1
|
Matour E, Asadi ZT, Deilami AA, Azandeh SS, Taheri B. MiR-34c-5p Inhibition Affects Bax/Bcl2 Expression and Reverses Bortezomib Resistance in Multiple Myeloma Cells. Indian J Hematol Blood Transfus 2024; 40:596-603. [PMID: 39469181 PMCID: PMC11512978 DOI: 10.1007/s12288-024-01742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/24/2024] [Indexed: 10/30/2024] Open
Abstract
Developing resistance to anticancer drugs complicates the clinical treatment of multiple myeloma patients. Previous studies revealed a link between the unfolded protein response (UPR) and miRNAs with acquired drug resistance. This study aimed to determine the expression profile of XBP1, hsa-miR-34c-5p, hsa-miR-214, and hsa-miR-30c-2* in resistant and sensitive multiple myeloma cell lines to a proteasome inhibitor, bortezomib. After establishing bortezomib-resistant cells, the expression level of XBP1, hsa-miR-214, hsa-miR-34c-5p, and hsa-miR-30c-2* in both cell lines were assessed by qRT-PCR. Hsa-miR-34c-5p was suppressed to study its effect on the expression profile of Bax/Bcl-2. Statistical analysis was done by t-test in two clinically resistant and sensitive cells to bortezomib. MTT assay confirmed the creation of the resistant cell line. The qRT-PCR screening showed a significant difference between XBP1 and miR-34c-5p levels in resistant and sensitive cells. Following hsa-miR-34c-5p blockage, while Bax was overexpressed, Bcl-2 expression was reduced in the resistant cell line, overcoming cells resistant to bortezomib. Our findings demonstrate miR-34c-5p is differentially expressed between bortezomib-sensitive and -resistant MM cells. Inhibiting miR-34c-5p re-sensitized resistant cells to bortezomib by modulating Bax/Bcl-2 expression, suggesting this miRNA regulates apoptosis and drug resistance and may be a promising therapeutic target for overcoming proteasome inhibitor resistance in MM.
Collapse
Affiliation(s)
- Emad Matour
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zari Tahannejad Asadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh Deilami
- Department of Internal Medicine, School of Medicine, Firoogar General Hospital, Iran University of Medical Science, Tehran, Iran
| | - Seyed Saeed Azandeh
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behrouz Taheri
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Aksoy O, Lind J, Sunder-Plaßmann V, Vallet S, Podar K. Bone marrow microenvironment- induced regulation of Bcl-2 family members in multiple myeloma (MM): Therapeutic implications. Cytokine 2023; 161:156062. [PMID: 36332463 DOI: 10.1016/j.cyto.2022.156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022]
Abstract
In Multiple Myeloma (MM) the finely tuned homeostasis of the bone marrow (BM) microenvironment is disrupted. Evasion of programmed cell death (apoptosis) represents a hallmark of cancer. Besides genetic aberrations, the supportive and protective MM BM milieu, which is constituted by cytokines and growth factors, intercellular and cell: extracellular matrix (ECM) interactions and exosomes, in particular, plays a key role in the abundance of pro-survival members of the Bcl-2 family (i.e., Mcl-1, Bcl-2, and Bcl-xL) in tumor cells. Moreover, microenvironmental cues have also an impact on stability- regulating post-translational modifications of anti-apoptotic proteins including de/phosphorylation, polyubiquitination; on their intracellular binding affinities, and localization. Advances of our molecular knowledge on the escape of cancer cells from apoptosis have informed the development of a new class of small molecules that mimic the action of BH3-only proteins. Indeed, approaches to directly target anti-apoptotic Bcl-2 family members are among today's most promising therapeutic strategies and BH3-mimetics (i.e., venetoclax) are currently revolutionizing not only the treatment of CLL and AML, but also hold great therapeutic promise in MM. Furthermore, approaches that activate apoptotic pathways indirectly via modification of the tumor microenvironment have already entered clinical practice. The present review article will summarize our up-to-date knowledge on molecular mechanisms by which the MM BM microenvironment, cytokines, and growth factors in particular, mediates tumor cell evasion from apoptosis. Moreover, it will discuss some of the most promising science- derived therapeutic strategies to overcome Bcl-2- mediated tumor cell survival in order to further improve MM patient outcome.
Collapse
Affiliation(s)
- Osman Aksoy
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Judith Lind
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Vincent Sunder-Plaßmann
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria
| | - Sonia Vallet
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; Department of Internal Medicine 2, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria
| | - Klaus Podar
- Molecular Oncology and Hematology Unit, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; Department of Internal Medicine 2, University Hospital Krems, Mitterweg 10, 3500 Krems an der Donau, Austria.
| |
Collapse
|
3
|
Al-Odat OS, Guirguis DA, Schmalbach NK, Yao G, Budak-Alpdogan T, Jonnalagadda SC, Pandey MK. Autophagy and Apoptosis: Current Challenges of Treatment and Drug Resistance in Multiple Myeloma. Int J Mol Sci 2022; 24:ijms24010644. [PMID: 36614089 PMCID: PMC9820338 DOI: 10.3390/ijms24010644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Over the past two decades, the natural history of multiple myeloma (MM) has evolved dramatically, owing primarily to novel agents targeting MM in the bone marrow microenvironment (BMM) pathways. However, the mechanisms of resistance acquisition remain a mystery and are poorly understood. Autophagy and apoptosis are tightly controlled processes and play a critical role in the cell growth, development, and survival of MM. Genetic instability and abnormalities are two hallmarks of MM. During MM progression, plasma malignant cells become genetically unstable and activate various signaling pathways, resulting in the overexpression of abnormal proteins that disrupt autophagy and apoptosis biological processes. Thus, achieving a better understanding of the autophagy and apoptosis processes and the proteins that crosslinked both pathways, could provide new insights for the MM treatment and improve the development of novel therapeutic strategies to overcome resistance. This review presents a sufficient overview of the roles of autophagy and apoptosis and how they crosslink and control MM progression and drug resistance. Potential combination targeting of both pathways for improving outcomes in MM patients also has been addressed.
Collapse
Affiliation(s)
- Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Daniel A. Guirguis
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Nicole K. Schmalbach
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Gabriella Yao
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | | | | | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Correspondence: ; Tel.: +1-856-956-2751
| |
Collapse
|
4
|
Marín-Payá JC, Clara-Trujillo S, Cordón L, Gallego Ferrer G, Sempere A, Gómez Ribelles JL. Protein-Functionalized Microgel for Multiple Myeloma Cells’ 3D Culture. Biomedicines 2022; 10:biomedicines10112797. [PMID: 36359316 PMCID: PMC9687145 DOI: 10.3390/biomedicines10112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma is a hematologic neoplasm caused by an uncontrolled clonal proliferation of neoplastic plasma cells (nPCs) in the bone marrow. The development and survival of this disease is tightly related to the bone marrow environment. Proliferation and viability of nPCs depend on their interaction with the stromal cells and the extracellular matrix components, which also influences the appearance of drug resistance. Recapitulating these interactions in an in vitro culture requires 3D environments that incorporate the biomolecules of interest. In this work, we studied the proliferation and viability of three multiple myeloma cell lines in a microgel consisting of biostable microspheres with fibronectin (FN) on their surfaces. We also showed that the interaction of the RPMI8226 cell line with FN induced cell arrest in the G0/G1 cell cycle phase. RPMI8226 cells developed a significant resistance to dexamethasone, which was reduced when they were treated with dexamethasone and bortezomib in combination.
