogen-mediated breast cancer.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Room 5251, Kansas City, MO 64108, USA
| | | |
Collapse
|
17
|
Krishnamurthy N, Hu Y, Siedlak S, Doughman YQ, Watanabe M, Montano MM. Induction of quinone reductase by tamoxifen or DPN protects against mammary tumorigenesis. FASEB J 2012; 26:3993-4002. [PMID: 22700872 DOI: 10.1096/fj.12-208330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously shown that estrogen receptor β (ERβ)-mediated up-regulation of quinone reductase (QR) is involved in the protection against estrogen-induced mammary tumorigenesis. Our present study provides evidence that the ERβ agonist, 2,3-bis-(4-hydroxy-phenyl)-propionitrile (DPN), and the selective estrogen receptor modulator tamoxifen (Tam), inhibit estrogen-induced DNA damage and mammary tumorigenesis in the aromatase transgenic (Arom) mouse model. We also show that either DPN or Tam treatment increases QR levels and results in a decrease in ductal hyperplasia, proliferation, oxidative DNA damage (ODD), and an increase in apoptosis. To corroborate the role of QR, we provide additional evidence in triple transgenic MMTV/QR/Arom mice, wherein the QR expression is induced in the mammary glands via doxycycline, causing a decrease in ductal hyperplasia and ODD. Overall, we provide evidence that up-regulation of QR through induction by Tam or DPN can inhibit estrogen-induced ODD and mammary cell tumorigenesis, representing a novel mechanism of prevention against breast cancer. Thus, our data have important clinical implications in the management of breast cancer; our findings bring forth potentially new therapeutic strategies involving ERβ agonists.
Collapse
Affiliation(s)
- Nirmala Krishnamurthy
- Case Western Reserve University, School of Medicine, Department of Pharmacology, H. G.Wood Bldg. W305, 2109 Adelbert Rd., Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
18
|
Cavalieri EL, Rogan EG. The etiology and prevention of breast cancer. DRUG DISCOVERY TODAY. DISEASE MECHANISMS 2012; 9:e55-e69. [PMID: 26246832 PMCID: PMC4522944 DOI: 10.1016/j.ddmec.2013.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metabolism of estrogens via the catechol estrogen pathway is characterized by a balanced set of activating and protective enzymes (homeostasis). Disruption of homeostasis, with excessive production of catechol estrogen quinones, can lead to reaction of these quinones with DNA to form depurinating estrogen-DNA adducts. Some of the mutations generated by these events can lead to initiation of breast cancer. A wealth of evidence, from studies of metabolism, mutagenicity, cell transformation and carcinogenicity, demonstrates that estrogens are genotoxic. Women at high risk for breast cancer, or diagnosed with the disease, have relatively high levels of depurinating estrogen-DNA adducts compared to normal-risk women. The dietary supplements N-acetylcysteine and resveratrol can inhibit formation of catechol estrogen quinones and their reaction with DNA to form estrogen-DNA adducts, thereby preventing initiation of breast cancer.
Collapse
Affiliation(s)
- Ercole L. Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eleanor G. Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
19
|
Tsai CW, Lin CY, Wang YJ. Carnosic acid induces the NAD(P)H: quinone oxidoreductase 1 expression in rat clone 9 cells through the p38/nuclear factor erythroid-2 related factor 2 pathway. J Nutr 2011; 141:2119-25. [PMID: 22031657 DOI: 10.3945/jn.111.146779] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The anticarcinogenic effect of rosemary has been partly attributed to the modulation of the activity and expression of phase II detoxification enzymes. Here we compared the effects of phenolic diterpenes from rosemary on the expression of NAD(P)H: quinone oxidoreductase 1 (NQO1) in rat Clone 9 liver cells. Cells were treated with 1-20 μmol/L of carnosic acid (CA) or carnosol (CS) for 24 h. Both CA and CS dose dependently increased NQO1 enzyme activity and protein expression, and the induction potency of CA was stronger than that of CS. The increase in NQO1 enzyme activity in cells treated with 10 μmol/L CA and CS was 4.1- and 1.9-fold, respectively (P < 0.05). RT-PCR showed that CA and CS induced NQO1 mRNA in a dose-dependent manner. Furthermore, CA dose dependently induced transcription of nuclear factor erythroid-2 related factor 2 (Nrf2) and antioxidant response element (ARE)-luciferase reporter activity. Silencing of Nrf2 expression alleviated NQO1 protein expression and ARE-luciferase activity by CA. Moreover, the phosphorylation of p38 was mainly stimulated in the presence of CA. Pretreatment with SB203580 or silencing of p38 expression inhibited Nrf2 activation and NQO1 induction. These results suggest that the increased NQO1 expression by CA is likely related to the p38-Nrf2 pathway and help to clarify the possible molecular mechanism of action of rosemary phenolic compounds in drug metabolism and cancer prevention.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| | | | | |
Collapse
|
20
|
Singh B, Bhat NK, Bhat HK. Induction of NAD(P)H-quinone oxidoreductase 1 by antioxidants in female ACI rats is associated with decrease in oxidative DNA damage and inhibition of estrogen-induced breast cancer. Carcinogenesis 2011; 33:156-63. [PMID: 22072621 DOI: 10.1093/carcin/bgr237] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exact mechanisms underlying the initiation and progression of estrogen-related cancers are not clear. Literature, evidence and our studies strongly support the role of estrogen metabolism-mediated oxidative stress in estrogen-induced breast carcinogenesis. We have recently demonstrated that antioxidants vitamin C and butylated hydroxyanisole (BHA) or estrogen metabolism inhibitor α-naphthoflavone (ANF) inhibit 17β-estradiol (E2)-induced mammary tumorigenesis in female ACI rats. The objective of the current study was to identify the mechanism of antioxidant-mediated protection against E2-induced DNA damage and mammary tumorigenesis. Female ACI rats were treated with E2 in the presence or absence of vitamin C or BHA or ANF for up to 240 days. Nuclear factor erythroid 2-related factor 2 (NRF2) and NAD(P)H-quinone oxidoreductase 1 (NQO1) were suppressed in E2-exposed mammary tissue and in mammary tumors after treatment of rats with E2 for 240 days. This suppression was overcome by co-treatment of rats with E2 and vitamin C or BHA. Time course studies indicate that NQO1 levels tend to increase after 4 months of E2 treatment but decrease on chronic exposure to E2 for 8 months. Vitamin C and BHA significantly increased NQO1 levels after 120 days. 8-Hydroxydeoxyguanosine (8-OHdG) levels were higher in E2-exposed mammary tissue and in mammary tumors compared with age-matched controls. Vitamin C or BHA treatment significantly decreased E2-mediated increase in 8-OHdG levels in the mammary tissue. In vitro studies using silencer RNA confirmed the role of NQO1 in prevention of oxidative DNA damage. Our studies further demonstrate that NQO1 upregulation by antioxidants is mediated through NRF2.
Collapse
Affiliation(s)
- Bhupendra Singh
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
21
|
Partial inhibition of estrogen-induced mammary carcinogenesis in rats by tamoxifen: balance between oxidant stress and estrogen responsiveness. PLoS One 2011; 6:e25125. [PMID: 21966433 PMCID: PMC3180376 DOI: 10.1371/journal.pone.0025125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022] Open
Abstract
Epidemiological and experimental evidences strongly support the role of estrogens in breast tumor development. Both estrogen receptor (ER)-dependent and ER-independent mechanisms are implicated in estrogen-induced breast carcinogenesis. Tamoxifen, a selective estrogen receptor modulator is widely used as chemoprotectant in human breast cancer. It binds to ERs and interferes with normal binding of estrogen to ERs. In the present study, we examined the effect of long-term tamoxifen treatment in the prevention of estrogen-induced breast cancer. Female ACI rats were treated with 17β-estradiol (E2), tamoxifen or with a combination of E2 and tamoxifen for eight months. Tissue levels of oxidative stress markers 8-iso-Prostane F2α (8-isoPGF2α), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) were quantified in the mammary tissues of all the treatment groups and compared with age-matched controls. Levels of tamoxifen metabolizing enzymes cytochrome P450s as well as estrogen responsive genes were also quantified. At necropsy, breast tumors were detected in 44% of rats co-treated with tamoxifen+E2. No tumors were detected in the sham or tamoxifen only treatment groups whereas in the E2 only treatment group, the tumor incidence was 82%. Co-treatment with tamoxifen decreased GPx and catalase levels; did not completely inhibit E2-mediated oxidative DNA damage and estrogen-responsive genes monoamine oxygenase B1 (MaoB1) and cell death inducing DFF45 like effector C (Cidec) but differentially affected the levels of tamoxifen metabolizing enzymes. In summary, our studies suggest that although tamoxifen treatment inhibits estrogen-induced breast tumor development and increases the latency of tumor development, it does not completely abrogate breast tumor development in a rat model of estrogen-induced breast cancer. The inability of tamoxifen to completely inhibit E2-induced breast carcinogenesis may be because of increased estrogen-mediated oxidant burden.