Collapse
Affiliation(s)
- Juan Carlos Marín-Payá
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Sandra Clara-Trujillo
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Valencia, Spain
| | - Lourdes Cordón
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 20029 Madrid, Spain
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46026 Valencia, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Valencia, Spain
| | - Amparo Sempere
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 20029 Madrid, Spain
- Haematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - José Luis Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Valencia, Spain
- Correspondence:
| |
Collapse
|
5
|
Sharma A, Nair R, Achreja A, Mittal A, Gupta P, Balakrishnan K, Edgar CL, Animasahun O, Dwivedi B, Barwick BG, Gupta VA, Matulis SM, Bhasin M, Lonial S, Nooka AK, Wiita AP, Boise LH, Nagrath D, Shanmugam M. Therapeutic implications of mitochondrial stress-induced proteasome inhibitor resistance in multiple myeloma. SCIENCE ADVANCES 2022; 8:eabq5575. [PMID: 36170375 PMCID: PMC9519052 DOI: 10.1126/sciadv.abq5575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The connections between metabolic state and therapy resistance in multiple myeloma (MM) are poorly understood. We previously reported that electron transport chain (ETC) suppression promotes sensitivity to the BCL-2 antagonist venetoclax. Here, we show that ETC suppression promotes resistance to proteasome inhibitors (PIs). Interrogation of ETC-suppressed MM reveals integrated stress response-dependent suppression of protein translation and ubiquitination, leading to PI resistance. ETC and protein translation gene expression signatures from the CoMMpass trial are down-regulated in patients with poor outcome and relapse, corroborating our in vitro findings. ETC-suppressed MM exhibits up-regulation of the cystine-glutamate antiporter SLC7A11, and analysis of patient single-cell RNA-seq shows that clusters with low ETC gene expression correlate with higher SLC7A11 expression. Furthermore, erastin or venetoclax treatment diminishes mitochondrial stress-induced PI resistance. In sum, our work demonstrates that mitochondrial stress promotes PI resistance and underscores the need for implementing combinatorial regimens in MM cognizant of mitochondrial metabolic state.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Remya Nair
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Abhinav Achreja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Anjali Mittal
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pulkit Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kamakshi Balakrishnan
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Claudia L. Edgar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Olamide Animasahun
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Bhakti Dwivedi
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Shannon M. Matulis
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ajay K. Nooka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Arun P. Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
- Corresponding author.
| |
Collapse
|
6
|
Allyl Isothiocyanate (AITC) Induces Apoptotic Cell Death In Vitro and Exhibits Anti-Tumor Activity in a Human Glioblastoma GBM8401/luc2 Model. Int J Mol Sci 2022; 23:ijms231810411. [PMID: 36142326 PMCID: PMC9499574 DOI: 10.3390/ijms231810411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Some clinically used anti-cancer drugs are obtained from natural products. Allyl isothiocyanate (AITC), a plant-derived compound abundant in cruciferous vegetables, has been shown to possess an anti-cancer ability in human cancer cell lines in vitro, including human brain glioma cells. However, the anti-cancer effects of AITC in human glioblastoma (GBM) cells in vivo have not yet been examined. In the present study, we used GBM8401/luc2 human glioblastoma cells and a GBM8401/luc2-cell-bearing animal model to identify the treatment efficacy of AITC. Here, we confirm that AITC reduced total cell viability and induced cell apoptosis in GBM8401/luc2 cells in vitro. Furthermore, Western blotting also showed that AITC induced apoptotic cell death through decreased the anti-apoptotic protein BCL-2, MCL-1 expression, increased the pro-apoptotic protein BAX expression, and promoted the activities of caspase-3, -8, and -9. Therefore, we further investigated the anti-tumor effects of AITC on human GBM8401/luc2 cell xenograft mice. The human glioblastoma GBM8401/luc2 cancer cells were subcutaneously injected into the right flank of BALB/c nude mice to generate glioblastoma xenograft mice. The animals were randomly divided into three groups: group I was treated without AITC (control); group II with 0.1 mg/day of AITC; and group III with 0.2 mg/day of AITC every 3 days for 27 days. Bodyweight, and tumor volume (size) were recorded every 3 days. Tumors exhibiting Luc2 intensity were measured, and we quantified intensity using Living Image software on days 0, 12, and 24. After treatment, tumor weight from each mouse was recorded. Tumor tissues were examined for histopathological changes using H&E staining, and we analyzed the protein levels via immunohistochemical analysis. Our results indicate that AITC significantly inhibited tumor growth at both doses of AITC due to the reduction in tumor size and weight. H&E histopathology analysis of heart, liver, spleen, and kidney samples revealed that AITC did not significantly induce toxicity. Body weight did not show significant changes in any experiment group. AITC significantly downregulated the protein expression levels of MCL-1, XIAP, MMP-9, and VEGF; however, it increased apoptosis-associated proteins, such as cleaved caspase-3, -8, and -9, in the tumor tissues compared with the control group. Based on these observations, AITC exhibits potent anti-cancer activity in the human glioblastoma cell xenograft model via inhibiting tumor cell proliferation and the induction of cell apoptosis. AITC may be a potential anti-GBM cancer drug that could be used in the future.
Collapse
|
7
|
Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection. Cancers (Basel) 2022; 14:cancers14030606. [PMID: 35158874 PMCID: PMC8833500 DOI: 10.3390/cancers14030606] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multiple myeloma is a malignant neoplasm of plasma cells with complex pathogenesis. With major progresses in multiple myeloma research, it is essential that we reconsider our methods for diagnosing and monitoring multiple myeloma disease. This fact needs the integration of serology, histology, radiology, and genetic data; therefore, multiple myeloma study has generated massive quantities of granular high-dimensional data exceeding human understanding. With improved computational techniques, artificial intelligence tools for data processing and analysis are becoming more and more relevant. Artificial intelligence represents a wide set of algorithms for which machine learning and deep learning are presently among the most impactful. This review focuses on artificial intelligence applications in multiple myeloma research, first illustrating machine learning and deep learning procedures and workflow, followed by how these algorithms are used for multiple myeloma diagnosis, prognosis, bone lesions identification, and evaluation of response to the treatment. Abstract Artificial intelligence has recently modified the panorama of oncology investigation thanks to the use of machine learning algorithms and deep learning strategies. Machine learning is a branch of artificial intelligence that involves algorithms that analyse information, learn from that information, and then employ their discoveries to make abreast choice, while deep learning is a field of machine learning basically represented by algorithms inspired by the organization and function of the brain, named artificial neural networks. In this review, we examine the possibility of the artificial intelligence applications in multiple myeloma evaluation, and we report the most significant experimentations with respect to the machine and deep learning procedures in the relevant field. Multiple myeloma is one of the most common haematological malignancies in the world, and among them, it is one of the most difficult ones to cure due to the high occurrence of relapse and chemoresistance. Machine learning- and deep learning-based studies are expected to be among the future strategies to challenge this negative-prognosis tumour via the detection of new markers for their prompt discovery and therapy selection and by a better evaluation of its relapse and survival.
Collapse
|
8
|
Biomimetic 3D Environment Based on Microgels as a Model for the Generation of Drug Resistance in Multiple Myeloma. MATERIALS 2021; 14:ma14237121. [PMID: 34885273 PMCID: PMC8658353 DOI: 10.3390/ma14237121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
The development of three-dimensional environments to mimic the in vivo cellular response is a problem in the building of disease models. This study aimed to synthesize and validate three-dimensional support for culturing monoclonal plasma cells (mPCs) as a disease model for multiple myeloma. The three-dimensional environment is a biomimetic microgel formed by alginate microspheres and produced on a microfluidic device whose surface has been functionalized by a layer-by-layer process with components of the bone marrow’s extracellular matrix, which will interact with mPC. As a proof of concept, RPMI 8226 cell line cells were cultured in our 3D culture platform. We proved that hyaluronic acid significantly increased cell proliferation and corroborated its role in inducing resistance to dexamethasone. Despite collagen type I having no effect on proliferation, it generated significant resistance to dexamethasone. Additionally, it was evidenced that both biomolecules were unable to induce resistance to bortezomib. These results validate the functionalized microgels as a 3D culture system that emulates the interaction between tumoral cells and the bone marrow extracellular matrix. This 3D environment could be a valuable culture system to test antitumoral drugs efficiency in multiple myeloma.
Collapse
|
9
|
Zahan T, Das PK, Akter SF, Habib R, Rahman MH, Karim MR, Islam F. Therapy Resistance in Cancers: Phenotypic, Metabolic, Epigenetic and Tumour Microenvironmental Perspectives. Anticancer Agents Med Chem 2021; 20:2190-2206. [PMID: 32748758 DOI: 10.2174/1871520620999200730161829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/02/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chemoresistance is a vital problem in cancer therapy where cancer cells develop mechanisms to encounter the effect of chemotherapeutics, resulting in cancer recurrence. In addition, chemotherapy- resistant leads to the formation of a more aggressive form of cancer cells, which, in turn, contributes to the poor survival of patients with cancer. OBJECTIVE In this review, we aimed to provide an overview of how the therapy resistance property evolves in cancer cells, contributing factors and their role in cancer chemoresistance, and exemplified the problems of some available therapies. METHODS The published literature on various electronic databases including, Pubmed, Scopus, Google scholar containing keywords cancer therapy resistance, phenotypic, metabolic and epigenetic factors, were vigorously searched, retrieved and analyzed. RESULTS Cancer cells have developed a range of cellular processes, including uncontrolled activation of Epithelial- Mesenchymal Transition (EMT), metabolic reprogramming and epigenetic alterations. These cellular processes play significant roles in the generation of therapy resistance. Furthermore, the microenvironment where cancer cells evolve effectively contributes to the process of chemoresistance. In tumour microenvironment immune cells, Mesenchymal Stem Cells (MSCs), endothelial cells and cancer-associated fibroblasts (CAFs) contribute to the maintenance of therapy-resistant phenotype via the secretion of factors that promote resistance to chemotherapy. CONCLUSION To conclude, as these factors hinder successful cancer therapies, therapeutic resistance property of cancer cells is a subject of intense research, which in turn could open a new horizon to aim for developing efficient therapies.
Collapse
Affiliation(s)
- Tasnim Zahan
- Molecular Mechanisms of Disease, Radboud University, Nijmegen, The Netherlands
| | - Plabon K Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Syeda F Akter
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Rowshanul Habib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Habibur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Rezaul Karim
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh,Institute for Glycomics, Griffith University, Queensland, Australia
| |
Collapse
|
10
|
Synergistic Effect of Doxorubicin and siRNA-Mediated Silencing of Mcl-1 Using Cationic Niosomes against 3D MCF-7 Spheroids. Pharmaceutics 2021; 13:pharmaceutics13040550. [PMID: 33919902 PMCID: PMC8070967 DOI: 10.3390/pharmaceutics13040550] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy is a vital option for cancer treatment; however, its therapeutic outcomes are limited by dose-dependent toxicity and the occurrence of chemoresistance. siRNAs have emerged as an attractive therapeutic option enabling specific interference with target genes. Combination therapy using chemotherapeutic agents along with gene therapy could be a potential strategy for cancer management, which not only improves therapeutic efficacy but also decreases untoward effects from dose reduction. In this study, a cationic niosome containing plier-like cationic lipid B was used to convey siRNA against anti-apoptotic mRNA into MCF-7 and MDA-MB-231 cells. Mcl-1 silencing markedly decreased the viability of MCF-7 cells and triggered apoptosis. Moreover, computer modeling suggested that the combination of doxorubicin (Dox) and Mcl-1 siRNA exhibited a synergistic relationship and enabled a dose reduction of each agent at 1.71 and 3.91 folds, respectively, to reach a 90% inhibitory effect when compared to single-agent treatments. Synergistic antitumor activity was further verified in a 3D spheroid culture which revealed, in contrast to single-agent treatment, the combination markedly decreased spheroid volume over time. Together, the combination therapy between Mcl-1 silencing and Dox exhibits a synergistic effect that may be exploited for novel breast cancer treatment.
Collapse
|
11
|
Lernoux M, Schnekenburger M, Dicato M, Diederich M. Susceptibility of multiple myeloma to B-cell lymphoma 2 family inhibitors. Biochem Pharmacol 2021; 188:114526. [PMID: 33741332 DOI: 10.1016/j.bcp.2021.114526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023]
Abstract
Multiple myeloma (MM) is a biologically complex hematological disorder defined by the clonal proliferation of malignant plasma cells producing excessive monoclonal immunoglobulin that interacts with components of the bone marrow microenvironment, resulting in the major clinical features of MM. Despite the development of numerous protocols to treat MM patients, this cancer remains currently incurable; due in part to the emergence of resistant clones, highlighting the unmet need for innovative therapeutic approaches. Accumulating evidence suggests that the survival of MM molecular subgroups depends on the expression profiles of specific subsets of anti-apoptotic B-cell lymphoma (BCL)-2 family members. This review summarizes the mechanisms underlying the anti-myeloma activities of the potent BCL-2 family protein inhibitors, individually or in combination with conventional therapeutic options, and provides an overview of the strong rationale to clinically investigate such interventions for MM therapy.
Collapse
Affiliation(s)
- Manon Lernoux
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021. [DOI: 10.37349/etat.2020.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3University of Montpellier, UFR Medicine, 34093 Montpellier, France 4 Institut Universitaire de France (IUF), 75000 Paris France
| |
Collapse
|
13
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:65-106. [PMID: 36046090 PMCID: PMC9400753 DOI: 10.37349/etat.2021.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3UFR Medicine, University of Montpellier, 34093 Montpellier, France 4Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
14
|
The combination of the tubulin binding small molecule PTC596 and proteasome inhibitors suppresses the growth of myeloma cells. Sci Rep 2021; 11:2074. [PMID: 33483574 PMCID: PMC7822878 DOI: 10.1038/s41598-021-81577-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
The novel small molecule PTC596 inhibits microtubule polymerization and its clinical development has been initiated for some solid cancers. We herein investigated the preclinical efficacy of PTC596 alone and in combination with proteasome inhibitors in the treatment of multiple myeloma (MM). PTC596 inhibited the proliferation of MM cell lines as well as primary MM samples in vitro, and this was confirmed with MM cell lines in vivo. PTC596 synergized with bortezomib or carfilzomib to inhibit the growth of MM cells in vitro. The combination treatment of PTC596 with bortezomib exerted synergistic effects in a xenograft model of human MM cell lines in immunodeficient mice and exhibited acceptable tolerability. Mechanistically, treatment with PTC596 induced cell cycle arrest at G2/M phase followed by apoptotic cell death, associated with the inhibition of microtubule polymerization. RNA sequence analysis also revealed that PTC596 and the combination with bortezomib affected the cell cycle and apoptosis in MM cells. Importantly, endoplasmic reticulum stress induced by bortezomib was enhanced by PTC596, providing an underlying mechanism of action of the combination therapy. Our results indicate that PTC596 alone and in combination with proteasome inhibition are potential novel therapeutic options to improve outcomes in patients with MM.
Collapse
|
15
|
Bolomsky A, Vogler M, Köse MC, Heckman CA, Ehx G, Ludwig H, Caers J. MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. J Hematol Oncol 2020; 13:173. [PMID: 33308268 PMCID: PMC7731749 DOI: 10.1186/s13045-020-01007-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
Cell death escape is one of the most prominent features of tumor cells and closely linked to the dysregulation of members of the Bcl-2 family of proteins. Among those, the anti-apoptotic family member myeloid cell leukemia-1 (MCL-1) acts as a master regulator of apoptosis in various human malignancies. Irrespective of its unfavorable structure profile, independent research efforts recently led to the generation of highly potent MCL-1 inhibitors that are currently evaluated in clinical trials. This offers new perspectives to target a so far undruggable cancer cell dependency. However, a detailed understanding about the tumor and tissue type specific implications of MCL-1 are a prerequisite for the optimal (i.e., precision medicine guided) use of this novel drug class. In this review, we summarize the major functions of MCL-1 with a special focus on cancer, provide insights into its different roles in solid vs. hematological tumors and give an update about the (pre)clinical development program of state-of-the-art MCL-1 targeting compounds. We aim to raise the awareness about the heterogeneous role of MCL-1 as drug target between, but also within tumor entities and to highlight the importance of rationale treatment decisions on a case by case basis.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Meike Vogler
- Department of Clinical Hematology, GIGA-I3, University of Liège, CHU De Liège, 35, Dom Univ Sart Tilman B, 4000, Liège, Belgium
| | - Murat Cem Köse
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland-FIMM, HiLIFE-Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Grégory Ehx
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Jo Caers
- Department of Clinical Hematology, GIGA-I3, University of Liège, CHU De Liège, 35, Dom Univ Sart Tilman B, 4000, Liège, Belgium.
| |
Collapse
|
16
|
Selective protection of human cardiomyocytes from anthracycline cardiotoxicity by small molecule inhibitors of MAP4K4. Sci Rep 2020; 10:12060. [PMID: 32694738 PMCID: PMC7374628 DOI: 10.1038/s41598-020-68907-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Given the poor track record to date of animal models for creating cardioprotective drugs, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been proposed as a therapeutically relevant human platform to guide target validation and cardiac drug development. Mitogen-Activated Protein Kinase Kinase Kinase Kinase-4 (MAP4K4) is an “upstream” member of the MAPK superfamily that is implicated in human cardiac muscle cell death from oxidative stress, based on gene silencing and pharmacological inhibition in hPSC-CMs. A further role for MAP4K4 was proposed in heart muscle cell death triggered by cardiotoxic anti-cancer drugs, given its reported activation in failing human hearts with doxorubicin (DOX) cardiomyopathy, and its activation acutely by DOX in cultured cardiomyocytes. Here, we report successful protection from DOX in two independent hPSC-CM lines, using two potent, highly selective MAP4K4 inhibitors. The MAP4K4 inhibitors enhanced viability and reduced apoptosis at otherwise lethal concentrations of DOX, and preserved cardiomyocyte function, as measured by spontaneous calcium transients, at sub-maximal ones. Notably, in contrast, no intereference was seen in tumor cell killing, caspase activation, or mitochondrial membrane dissipation by DOX, in human cancer cell lines. Thus, MAP4K4 is a plausible, tractable, selective therapeutic target in DOX-induced human heart muscle cell death.