Collapse
|
22
|
Cavalieri EL, Rogan EG. Unbalanced metabolism of endogenous estrogens in the etiology and prevention of human cancer. J Steroid Biochem Mol Biol 2011; 125:169-80. [PMID: 21397019 PMCID: PMC4423478 DOI: 10.1016/j.jsbmb.2011.03.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/16/2011] [Accepted: 03/04/2011] [Indexed: 12/11/2022]
Abstract
Among the numerous small molecules in the body, the very few aromatic ones include the estrogens and dopamine. In relation to cancer initiation, the estrogens should be considered as chemicals, not as hormones. Metabolism of estrogens is characterized by two major pathways. One is hydroxylation to form the 2- and 4-catechol estrogens, and the second is hydroxylation at the 16α position. In the catechol pathway, the metabolism involves further oxidation to semiquinones and quinones, including formation of the catechol estrogen-3,4-quinones, the major carcinogenic metabolites of estrogens. These electrophilic compounds react with DNA to form the depurinating adducts 4-OHE(1)(E(2))-1-N3Ade and 4-OHE(1)(E(2))-1-N7Gua. The apurinic sites obtained by this reaction generate the mutations that may lead to the initiation of cancer. Oxidation of catechol estrogens to their quinones is normally in homeostasis, which minimizes formation of the quinones and their reaction with DNA. When the homeostasis is disrupted, excessive amounts of catechol estrogen quinones are formed and the resulting increase in depurinating DNA adducts can lead to initiation of cancer. Substantial evidence demonstrates the mutagenicity of the estrogen metabolites and their ability to induce transformation of mouse and human breast epithelial cells, and tumors in laboratory animals. Furthermore, women at high risk for breast cancer or diagnosed with the disease, men with prostate cancer, and men with non-Hodgkin lymphoma all have relatively high levels of estrogen-DNA adducts, compared to matched control subjects. Specific antioxidants, such as N-acetylcysteine and resveratrol, can block the oxidation of catechol estrogens to their quinones and their reaction with DNA. As a result, the initiation of cancer can be prevented.
Collapse
Affiliation(s)
- Ercole L Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States.
| | | |
Collapse
|
23
|
The exonuclease activity of hPMC2 is required for transcriptional regulation of the QR gene and repair of estrogen-induced abasic sites. Oncogene 2011; 30:4731-9. [PMID: 21602889 PMCID: PMC3161170 DOI: 10.1038/onc.2011.186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have previously reported that the expression of antioxidative stress enzymes are upregulated by trans-hydroxytamoxifen (TOT) in breast epithelial cell lines providing protection against estrogen-induced DNA damage. This regulation involves Estrogen Receptor beta (ERβ) recruitment to the Electrophile Response Element (EpRE) and a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2). We have also demonstrated that ERβ and hPMC2 are required for TOT-dependent recruitment of poly (ADP-ribose) polymerase 1 (PARP-1) and Topoisomerase IIβ (Topo IIβ) to the EpRE. Sequence analysis reveals that the C-terminus of hPMC2 encodes a putative exonuclease domain. Using in vitro kinetic assays, we found that hPMC2 is a 3'–5' non-processive exonuclease that degrades both single stranded and double stranded substrates. Mutation of two conserved carboxylate residues drastically reduced the exonuclease activity of hPMC2 indicating the relative importance of the catalytic residues. Western blot analysis of breast cancer cell lines for Quinone Reductase (QR) levels revealed that the intrinsic exonuclease activity of hPMC2 was required for TOT-induced QR upregulation. Chromatin immunoprecipitation assays (ChIP) also indicated that hPMC2 was involved in the formation of strand breaks observed with TOT-treatment and is specific for the EpRE-containing region of the QR gene. We also determined that the transcription factor NF-E2-related factor-2 (Nrf2) is involved in the specificity of hPMC2 for the EpRE. In addition, we determined that the catalytic activity of hPMC2 is required for repair of abasic sites that result from estrogen-induced DNA damage. Thus our study provides a mechanistic basis for transcriptional regulation by hPMC2 and provides novel insights into its role in cancer prevention.