Collapse
|
17
|
Teh CE, Gong JN, Segal D, Tan T, Vandenberg CJ, Fedele PL, Low MSY, Grigoriadis G, Harrison SJ, Strasser A, Roberts AW, Huang DCS, Nolan GP, Gray DHD, Ko ME. Deep profiling of apoptotic pathways with mass cytometry identifies a synergistic drug combination for killing myeloma cells. Cell Death Differ 2020; 27:2217-2233. [PMID: 31988495 PMCID: PMC7308383 DOI: 10.1038/s41418-020-0498-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma is an incurable and fatal cancer of immunoglobulin-secreting plasma cells. Most conventional therapies aim to induce apoptosis in myeloma cells but resistance to these drugs often arises and drives relapse. In this study, we sought to identify the best adjunct targets to kill myeloma cells resistant to conventional therapies using deep profiling by mass cytometry (CyTOF). We validated probes to simultaneously detect 26 regulators of cell death, mitosis, cell signaling, and cancer-related pathways at the single-cell level following treatment of myeloma cells with dexamethasone or bortezomib. Time-resolved visualization algorithms and machine learning random forest models (RFMs) delineated putative cell death trajectories and a hierarchy of parameters that specified myeloma cell survival versus apoptosis following treatment. Among these parameters, increased amounts of phosphorylated cAMP response element-binding protein (CREB) and the pro-survival protein, MCL-1, were defining features of cells surviving drug treatment. Importantly, the RFM prediction that the combination of an MCL-1 inhibitor with dexamethasone would elicit potent, synergistic killing of myeloma cells was validated in other cell lines, in vivo preclinical models and primary myeloma samples from patients. Furthermore, CyTOF analysis of patient bone marrow cells clearly identified myeloma cells and their key cell survival features. This study demonstrates the utility of CyTOF profiling at the single-cell level to identify clinically relevant drug combinations and tracking of patient responses for future clinical trials.
Collapse
Affiliation(s)
- Charis E Teh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jia-Nan Gong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - David Segal
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Tania Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cassandra J Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Pasquale L Fedele
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Monash Haematology, Monash Health, Clayton, VIC, Australia
| | - Michael S Y Low
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Monash Haematology, Monash Health, Clayton, VIC, Australia
| | - George Grigoriadis
- Monash Haematology, Monash Health, Clayton, VIC, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Simon J Harrison
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, Melbourne University, Parkville, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew W Roberts
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, Melbourne University, Parkville, VIC, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Garry P Nolan
- Baxter Laboratory for Stem Cell Biology, Stanford School of Medicine, Stanford, CA, USA.
- Cancer Biology Program, Stanford School of Medicine, Stanford, CA, USA.
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Melissa E Ko
- Baxter Laboratory for Stem Cell Biology, Stanford School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Structure-Activity Relationships and Molecular Docking Analysis of Mcl-1 Targeting Renieramycin T Analogues in Patient-derived Lung Cancer Cells. Cancers (Basel) 2020; 12:cancers12040875. [PMID: 32260280 PMCID: PMC7226000 DOI: 10.3390/cancers12040875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid cell leukemia 1 (Mcl-1) and B-cell lymphoma 2 (Bcl-2) proteins are promising targets for cancer therapy. Here, we investigated the structure-activity relationships (SARs) and performed molecular docking analysis of renieramycin T (RT) and its analogues and identified the critical functional groups of Mcl-1 targeting. RT have a potent anti-cancer activity against several lung cancer cells and drug-resistant primary cancer cells. RT mediated apoptosis through Mcl-1 suppression and it also reduced the level of Bcl-2 in primary cells. For SAR study, five analogues of RT were synthesized and tested for their anti-cancer and Mcl-1- and Bcl-2-targeting effects. Only two of them (TM-(-)-18 and TM-(-)-4a) exerted anti-cancer activities with the loss of Mcl-1 and partly reduced Bcl-2, while the other analogues had no such effects. Specific cyanide and benzene ring parts of RT's structure were identified to be critical for its Mcl-1-targeting activity. Computational molecular docking indicated that RT, TM-(-)-18, and TM-(-)-4a bound to Mcl-1 with high affinity, whereas TM-(-)-45, a compound with a benzene ring but no cyanide for comparison, showed the lowest binding affinity. As Mcl-1 helps cancer cells evading apoptosis, these data encourage further development of RT compounds as well as the design of novel drugs for treating Mcl-1-driven cancers.
Collapse
|
19
|
Liu Y, Ma Y, Tu Z, Zhang C, Du M, Wang Y, Yang F, Wang X, Chen T. Mcl-1 inhibits Mff-mediated mitochondrial fragmentation and apoptosis. Biochem Biophys Res Commun 2020; 523:620-626. [PMID: 31941601 DOI: 10.1016/j.bbrc.2019.12.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Myeloid cell leukemia-1 (Mcl-1) is involved in the regulation of mitochondrial fission and fusion. This report aims to explore whether Mcl-1 can interact with mitochondrial fission factor (Mff) and regulate Mff-mediated mitochondrial fragmentation and apoptosis. Fluorescence images of living cells coexpressing YFP-Mff and CFP-Mcl-1 showed that Mcl-1 markedly inhibited Mff-mediated mitochondrial fragmentation and apoptosis, suggesting that Mcl-1 played a key role in inhibiting mitochondrial fission. The cells coexpressing YFP-Mff and CFP-Mcl-1 exhibited consistent fluorescence resonance energy transfer (FRET) efficiency with that of the cells coexpressing CFP-Mcl-1 and YFP, demonstrating that Mcl-1 did not directly bind to Mff on mitochondria. Collectively, Mcl-1 inhibits Mff-mediated mitochondrial fission and apoptosis not via directly binding to Mff on mitochondria.
Collapse
Affiliation(s)
- Yangpei Liu
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China.
| | - Yunyun Ma
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Zhuang Tu
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Chenshuang Zhang
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Mengyan Du
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Yong Wang
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Fangfang Yang
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Tongsheng Chen
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
20
|
Wong KY, Chim CS. Venetoclax, bortezomib and S63845, an MCL1 inhibitor, in multiple myeloma. J Pharm Pharmacol 2020; 72:728-737. [DOI: 10.1111/jphp.13240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/26/2020] [Indexed: 12/24/2022]
Abstract
Abstract
Objectives
Venetoclax, an orally available BCL2-selective inhibitor, has demonstrated promising single-agent anti-tumour activity in myeloma especially patients with t(11;14). Herein, whether venetoclax sensitivity could be enhanced or restored in combination with bortezomib or S63845, a novel MCL1-selective inhibitor, was examined in human myeloma cell lines (HMCLs), including bortezomib-resistant HMCLs.
Methods
By MTS assay, half-maximal inhibitory concentration (IC50) and hence sensitivity/resistance to venetoclax, bortezomib and S63845 were determined.
Key findings
Venetoclax (IC50 ≥100 nm), bortezomib (IC50 ≥50 nm) and S63845 (IC50 ≥100 nm) resistance was observed in nine (75%), three (25%) and six (50%) HMCLs, respectively. Moreover, venetoclax sensitivity was independent of bortezomib (R2 = 0.1107) or S63845 (R2 = 0.0213) sensitivity. Venetoclax sensitivity correlated with high mRNA ratio of BCL2/MCL1 (P = 0.0091), BCL2/BCL2L1 (P = 0.0182) and low MCL1 expression (P = 0.0091). In HMCLs sensitive to both venetoclax and bortezomib/S63845, venetoclax combined with S63845 showed stronger synergistic effect than combined with bortezomib. Moreover, in venetoclax-resistant HMCLs, S63845, but not bortezomib, significantly restored venetoclax sensitivity. Conversely, bortezomib combined with S63845 did not result in augmented bortezomib sensitivity or abolishment of bortezomib resistance.
Conclusions
Regardless of t(11;14), combination of venetoclax with S63845 is a promising strategy in enhancing venetoclax sensitivity or overcoming venetoclax resistance in myeloma therapy, hence warrant future clinical studies.
Collapse
Affiliation(s)
- Kwan Yeung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
21
|
Akiyama H, Umezawa Y, Watanabe D, Okada K, Ishida S, Nogami A, Miura O. Inhibition of USP9X Downregulates JAK2-V617F and Induces Apoptosis Synergistically with BH3 Mimetics Preferentially in Ruxolitinib-Persistent JAK2-V617F-Positive Leukemic Cells. Cancers (Basel) 2020; 12:cancers12020406. [PMID: 32050632 PMCID: PMC7072561 DOI: 10.3390/cancers12020406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/17/2023] Open
Abstract
JAK2-V617F plays a key role in the pathogenesis of myeloproliferative neoplasm. However, its inhibitor ruxolitinib has shown limited clinical efficacies because of the ruxolitinib-persistent proliferation of JAK2-V617F-positive cells. We here demonstrate that the USP9X inhibitor WP1130 or EOAI3402143 (G9) inhibited proliferation and induced apoptosis more efficiently in cells dependent on JAK2-V617F than on cytokine-activated JAK2. WP1130 preferentially downregulated activated and autophosphorylated JAK2-V617F by enhancing its K63-linked polyubiquitination and inducing its aggresomal translocation to block downstream signaling. Furthermore, JAK2-V617F associated physically with USP9X in leukemic HEL cells. Induction of apoptosis by inhibition of USP9X was mediated through the intrinsic mitochondria-mediated pathway, synergistically enhanced by BH3 mimetics, prevented by overexpression of Bcl-xL, and required oxidative stress to activate stress-related MAP kinases p38 and JNK as well as DNA damage responses in HEL cells. Although autophosphorylated JAK2-V617F was resistant to WP1130 in the ruxolitinib-persistent HEL-R cells, these cells expressed Bcl-2 and Bcl-xL at lower levels and showed an increased sensitivity to WP1130 as well as BH3 mimetics as compared with ruxolitinib-naive HEL cells. Thus, USP9X represents a promising target along with anti-apoptotic Bcl-2 family members for novel therapeutic strategies against JAK2-V617F-positive myeloproliferative neoplasms, particularly under the ruxolitinib persistence conditions.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Daisuke Watanabe
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Keigo Okada
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Shinya Ishida
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Ayako Nogami
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
- Department of Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
- Correspondence:
| |
Collapse
|
22
|
Sharma A, Boise LH, Shanmugam M. Cancer Metabolism and the Evasion of Apoptotic Cell Death. Cancers (Basel) 2019; 11:E1144. [PMID: 31405035 PMCID: PMC6721599 DOI: 10.3390/cancers11081144] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Abstract
Cellular growth and proliferation depend upon the acquisition and synthesis of specific metabolites. These metabolites fuel the bioenergy, biosynthesis, and redox potential required for duplication of cellular biomass. Multicellular organisms maintain tissue homeostasis by balancing signals promoting proliferation and removal of cells via apoptosis. While apoptosis is in itself an energy dependent process activated by intrinsic and extrinsic signals, whether specific nutrient acquisition (elevated or suppressed) and their metabolism regulates apoptosis is less well investigated. Normal cellular metabolism is regulated by lineage specific intrinsic features and microenvironment driven extrinsic features. In the context of cancer, genetic abnormalities, unconventional microenvironments and/or therapy engage constitutive pro-survival signaling to re-program and rewire metabolism to maintain survival, growth, and proliferation. It thus becomes particularly relevant to understand whether altered nutrient acquisition and metabolism in cancer can also contribute to the evasion of apoptosis and consequently therapy resistance. Our review attempts to dissect a causal relationship between two cancer hallmarks, i.e., deregulated cellular energetics and the evasion of programmed cell death with primary focus on the intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Akiyama H, Umezawa Y, Ishida S, Okada K, Nogami A, Miura O. Inhibition of USP9X induces apoptosis in FLT3-ITD-positive AML cells cooperatively by inhibiting the mutant kinase through aggresomal translocation and inducing oxidative stress. Cancer Lett 2019; 453:84-94. [DOI: 10.1016/j.canlet.2019.03.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
|
24
|
Oliveira V, Mahajan N, Bates ML, Tripathi C, Kim KQ, Zaher HS, Maggi Jr LB, Tomasson MH. The snoRNA target of t(4;14) in multiple myeloma regulates ribosome biogenesis. FASEB Bioadv 2019; 1:404-414. [PMID: 32095781 PMCID: PMC6996358 DOI: 10.1096/fba.2018-00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/10/2018] [Accepted: 04/08/2019] [Indexed: 12/31/2022] Open
Abstract
The orphan small nucleolar RNA (snoRNA) ACA11 is overexpressed as a result of the t(4;14) chromosomal translocation in multiple myeloma (MM), increases reactive oxygen species, and drives cell proliferation. Like other snoRNAs, ACA11 is predominantly localized to a sub-nuclear organelle, the nucleolus. We hypothesized that increased ACA11 expression would increase ribosome biogenesis and protein synthesis. We found that ACA11 overexpression in MM cells increased nucleolar area and number as well as silver-binding nucleolar organizing regions (AgNORs). Supporting these data, samples from t(4;14)-positive patients had higher AgNORs scores than t(4;14)-negative samples. ACA11 also upregulated ribosome production, pre-47S rRNA synthesis, and protein synthesis in a ROS-dependent manner. Lastly, ACA11 overexpression enhanced the response to proteasome inhibitor in MM cells, while no effect was found in response to high doses of melphalan. Together, these data demonstrate that ACA11 stimulates ribosome biogenesis and influences responses to chemotherapy. ACA11 may be a useful target to individualize the treatment for t(4;14)-positive myeloma patients.
Collapse
Affiliation(s)
- Vanessa Oliveira
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Internal MedicineUniversity of IowaIowa CityIowa
| | - Nitin Mahajan
- Division of Oncology, Department of MedicineSiteman Cancer Center, Washington University School of MedicineSt. LouisMissouri
| | - Melissa L. Bates
- Department of Health and Human PhysiologyUniversity of IowaIowa CityIowa
- Stead Family Department of PediatricsUniversity of IowaIowa CityIowa
- Holden Comprehensive Cancer CenterUniversity of IowaIowa CityIowa
| | - Chakrapani Tripathi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Internal MedicineUniversity of IowaIowa CityIowa
| | - Kyusik Q. Kim
- Department of BiologyWashington UniversitySt. LouisMissouri
| | - Hani S. Zaher
- Department of BiologyWashington UniversitySt. LouisMissouri
| | - Leonard B. Maggi Jr
- Division of Oncology, Department of MedicineSiteman Cancer Center, Washington University School of MedicineSt. LouisMissouri
| | - Michael H. Tomasson
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Internal MedicineUniversity of IowaIowa CityIowa
- Holden Comprehensive Cancer CenterUniversity of IowaIowa CityIowa
| |
Collapse
|
25
|
Petsri K, Chamni S, Suwanborirux K, Saito N, Chanvorachote P. Renieramycin T Induces Lung Cancer Cell Apoptosis by Targeting Mcl-1 Degradation: A New Insight in the Mechanism of Action. Mar Drugs 2019; 17:md17050301. [PMID: 31117253 PMCID: PMC6562878 DOI: 10.3390/md17050301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022] Open
Abstract
Among malignancies, lung cancer is the major cause of cancer death. Despite the advance in lung cancer therapy, the five-year survival rate is extremely restricted due to therapeutic failure and disease relapse. Targeted therapies selectively inhibiting certain molecules in cancer cells have been accepted as promising ways to control cancer. In lung cancer, evidence has suggested that the myeloid cell leukemia 1 (Mcl-1) protein, an anti-apoptotic member of the Bcl-2 family, is a target for drug action. Herein, we report the Mcl-1 targeting activity of renieramycin T (RT), a marine-derived tetrahydroisoquinoline alkaloid that was isolated from the Thai blue sponge Xestospongia sp. RT was shown to be dominantly toxic to lung cancer cells compared to the normal cells in the lung. The cytotoxicity of this compound toward lung cancer cells was mainly exerted through apoptosis induction. For the mechanism of action, we found that RT mediated activation of p53 protein and caspase-9 and -3 activations. While others Bcl-2 family proteins (Bcl-2, Bak, and Bax) were minimally changed in response to RT, Mcl-1 protein was dramatically diminished. We further performed the cycloheximide experiment and found that the half-life of Mcl-1 was significantly shortened by RT treatment. When MG132, a potent selective proteasome inhibitor, was utilized, it could restore the Mcl-1 level. Furthermore, immunoprecipitation analysis revealed that RT significantly increased the formation of Mcl-1-ubiquitin complex compared to the non-treated control. In conclusion, we report the potential apoptosis induction of RT with a mechanism of action involving the targeting of Mcl-1 for ubiquitin-proteasomal degradation. As Mcl-1 is critical for cancer cell survival and chemotherapeutic failure, this novel information regarding the Mcl-1-targeted compound would be beneficial for the development of efficient anti-cancer strategies or targeted therapies.