Collapse
|
24
|
Park EJ, Min HY, Park HJ, Chung HJ, Ahn YH, Pyee JH, Lee SK. Nuclear Factor E2–Related Factor 2–Mediated Induction of NAD(P)H:Quinone Oxidoreductase 1 by 3,5-Dimethoxy-trans-stilbene. J Pharmacol Sci 2011; 116:89-96. [DOI: 10.1254/jphs.11024fp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
25
|
Zahid M, Saeed M, Beseler C, Rogan EG, Cavalieri EL. Resveratrol and N-acetylcysteine block the cancer-initiating step in MCF-10F cells. Free Radic Biol Med 2011; 50:78-85. [PMID: 20934508 PMCID: PMC4425208 DOI: 10.1016/j.freeradbiomed.2010.10.662] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 11/19/2022]
Abstract
Substantial evidence suggests that catechol estrogen-3,4-quinones react with DNA to form predominantly the depurinating adducts 4-hydroxyestrone (estradiol)-1-N3Ade [4-OHE(1)(E(2))-1-N3Ade] and 4-OHE(1)(E(2))-1-N7Gua. Apurinic sites resulting from these adducts generate critical mutations that can initiate cancer. The paradigm of cancer initiation is based on an imbalance in estrogen metabolism between activating pathways that lead to estrogen-DNA adducts and deactivating pathways that lead to estrogen metabolites and conjugates. This imbalance can be improved to minimize formation of adducts by using antioxidants, such as resveratrol (Resv) and N-acetylcysteine (NAcCys). To compare the ability of Resv and NAcCys to block formation of estrogen-DNA adducts, we used the human breast epithelial cell line MCF-10F treated with 4-OHE(2). Resv and NAcCys directed the metabolism of 4-OHE(2) toward protective pathways. NAcCys reacted with the quinones and reduced the semiquinones to catechols. This pathway was also carried out by Resv. In addition, Resv induced the protective enzyme quinone reductase, which reduces E(1)(E(2))-3,4-quinones to 4-OHE(1)(E(2)). Resv was more effective at increasing the amount of 4-OCH(3)E(1)(E(2)) than NAcCys. Inhibition of estrogen-DNA adduct formation was similar at lower doses, but at higher doses Resv was about 50% more effective than NAcCys. Their combined effects were additive. Therefore, these two antioxidants provide an excellent combination to protect catechol estrogens from oxidation to catechol quinones.
Collapse
Affiliation(s)
- Muhammad Zahid
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Muhammad Saeed
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cheryl Beseler
- Colorado Injury Control Research Center, Colorado State University, Fort Collins, CO 80523, USA
| | - Eleanor G. Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ercole L. Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Corresponding author. Fax: +1 402 559 8068. (E.L. Cavalieri)
| |
Collapse
|
26
|
Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 2010; 501:116-23. [PMID: 20361926 PMCID: PMC2930038 DOI: 10.1016/j.abb.2010.03.019] [Citation(s) in RCA: 534] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/17/2010] [Accepted: 03/25/2010] [Indexed: 12/30/2022]
Abstract
NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) is a widely-distributed FAD-dependent flavoprotein that promotes obligatory 2-electron reductions of quinones, quinoneimines, nitroaromatics, and azo dyes, at rates that are comparable with NADH or NADPH. These reductions depress quinone levels and thereby minimize opportunities for generation of reactive oxygen intermediates by redox cycling, and for depletion of intracellular thiol pools. NQO1 is a highly-inducible enzyme that is regulated by the Keap1/Nrf2/ARE pathway. Evidence for the importance of the antioxidant functions of NQO1 in combating oxidative stress is provided by demonstrations that induction of NQO1 levels or their depletion (knockout, or knockdown) are associated with decreased and increased susceptibilities to oxidative stress, respectively. Furthermore, benzene genotoxicity is markedly enhanced when NQO1 activity is compromised. Not surprisingly, human polymorphisms that suppress NQO1 activities are associated with increased predisposition to disease. Recent studies have uncovered protective roles for NQO1 that apparently are unrelated to its enzymatic activities. NQO1 binds to and thereby stabilizes the important tumor suppressor p53 against proteasomal degradation. Indeed, NQO1 appears to regulate the degradative fate of other proteins. These findings suggest that NQO1 may exercise a selective "gatekeeping" role in regulating the proteasomal degradation of specific proteins, thereby broadening the cytoprotective role of NQO1 far beyond its highly effective antioxidant functions.
Collapse
Affiliation(s)
- Albena T. Dinkova-Kostova
- Biomedical Research Institute, University of Dundee, Dundee, Scotland, UK
- Lewis B. and Dorothy Cullman Chemoprotection Center and Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul Talalay
- Lewis B. and Dorothy Cullman Chemoprotection Center and Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Zahid M, Saeed M, Ali MF, Rogan EG, Cavalieri EL. N-acetylcysteine blocks formation of cancer-initiating estrogen-DNA adducts in cells. Free Radic Biol Med 2010; 49:392-400. [PMID: 20472053 PMCID: PMC2900421 DOI: 10.1016/j.freeradbiomed.2010.04.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/31/2010] [Accepted: 04/26/2010] [Indexed: 12/29/2022]
Abstract
Catechol estrogens, especially 4-hydroxylated metabolites of 17beta-estradiol (E(2)), are responsible for estrogen-induced carcinogenesis. 4-Hydroxyestradiol (4-OHE(2)), a major metabolite of E(2) formed preferentially by cytochrome P-450 1B1, is oxidized to E(2)-3,4-quinone, which can react with DNA to yield the depurinating adducts 4-OHE(2)-1-N3Ade and 4-OHE(2)-1-N7Gua. The apurinic sites generated by the loss of these depurinating adducts induce mutations that could lead to cancer initiation. In this study, we have evaluated the effects of N-acetylcysteine (NAcCys) on the metabolism of two cell lines, MCF-10F (a normal human breast epithelial cell line) and E6 (a normal mouse mammary epithelial cell line), treated with 4-OHE(2) or its reactive metabolite, E(2)-3,4-quinone. Extensive HPLC with electrochemical detection and UPLC-MS/MS analyses of the cell media demonstrated that the presence of NAcCys very efficiently shifted the estrogen metabolism toward protective methoxylation and conjugation pathways in multiple ways, whereas formation of depurinating DNA adducts was inhibited. Protection by NAcCys seems to be similar in both cell lines, irrespective of their origin (human or mouse) or the presence of estrogen receptor-alpha. This finding suggests that NAcCys, a common dietary supplement, could be used as a potential chemopreventive agent to block the initial step in the genotoxicity caused by catechol estrogen quinones.
Collapse
Affiliation(s)
- Muhammad Zahid
- Eppley Institute for Research in Cancer and Allied Diseases, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | |
Collapse
|
28
|
Yao Y, Brodie AMH, Davidson NE, Kensler TW, Zhou Q. Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer. Breast Cancer Res Treat 2010; 124:585-91. [PMID: 20623181 DOI: 10.1007/s10549-010-1023-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/26/2010] [Indexed: 12/21/2022]
Abstract
Exposure to higher levels of estrogen produces genotoxic metabolites that can stimulate mammary tumorigenesis. Induction of NF-E2-related factor 2 (NRF2)-dependent detoxifying enzymes (e.g., NAD(P)H-quinone oxidoreductase 1 (NQO1)) is considered an important mechanism of protection against estrogen-associated carcinogenesis because they would facilitate removal of toxic estrogens. Here, we studied the impact of estrogen-receptor (ER) signaling on NRF2-dependent gene transcription. In luciferase assay experiments using the 5-flanking region of the human NQO1 gene promoter, we observe that ERα ligand-binding domain (LBD) is required for estrogen inhibition of NQO1 promoter activity in estrogen-dependent breast cancer cells. Chromatin immunoprecipitation (ChIP) assay shows that estrogen recruits ERα and a class III histone deacetylase SIRT1 at the NQO1 promoter, leading to inhibition of NQO1 transcription. Inhibition of ERα expression by the antiestrogen shikonin reverses the inhibitory effect of estrogen on NQO1 expression. As a consequence, a chemoprevention study was undertaken to monitor the impact of shikonin on DNA lesions and tumor growth. Treatment of MCF-7 breast cancer cells with shikonin inhibits estrogen-induced 8-hydroxy-2-deoxyguanosine (8-OHdG), a marker of DNA damage. NQO1 deficiency promotes estrogen-dependent tumor formation, and shikonin inhibits estrogen-dependent tumor growth in an NQO1-dependent manner in MCF-7 xenografts. These results suggest that estrogen-receptor signaling pathway has an inhibitory effect on NRF2-dependent enzymes. Moreover, shikonin reverses the inhibitory effects of estrogen on this pathway and may contribute to breast cancer prevention.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
29
|
Timofeeva M, Kropp S, Sauter W, Beckmann L, Rosenberger A, Illig T, Jäger B, Mittelstrass K, Dienemann H, Bartsch H, Bickeböller H, Chang-Claude J, Risch A, Wichmann HE. Genetic polymorphisms of MPO, GSTT1, GSTM1, GSTP1, EPHX1 and NQO1 as risk factors of early-onset lung cancer. Int J Cancer 2010; 127:1547-61. [DOI: 10.1002/ijc.25175] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Singh S, Zahid M, Saeed M, Gaikwad NW, Meza JL, Cavalieri EL, Rogan EG, Chakravarti D. NAD(P)H:quinone oxidoreductase 1 Arg139Trp and Pro187Ser polymorphisms imbalance estrogen metabolism towards DNA adduct formation in human mammary epithelial cells. J Steroid Biochem Mol Biol 2009; 117:56-66. [PMID: 19628038 PMCID: PMC4425209 DOI: 10.1016/j.jsbmb.2009.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 06/25/2009] [Accepted: 07/14/2009] [Indexed: 12/01/2022]
Abstract
Estrogens (estrone, E(1); estradiol, E(2)) are oxidized in the breast first to catechols and then to form two ortho-quinones (E(1/2)-3,4-Q) that react with DNA to form depurinating adducts, which lead to mutations associated with breast cancer. NAD(P)H:quinone oxidoreductase 1 (NQO1) reduces these quinones back to catechols, and thus may protect against this mechanism. We examined whether the inheritance of two polymorphic variants of NQO1 (Pro187Ser or Arg139Trp) would result in poor reduction of E(1/2)-3,4-Q in normal human mammary epithelial cells (MCF-10F) and increased depurinating adduct formation. An isogenic set of stably transfected normal human breast epithelial cells (MCF-10F) that express a truncated (135Stop), the wild-type, the 139Trp variant or the 187Ser variant of human NQO1 cDNA was constructed. MCF-10F cells showed a low endogenous NQO1 activity. NQO1 expression was examined by RT-PCR and Western blotting, and catalytic activity of reducing