Collapse
Affiliation(s)
- Korrakod Petsri
- Cell-Based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
- Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Khanit Suwanborirux
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Naoki Saito
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Pithi Chanvorachote
- Cell-Based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
26
|
Impact of elevated anti-apoptotic MCL-1 and BCL-2 on the development and treatment of MLL-AF9 AML in mice. Cell Death Differ 2018; 26:1316-1331. [PMID: 30470795 PMCID: PMC6748137 DOI: 10.1038/s41418-018-0209-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Many acute myeloid leukaemias (AMLs) express high levels of BCL-2 and MCL-1, especially after therapy. To test the impact of these anti-apoptotic proteins on AML development and treatment, we used haemopoietic reconstitution to generate MLL-AF9 AMLs expressing BCL-2 or Mcl-1 transgenes. AMLs with elevated BCL-2 or MCL-1 had a higher proportion of mature myeloid cells but, like conventional MLL-AF9 AMLs, were readily transplantable. Short-term cell lines established from multiple primary AMLs of each genotype were tested in vitro for susceptibility to chemotherapeutics currently used for treating AML (daunorubicin, etoposide, cytarabine); the proteasome inhibitor bortezomib; CDK7/9 inhibitors; and BH3 mimetics, which bind and inhibit pro-survival proteins. The BH3 mimetics tested, alone and in combination with the other drugs, were: ABT-737 which, like its clinical counterpart navitoclax, targets BCL-2, BCL-XL and BCL-W; BCL-2-specific ABT-199 (venetoclax); BCL-XL-specific A-1331852; and S63845, a new MCL-1-specific BH3 mimetic. As single agents, daunorubicin and bortezomib had the greatest efficacy. Elevated MCL-1 or BCL-2 reduced sensitivity to daunorubicin but, surprisingly, not to bortezomib. MCL-1 markedly enhanced resistance to ABT-737 and ABT-199 but not S63845, and BCL-2 increased resistance to S63845 but not to ABT-737 or ABT-199. Notable synergies were achieved by combining BH3 mimetics with daunorubicin: S63845 increased the sensitivity of both MCL-1 and BCL-2 overexpressing MLL-AF9 AMLs, and ABT-737 aided in killing those overexpressing BCL-2. Synergy between daunorubicin and ABT-199 was also apparent in vivo, although not curative. Impressive synergistic responses were achieved for human MLL-fusion AML cell lines treated with daunorubicin plus either ABT-737, ABT-199 or S63845, and with ABT-199 plus S63845, with or without daunorubicin. Our data suggest that AML patients may benefit from combining conventional cytotoxic drugs with BH3 mimetics targeting BCL-2 or MCL-1 or, if tolerated, both these agents.
Collapse
|
27
|
Vallet S, Fan F, Malvestiti S, Pecherstorfer M, Sattler M, Schneeweiss A, Schulze-Bergkamen H, Opferman JT, Cardone MH, Jäger D, Podar K. Rationally derived drug combinations with the novel Mcl-1 inhibitor EU-5346 in breast cancer. Breast Cancer Res Treat 2018; 173:585-596. [PMID: 30374681 DOI: 10.1007/s10549-018-5022-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023]
Abstract
PURPOSE Recent studies have emphasized a key role for the anti-apoptotic Bcl-2 family member Mcl-1 in conferring tumor cell survival and drug resistance in breast cancer (BC). Mcl-1 inhibitors, such as the BH3-mimetic EU-5346, therefore represent an exciting new class of targeting agents and are a current focus of widespread cancer-drug development efforts. METHODS ONCOMINE analysis was utilized to compare expression profiles of Bcl-2 family members across all major BC subgroups. Potential toxicities of EU-5346 were evaluated using iPS-generated cardiomyocytes, blood cells and astrocytes. The anti-BC cell activity of EU-5346-based therapies was evaluated using [3H]-thymidine uptake and spheroid-forming assays as well as immunoblotting and the Chou-Talalay method. Protein level-based activity of EU-5346, the specific anti-Bcl-2 inhibitor ABT-199 and the specific anti-Bcl-xL inhibitor WEHI-539 was verified in Mcl-1Δ/null versus Mcl-1wt/wt MEFs. RESULTS We previously demonstrated significant anti-tumor activity of EU-5346 in all BC subtypes. Our present results go further and suggest that EU-5346 may induce limited adverse events such as cardiotoxicity, hematotoxicity, and neurotoxicity, frequently observed with other BH3 mimetics. As demonstrated by our mathematical scoring model, the prediction of EU-5643-induced IC50 not only relies on the protein level of Mcl-1 but also on Bak, Bim, and Noxa. Synergistic anti-BC activity of low-dose EU-5346 with the BH3 mimetics ABT-199 or WEHI-539 was observed only in those BC cells expressing Bcl-2 or Bcl-xL, respectively. Similarly, when combined with tamoxifen or trastuzumab, low-dose EU-5346 induced significant anti-BC activity in hormone receptor positive or Her2-positive BC cells, respectively. Finally, EU-5346 in combination with paclitaxel induced synergistic anti-BC activity in both paclitaxel-sensitive and paclitaxel-resistant TNBC cells. CONCLUSION These data strongly support the further clinical development of EU-5346 to improve BC patient survival.
Collapse
Affiliation(s)
- Sonia Vallet
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Fengjuan Fan
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Stefano Malvestiti
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Martin Pecherstorfer
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andreas Schneeweiss
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | - Henning Schulze-Bergkamen
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
| | | | | | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Applied Tumor Immunity, Heidelberg, Germany
| | - Klaus Podar
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany.
- Department of Internal Medicine II, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria.
| |
Collapse
|
28
|
Timucin AC, Basaga H, Kutuk O. Selective targeting of antiapoptotic BCL-2 proteins in cancer. Med Res Rev 2018; 39:146-175. [DOI: 10.1002/med.21516] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 05/05/2018] [Accepted: 05/12/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmet Can Timucin
- Faculty of Engineering and Natural Sciences, Department of Chemical and Biological Engineering; Uskudar University; Uskudar Istanbul Turkey
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program; Sabanci University; Tuzla Istanbul Turkey
| | - Huveyda Basaga
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program; Sabanci University; Tuzla Istanbul Turkey
| | - Ozgur Kutuk
- Department of Medical Genetics; Adana Medical and Research Center; School of Medicine, Baskent University; Yuregir Adana Turkey
| |
Collapse
|
29
|
Rozic G, Paukov L, Jakubikova J, Ben-Shushan D, Duek A, Leiba A, Avigdor A, Nagler A, Leiba M. The novel compound STK405759 is a microtubule-targeting agent with potent and selective cytotoxicity against multiple myeloma in vitro and in vivo. Oncotarget 2018; 7:62572-62584. [PMID: 27613836 PMCID: PMC5308747 DOI: 10.18632/oncotarget.11539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022] Open
Abstract
Despite advances in treatment, multiple myeloma (MM) remains incurable. Here we propose the use of STK405759, a novel microtubule targeting agent (MTA) and member of the furan metotica family for MM therapy. STK405759 inhibited tubulin polymerization in a cell-free system and in myeloma cells. This molecule had potent cytotoxic activity against several MM cell lines and patient-derived MM cells. Moreover, STK405759 demonstrated cytotoxicity against drug-resistant myeloma cells that overexpressed the P-glycoprotein drug-efflux pump. STK405759 was not cytotoxic to peripheral blood mononuclear cells, including activated B and T lymphocytes. This compound caused mitotic arrest and apoptosis of myeloma cells characterized by cleavage of poly (ADP-ribose) polymerase-1 and caspase-8, as well as decreased protein expression of mcl-1. The combination of STK405759 with bortezomib, lenalidomide or dexamethasone had synergistic cytotoxic activity. In in vivo studies, STK405759-treated mice had significantly decreased MM tumor burden and prolonged survival compared to vehicle treated- mice. These results provide a rationale for further evaluation of STK405759 as monotherapy or part of combination therapy for treating patients with MM.
Collapse
Affiliation(s)
- Gabriela Rozic
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Lena Paukov
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Jana Jakubikova
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dikla Ben-Shushan
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Adrian Duek
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Adi Leiba
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Medical Education, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Abraham Avigdor
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arnon Nagler
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Merav Leiba
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Blocking EZH2 methylation transferase activity by GSK126 decreases stem cell-like myeloma cells. Oncotarget 2018; 8:3396-3411. [PMID: 27926488 PMCID: PMC5356890 DOI: 10.18632/oncotarget.13773] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/21/2016] [Indexed: 01/14/2023] Open
Abstract
EZH2 is a critical epigenetic regulator that is deregulated in various types of cancers including multiple myeloma (MM). In the present study, we hypothesized that targeting EZH2 might induce apoptosis in myeloma cells including stem cell-like cells (CSCs). We investigated the effect of EZH2 inhibition on MM cells using a potent inhibitor (GSK126). The results showed that GSK126 effectively abrogated the methylated histone 3 (H3K27me3) level in MM.1S and LP1 cells, and inhibited the number of live cells and colony formation in soft agar of six MM cell lines. GSK126 induced massive apoptosis in MM.1S, LP1 and RPMI8226 cells. Progressive release of mitochondrial cytochrome c and AIF into the cytosol was detected in GSK126-treated MM cells. GSK126 treatment elicited caspase-3-dependent MCL-1 cleavage with accumulation of proapoptotic truncated MCL-1. These results suggested that GSK126 triggers the intrinsic mitochondrial apoptosis pathway. Enhanced apoptosis was observed in the combination of GSK126 with bortezomib. Using ALDH and side population (SP) assays to characterize CSCs, we found that GSK126 eliminated the stem-like myeloma cells by blocking the Wnt/β-catenin pathway. The in vivo anti-tumor effect of GSK126 was confirmed by using RPMI8226 cells in a xenograft mouse model. In conclusion, our findings suggest that EZH2 inactivation by GSK126 is effective in killing MM cells and CSCs as a single agent or in combination with bortezomib. Clinical trial of GSK126 in patients with MM may be warranted.