E(2)-3,4-Q to 4-hydroxyE(1/2) and associated changes in the levels of quinone conjugates (4-methoxyE(1/2), 4-OHE(1/2)-2-glutathione, 4-OHE(1/2)-2-Cys and 4-OHE(1/2)-2-N-acetylcysteine) and depurinating DNA adducts (4-OHE(1/2)-1-N3Ade and 4-OHE(1/2)-1-N7Gua) were examined by HPLC with electrochemical detection, as well as by ultra-performance liquid chromatography with tandem mass spectrometry. The polymorphic variants transcribed comparably to the wild-type NQO1, but produced approximately 2-fold lower levels of the protein, suggesting that the variant proteins may become degraded. E(1/2)-3,4-Q toxicity to MCF-10F cells (IC50=24.74 microM) was increased (IC50=3.7 microM) by Ro41-0960 (3 microM), a catechol-O-methyltransferase inhibitor. Cells expressing polymorphic NQO1 treated with E(2)-3,4-Q with or without added Ro41-0960, showed lower ability to reduce the quinone ( approximately 50% lower levels of the free catechols and approximately 3-fold lower levels of methylated catechols) compared to the wild-type enzyme. The increased availability of the quinones in these cells did not result in greater glutathione conjugation. Instead, there was increased (2.5-fold) formation of the depurinating DNA adducts. Addition of Ro41-0960 increased the amounts of free catechols, quinone conjugates and depurinating DNA adducts. NQO1 polymorphic variants (Arg139Trp and Pro187Ser) were poor reducers of estrogen-3,4-quinones, which caused increased formation of estrogen-DNA adduct formation in MCF-10F cells. Therefore, the inheritance of these NQO1 polymorphisms may favor the estrogen genotoxic mechanism of breast cancer.
Collapse
Affiliation(s)
- Seema Singh
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States
| | - Muhammad Zahid
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States
| | - Muhammad Saeed
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States
| | - Nilesh W. Gaikwad
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States
| | - Jane L. Meza
- Preventive and Societal Medicine, 984350 Nebraska Medical Center, Omaha, NE 68198-4350, United States
| | - Ercole L. Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States
| | - Eleanor G. Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, Nebraska Medical Center, Omaha, NE 68198-5110, United States
| | - Dhrubajyoti Chakravarti
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States
- Corresponding author. Tel.: +1 402 559 2951; fax: +1 402 559 8068. (D. Chakravarti)
| |
Collapse
|
31
|
Aiyer HS, Kichambare S, Gupta RC. Prevention of oxidative DNA damage by bioactive berry components. Nutr Cancer 2009; 60 Suppl 1:36-42. [PMID: 19003579 DOI: 10.1080/01635580802398448] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The hormone 17ss-estradiol (E(2)) causes oxidative DNA damage via redox cycling of its metabolites such as 4-hydroxy estradiol (4E(2)). In this study, ACI rats (8 wk old) were fed either AIN-93M diet or diets supplemented with 0.5% each of mixed berries (strawberry, blueberry, blackberry, and red and black raspberry), blueberry alone (BB; 2.5%), or ellagic acid (EA; 400 ppm) from 2 wk prior to and up to 12 wk of E(2) treatment. The liver DNA was analyzed for the presence of 8-oxo-7,8-dihydroguanine (8-oxodG) and other polar adducts by 32P-postlabeling. Compared to sham treatment, E(2) significantly increased the levels of both 8-oxodG and P-1 subgroup (259% and 214%, respectively; P< 0.05). EA diet significantly reduced E(2)-induced levels of 8-oxodG, P-1, P-2, and PL-1 by 79, 63, 44, and 67%, respectively (P< 0.001). BB diet also significantly reduced the levels of P-1, P-2, and PL-1 subgroups by 77, 43, and 68%, respectively (P< 0.001). Mixed berries were, however, ineffective. In addition, aqueous extracts of berries (2%) and EA (100 microM) were tested for their efficacy in diminishing oxidative DNA adducts induced by redox cycling of 4E(2) catalyzed by copper chloride in vitro. EA was the most efficacious (90%), followed by extracts of red raspberry (70%), blueberry, and strawberry (50% each; P< 0.001).
Collapse
Affiliation(s)
- Harini S Aiyer
- Brown Cancer Center, Delia Baxter II, Room 304E, 580 Preston Street, Louisville, KY 40202, USA
| | | | | |
Collapse
|
32
|
Augustine LM, Fisher CD, Lickteig AJ, Aleksunes LM, Slitt AL, Cherrington NJ. Gender divergent expression of Nqo1 in Sprague Dawley and August Copenhagen x Irish rats. J Biochem Mol Toxicol 2008; 22:93-100. [PMID: 18418895 DOI: 10.1002/jbt.20224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the mammalian liver, there is an abundance of enzymes that function to enable the safe and efficient elimination of potentially harmful xenobiotics that are encountered through environmental exposure. A variety of factors, including gender and genetic polymorphisms, contribute to the variation between an individual system's detoxification capacity and thus its ability to protect itself against oxidative stress, cellular damage, cell death, etc. NAD(P)H:quinone oxidoreducatase 1 (Nqo1) is an antioxidant enzyme that plays a major role in reducing reactive electrophiles, thereby protecting cells from free-radical damage and oxidative stress. The goal of this study was to determine the gender-specific expression and inducibility of Nqo1 in the Sprague Dawley (SD) and August Copenhagen x Irish (ACI) rat strains, two strains that are commonly used in drug metabolism and drug-induced enzyme induction, toxicity, and carcinogenesis studies. Nqo1 mRNA, protein, and activity levels were determined through 96 h in SD and ACI males and females following treatment with known Nqo1 inducers oltipraz and butylated hydroxyanisole. In the SD strain, gender dimorphic expression of Nqo1 was observed with female mRNA, protein, and activity levels being significantly higher than in males. In contrast, there were minimal differences in Nqo1 mRNA, protein, and activity levels between ACI males and females. The gender dimorphic expression of Nqo1 in the SD rats was maintained through the course of induction, with female-induced levels greater than male-induced levels indicating that SD females may have a greater capacity to protect against oxidative stress and thus a decreased susceptibility to carcinogens.
Collapse
Affiliation(s)
- Lisa M Augustine
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
33
|
hPMC2 is required for recruiting an ERbeta coactivator complex to mediate transcriptional upregulation of NQO1 and protection against oxidative DNA damage by tamoxifen. Oncogene 2008; 27:6376-84. [PMID: 18663360 DOI: 10.1038/onc.2008.235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the presence of ERbeta, trans-hydroxytamoxifen (TOT) protects cells against 17beta-estradiol (E(2))-induced oxidative DNA damage (ODD) and this correlates with increased expression of the antioxidative enzyme quinone reductase (QR). Here, we investigate the molecular mechanism responsible for ERbeta-mediated protection against ODD. We observe constitutive interaction between ERbeta and the novel protein hPMC2. Using a combination of breast epithelial cell lines that are either positive or negative for ERalpha, we demonstrate TOT-dependent recruitment of both ERbeta and hPMC2 to the EpRE (electrophile response element)-regulated antioxidative enzyme QR. We further demonstrate TOT-dependent corecruitment of the coactivators Nrf2, PARP-1 (poly (ADP-ribose) polymerase 1) and topoisomerase IIbeta, both in the presence and absence of ERalpha. However, absence of either ERbeta or hPMC2 results in nonrecruitment of PARP-1 and topoisomerase IIbeta, loss of antioxidative enzyme induction and attenuated protection against ODD by TOT even in the presence of Nrf2 and ERalpha. These findings indicate minor role for Nrf2 and ERalpha in TOT-dependent antioxidative gene regulation. However, downregulation of PARP-1 attenuates TOT-dependent antioxidative gene induction. We conclude that ERbeta and hPMC2 are required for TOT-dependent recruitment of coactivators such as PARP-1 to the EpRE resulting in the induction of antioxidative enzymes and subsequent protection against ODD.
Collapse
|
34
|
Chandrasena REP, Edirisinghe PD, Bolton JL, Thatcher GRJ. Problematic detoxification of estrogen quinones by NAD(P)H-dependent quinone oxidoreductase and glutathione-S-transferase. Chem Res Toxicol 2008; 21:1324-9. [PMID: 18588320 DOI: 10.1021/tx8000797] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Estrogen exposure through early menarche, late menopause, and hormone replacement therapy increases the risk factor for hormone-dependent cancers. Although the molecular mechanisms are not completely established, DNA damage by quinone electrophilic reactive intermediates, derived from estrogen oxidative metabolism, is strongly implicated. A current hypothesis has 4-hydroxyestrone-o-quinone (4-OQE) acting as the proximal estrogen carcinogen, forming depurinating DNA adducts via Michael addition. One aspect of this hypothesis posits a key role for NAD(P)H-dependent quinone oxidoreductase (NQO1) in the reduction of 4-OQE and protection against estrogen carcinogenesis, despite two reports that 4-OQE is not a substrate for NQO1. 4-OQE is rapidly and efficiently trapped by GSH, allowing measurement of NADPH-dependent reduction of 4-OQE in the presence and absence of NQO1. 4-OQE was observed to be a substrate for NQO1, but the acceleration of NADPH-dependent reduction by NQO1 over the nonenzymic reaction is less than 10-fold and at more relevant nanomolar concentrations of substrate is less than 2-fold. An alternative detoxifying enzyme, glutathione-S-transferase, was observed to be a target for 4-OQE, rapidly undergoing covalent modification. These results indicate that a key role for NQO1 and GST in direct detoxification of 4-hydroxy-estrogen quinones is problematic.