Collapse
|
31
|
Bolomsky A, Heusschen R, Schlangen K, Stangelberger K, Muller J, Schreiner W, Zojer N, Caers J, Ludwig H. Maternal embryonic leucine zipper kinase is a novel target for proliferation-associated high-risk myeloma. Haematologica 2017; 103:325-335. [PMID: 29122991 PMCID: PMC5792277 DOI: 10.3324/haematol.2017.172973] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/27/2017] [Indexed: 01/14/2023] Open
Abstract
Treatment of high-risk patients is a major challenge in multiple myeloma. This is especially true for patients assigned to the gene expression profiling-defined proliferation subgroup. Although recent efforts have identified some key players of proliferative myeloma, genetic interactions and players that can be targeted with clinically effective drugs have to be identified in order to overcome the poor prognosis of these patients. We therefore examined maternal embryonic leucine zipper kinase (MELK) for its implications in hyper-proliferative myeloma and analyzed the activity of the MELK inhibitor OTSSP167 both in vitro and in vivoMELK was found to be significantly overexpressed in the proliferative subgroup of myeloma. This finding translated into poor overall survival in patients with high vs low MELK expression. Enrichment analysis of upregulated genes in myeloma cells of MELKhigh patients confirmed the strong implications in myeloma cell proliferation. Targeting MELK with OTSSP167 impaired the growth and survival of myeloma cells, thereby affecting central survival factors such as MCL-1 and IRF4 This activity was also observed in the 5TGM.1 murine model of myeloma. OTSSP167 reduced bone marrow infiltration and serum paraprotein levels in a dose-dependent manner. In addition, we revealed a strong link between MELK and other proliferation-associated high-risk genes (PLK-1, EZH2, FOXM1, DEPDC1) and MELK inhibition also impaired the expression of those genes. We therefore conclude that MELK is an essential component of a proliferative gene signature and that pharmacological inhibition of MELK represents an attractive novel approach to overcome the poor prognosis of high-risk patients with a proliferative expression pattern.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Wilhelminen Cancer Research Institute, Department of Medicine I, Wilhelminenspital, Vienna, Austria
| | - Roy Heusschen
- Laboratory of Hematology, GIGA-I3, University of Liège, Belgium
| | - Karin Schlangen
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Biosimulation and Bioinformatics, Medical University of Vienna, Austria and
| | - Kathrin Stangelberger
- Wilhelminen Cancer Research Institute, Department of Medicine I, Wilhelminenspital, Vienna, Austria
| | | | - Wolfgang Schreiner
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Biosimulation and Bioinformatics, Medical University of Vienna, Austria and
| | - Niklas Zojer
- Wilhelminen Cancer Research Institute, Department of Medicine I, Wilhelminenspital, Vienna, Austria
| | - Jo Caers
- Laboratory of Hematology, GIGA-I3, University of Liège, Belgium .,Division of Hematology, Department of Medicine, University and CHU of Liège, Belgium
| | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, Department of Medicine I, Wilhelminenspital, Vienna, Austria
| |
Collapse
|
32
|
Tang B, Xu A, Xu J, Huang H, Chen L, Su Y, Zhang L, Li J, Fan F, Deng J, Tang L, Sun C, Hu Y. MicroRNA-324-5p regulates stemness, pathogenesis and sensitivity to bortezomib in multiple myeloma cells by targeting hedgehog signaling. Int J Cancer 2017; 142:109-120. [PMID: 28905994 DOI: 10.1002/ijc.31041] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 09/06/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Bo Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Jian Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Haifan Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Lei Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Yan Su
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Lannan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Junying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Liang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430022 China
| |
Collapse
|
33
|
Zhang Y, Zhou L, Leng Y, Dai Y, Orlowski RZ, Grant S. Positive transcription elongation factor b (P-TEFb) is a therapeutic target in human multiple myeloma. Oncotarget 2017; 8:59476-59491. [PMID: 28938651 PMCID: PMC5601747 DOI: 10.18632/oncotarget.19761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/03/2017] [Indexed: 02/05/2023] Open
Abstract
The role of the positive RNA Pol II regulator, P-TEFb (positive transcription elongation factor b), in maintenance of the anti-apoptotic protein Mcl-1 and bortezomib (btz) resistance was investigated in human multiple myeloma (MM) cells. Mcl-1 was up-regulated in all MM lines tested, including bortezomib-resistant lines, human MM xenograft mouse models, and primary CD138+ MM cells. Mcl-1 over-expression significantly reduced bortezomib lethality, indicating a functional role for Mcl-1 in bortezomib resistance. MM cell lines, primary MM specimens, and murine xenografts exhibited constitutive P-TEFb activation, manifested by high CTD (carboxy-terminal domain) S2 phosphorylation, associated with a) P-TEFb subunit up-regulation i.e., CDK9 (42 and 55 kDa isoforms) and cyclin T1; and b) marked CDK9 (42 kDa) T186 phosphorylation. In marked contrast, normal hematopoietic cells failed to exhibit up-regulation of p-CTD, CDK9, cyclin T1, or Mcl-1. CDK9 or cyclin T1 shRNA knock-down dramatically inhibited CTD S2 phosphorylation and down-regulated Mcl-1. Moreover, CRISPR-Cas CDK9 knock-out triggered apoptosis in MM cells and dramatically diminished cell growth. Pan-CDK e.g., dinaciclib or alvocidib and selective CDK9 inhibitors (CDK9i) recapitulated the effects of genetic P-TEFb disruption. CDK9 shRNA or CDK9 inhibitors significantly potentiated the susceptibility of MM cells, including bortezomib-resistant cells, to proteasome inhibitors. Analogously, CDK9 or cyclin T1 knock-down or CDK9 inhibitors markedly increased BH3-mimetic lethality in bortezomib-resistant cells. Finally, pan-CDK inhibition reduced human drug-naïve or bortezomib-resistant CD138+ cells and restored bone marrow architecture in vivo. Collectively, these findings implicate constitutive P-TEFb activation in high Mcl-1 maintenance in MM, and validate targeting the P-TEFb complex to circumvent bortezomib-resistance.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and The Massey Cancer Center, Richmond, VA, USA
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and The Massey Cancer Center, Richmond, VA, USA
| | - Yun Leng
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and The Massey Cancer Center, Richmond, VA, USA.,Department of Hematology, Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Yun Dai
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Robert Z Orlowski
- Department of Myeloma and Lymphoma, MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University and The Massey Cancer Center, Richmond, VA, USA.,Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pharmacology Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
34
|
Lin CL, Chen CM, Lin CL, Cheng CW, Lee CH, Hsieh YH. Norcantharidin induces mitochondrial-dependent apoptosis through Mcl-1 inhibition in human prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1867-1876. [PMID: 28760656 DOI: 10.1016/j.bbamcr.2017.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
Norcantharidin (NCTD) is the demethylated form of cantharidin that exhibits anticancer potential in many cancer cell types. Recent reports suggest that NCTD targeting ROS/AMPK and DNA replication signaling pathway could be an effective strategy for the treatment of PCa cells. However, supportive evidence is limited to the effect of NCTD that induction of apoptosis through suppression of the Mcl-1. Here, we show that NCTD induced PCa cell apoptosis and triggered caspase activation, which was associated with mitochondria dysfunction. Mechanistic investigations suggested that NCTD modulated the Akt signaling via increased nuclear translocation and interaction with the myeloid cell leukemia-1 (Mcl-1) promoter by FOXO4, resulting in an apoptotic effect. Moreover, miR-320d, which targets Mcl-1, was significantly upregulated after NCTD treatment. Overexpression of miR-320d by NCTD induced mitochondria dysfunction and apoptosis, which was notably attenuated with a miR-320d inhibitor. In vivo xenograft analysis revealed that NCTD significantly reduced tumor growth in mice with PC3 tumor xenografts. Taken together, our results provide new insights into the critical role of NCTD in suppressing Mcl-1 via epigenetic upregulation of miR-320d, resulting in PCa cell apoptosis.