Collapse
Affiliation(s)
- R Esala P Chandrasena
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
35
|
Mesia-Vela S, Sanchez RI, Roberts KG, Reuhl KR, Conney AH, Kauffman FC. Dietary clofibrate stimulates the formation and size of estradiol-induced breast tumors in female August-Copenhagen Irish (ACI) rats. Toxicology 2008; 246:63-72. [PMID: 18280627 DOI: 10.1016/j.tox.2007.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 11/29/2022]
Abstract
Administration of 0.4% clofibrate in the diet stimulated estradiol (E(2))-induced mammary carcinogenesis in the August-Copenhagen Irish (ACI) rat without having an effect on serum levels of E(2). This treatment stimulated by several-fold the NAD(P)H-dependent oxidative metabolism of E(2) and oleyl-CoA-dependent esterification of E(2) to 17beta-oleyl-estradiol by liver microsomes. Glucuronidation of E(2) by microsomal glucuronosyltransferase was increased moderately. In contrast, the activity of NAD(P)H quinone reductase 1 (NQO1), a representative monofunctional phase 2 enzyme, was significantly decreased in liver cytosol of rats fed clofibrate. Decreases in hepatic NQO1 in livers of animals fed clofibrate were noted before the appearance of mammary tumors. E(2) was delivered in cholesterol pellets implanted in 7-8-week-old female ACI rats. The animals received AIN-76A diet containing 0.4% clofibrate for 6, 12 or 28 weeks. Control animals received AIN-76A diet. Dietary clofibrate increased the number and size of palpable mammary tumors but did not alter the histopathology of the E(2)-induced mammary adenocarcinomas. Collectively, these results suggest that the stimulatory effect of clofibrate on hepatic esterification of E(2) with fatty acids coupled with the inhibition of protective phase 2 enzymes, may in part, enhance E(2)-dependent mammary carcinogenesis in the ACI rat model.
Collapse
Affiliation(s)
- Sonia Mesia-Vela
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zahid M, Saeed M, Lu F, Gaikwad N, Rogan E, Cavalieri E. Inhibition of catechol-O-methyltransferase increases estrogen-DNA adduct formation. Free Radic Biol Med 2007; 43:1534-40. [PMID: 17964424 PMCID: PMC2096412 DOI: 10.1016/j.freeradbiomed.2007.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 07/23/2007] [Accepted: 08/09/2007] [Indexed: 01/18/2023]
Abstract
The association found between breast cancer development and prolonged exposure to estrogens suggests that this hormone is of etiologic importance in the causation of the disease. Studies on estrogen metabolism, formation of DNA adducts, carcinogenicity, cell transformation, and mutagenicity have led to the hypothesis that reaction of certain estrogen metabolites, predominantly catechol estrogen-3,4-quinones, with DNA forms depurinating adducts [4-OHE1(E2)-1-N3Ade and 4-OHE(1)(E2)-1-N7Gua]. These adducts cause mutations leading to the initiation of breast cancer. Catechol-O-methyltransferase (COMT) is considered an important enzyme that protects cells from the genotoxicity and cytotoxicity of catechol estrogens, by preventing their conversion to quinones. The goal of the present study was to investigate the effect of COMT inhibition on the formation of depurinating estrogen-DNA adducts. Immortalized human breast epithelial MCF-10F cells were treated with 4-OHE2 (0.2 or 0.5 microM) for 24 h at 120, 168, 216, and 264 h postplating or one time at 1-30 microM 4-OHE2 with or without the presence of COMT inhibitor (Ro41-0960). The culture media were collected at each point, extracted by solid-phase extraction, and analyzed by HPLC connected with a multichannel electrochemical detector. The results demonstrate that MCF-10F cells oxidize 4-OHE2 to E1(E2)-3,4-Q, which react with DNA to form the depurinating N3Ade and N7Gua adducts. The COMT inhibitor Ro41-0960 blocked the methoxylation of catechol estrogens, with concomitant 3- to 4-fold increases in the levels of the depurinating adducts. Thus, low activity of COMT leads to higher levels of depurinating estrogen-DNA adducts that can induce mutations and initiate cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Ercole Cavalieri
- Corresponding author: Ercole L. Cavalieri, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805. Phone: 402-559-7237; Fax: 402-559-8068. E-mail:
| |
Collapse
|