Collapse
Affiliation(s)
- Chu-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan; School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Wen Cheng
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Hsing Lee
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung. Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
35
|
Schnerch D, Schüler J, Follo M, Felthaus J, Wider D, Klingner K, Greil C, Duyster J, Engelhardt M, Wäsch R. Proteasome inhibition enhances the efficacy of volasertib-induced mitotic arrest in AML in vitro and prolongs survival in vivo. Oncotarget 2017; 8:21153-21166. [PMID: 28416751 PMCID: PMC5400573 DOI: 10.18632/oncotarget.15503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Elderly and frail patients, diagnosed with acute myeloid leukemia (AML) and ineligible to undergo intensive treatment, have a dismal prognosis. The small molecule inhibitor volasertib induces a mitotic block via inhibition of polo-like kinase 1 and has shown remarkable anti-leukemic activity when combined with low-dose cytarabine. We have demonstrated that AML cells are highly vulnerable to cell death in mitosis yet manage to escape a mitotic block through mitotic slippage by sustained proteasome-dependent slow degradation of cyclin B. Therefore, we tested whether interfering with mitotic slippage through proteasome inhibition arrests and kills AML cells more efficiently during mitosis. We show that therapeutic doses of bortezomib block the slow degradation of cyclin B during a volasertib-induced mitotic arrest in AML cell lines and patient-derived primary AML cells. In a xenotransplant mouse model of human AML, mice receiving volasertib in combination with bortezomib showed superior disease control compared to mice receiving volasertib alone, highlighting the potential therapeutic impact of this drug combination.
Collapse
Affiliation(s)
- Dominik Schnerch
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Marie Follo
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Felthaus
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dagmar Wider
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Christine Greil
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Höring E, Montraveta A, Heine S, Kleih M, Schaaf L, Vöhringer MC, Esteve-Arenys A, Roué G, Colomer D, Campo E, Ott G, Aulitzky WE, van der Kuip H. Dual targeting of MCL1 and NOXA as effective strategy for treatment of mantle cell lymphoma. Br J Haematol 2017; 177:557-561. [DOI: 10.1111/bjh.14571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Elisabeth Höring
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen; Stuttgart Germany
- Department of Haematology and Oncology; Robert-Bosch-Hospital; Stuttgart Germany
- Haematopathology Unit; Hospital Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Universitat de Barcelona; Barcelona Spain
| | - Arnau Montraveta
- Haematopathology Unit; Hospital Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Universitat de Barcelona; Barcelona Spain
| | - Simon Heine
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen; Stuttgart Germany
| | - Markus Kleih
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen; Stuttgart Germany
| | - Lea Schaaf
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen; Stuttgart Germany
| | | | - Anna Esteve-Arenys
- Haematopathology Unit; Hospital Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Universitat de Barcelona; Barcelona Spain
| | - Gael Roué
- Haematopathology Unit; Hospital Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Universitat de Barcelona; Barcelona Spain
| | - Dolors Colomer
- Haematopathology Unit; Hospital Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Universitat de Barcelona; Barcelona Spain
| | - Elias Campo
- Haematopathology Unit; Hospital Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Universitat de Barcelona; Barcelona Spain
| | - German Ott
- Department of Clinical Pathology; Robert-Bosch-Hospital; Stuttgart Germany
| | - Walter E. Aulitzky
- Department of Haematology and Oncology; Robert-Bosch-Hospital; Stuttgart Germany
| | - Heiko van der Kuip
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen; Stuttgart Germany
| |
Collapse
|
37
|
Sherbenou DW, Aftab BT, Su Y, Behrens CR, Wiita A, Logan AC, Acosta-Alvear D, Hann BC, Walter P, Shuman MA, Wu X, Atkinson JP, Wolf JL, Martin TG, Liu B. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells. J Clin Invest 2016; 126:4640-4653. [PMID: 27841764 DOI: 10.1172/jci85856] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 10/06/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma is incurable by standard approaches because of inevitable relapse and development of treatment resistance in all patients. In our prior work, we identified a panel of macropinocytosing human monoclonal antibodies against CD46, a negative regulator of the innate immune system, and constructed antibody-drug conjugates (ADCs). In this report, we show that an anti-CD46 ADC (CD46-ADC) potently inhibited proliferation in myeloma cell lines with little effect on normal cells. CD46-ADC also potently eliminated myeloma growth in orthometastatic xenograft models. In primary myeloma cells derived from bone marrow aspirates, CD46-ADC induced apoptosis and cell death, but did not affect the viability of nontumor mononuclear cells. It is of clinical interest that the CD46 gene resides on chromosome 1q, which undergoes genomic amplification in the majority of relapsed myeloma patients. We found that the cell surface expression level of CD46 was markedly higher in patient myeloma cells with 1q gain than in those with normal 1q copy number. Thus, genomic amplification of CD46 may serve as a surrogate for target amplification that could allow patient stratification for tailored CD46-targeted therapy. Overall, these findings indicate that CD46 is a promising target for antibody-based treatment of multiple myeloma, especially in patients with gain of chromosome 1q.
Collapse
|
38
|
Capsaicin triggers immunogenic PEL cell death, stimulates DCs and reverts PEL-induced immune suppression. Oncotarget 2016; 6:29543-54. [PMID: 26338963 PMCID: PMC4745745 DOI: 10.18632/oncotarget.4911] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023] Open
Abstract
Capsaicin, the pungent alkaloid of red pepper has been extensively studied for its many properties, especially the anti-inflammatory and anti-oxidant ones. It binds to vanilloid receptor 1, although it has been reported to be able to mediate some effects independently of its receptor. Another important property of Capsaicin is the anticancer activity against highly malignant tumors, alone or in combination with other chemotherapeutic agents. In this study, we found that Capsaicin induced an apoptotic cell death in PEL cells correlated with the inhibition of STAT3. STAT3 pathway, constitutively activated in PEL cells, is essential for their survival. By STAT3 de-phosphorylation, Capsaicin reduced the Mcl-1 expression level and this could represent one of the underlying mechanisms leading to the Capsaicin-mediated cell death and autophagy induction. Next, by pharmacological or genetic inhibition, we found that autophagy played a pro-survival role, suggesting that its inhibition could be exploited to increase the Capsaicin cytotoxic effect against PEL cells. Finally, we show that Capsaicin induced DAMP exposure, as for an immunogenic cell death, directly promoted DC activation and, more importantly, that it counteracted the immune-suppression, in terms of DC differentiation, mediated by the PEL released factors.
Collapse
|
39
|
Bhat M, Yanagiya A, Graber T, Razumilava N, Bronk S, Zammit D, Zhao Y, Zakaria C, Metrakos P, Pollak M, Sonenberg N, Gores G, Jaramillo M, Morita M, Alain T. Metformin requires 4E-BPs to induce apoptosis and repress translation of Mcl-1 in hepatocellular carcinoma cells. Oncotarget 2016; 8:50542-50556. [PMID: 28881582 PMCID: PMC5584165 DOI: 10.18632/oncotarget.10671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Metformin inhibits the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, which is frequently upregulated in hepatocellular carcinoma (HCC). Metformin has also been shown to induce apoptosis in this cancer. Here, we investigate whether metformin-induced apoptosis in HCC is mediated by the downstream mTORC1 effectors eukaryotic initiation factor 4E and (eIF4E)-binding proteins (4E-BPs). Further, we ask whether changes in 4E-BPs activity during metformin treatment negatively regulate translation of the anti-apoptotic myeloid cell leukemia 1 (Mcl-1) mRNA. A genetic HCC mouse model was employed to assess the ability of metformin to reduce tumor formation, induce apoptosis, and control 4E-BP1 activation and Mcl-1 protein expression. In parallel, the HCC cell line Huh7 was transduced with scrambled shRNA (control) or shRNAs targeting 4E-BP1 and 4E-BP2 (4E-BP knock-down (KD)) to measure differences in mRNA translation, apoptosis, and Mcl-1 protein expression after metformin treatment. In addition, immunohistochemical staining of eIF4E and 4E-BP1 protein levels was addressed in a HCC patient tissue microarray. We found that metformin decreased HCC tumor burden, and tumor tissues showed elevated apoptosis with reduced Mcl-1 and phosphorylated 4E-BP1 protein levels. In control but not 4E-BP KD Huh7 cells, metformin induced apoptosis and repressed Mcl-1 mRNA translation and protein levels. Immunostaining of HCC patient tumor tissues revealed a varying ratio of eIF4E/4E-BP1 expression. Our results propose that metformin induces apoptosis in mouse and cellular models of HCC through activation of 4E-BPs, thus tumors with elevated expression of 4E-BPs may display improved clinical chemopreventive benefit of metformin.
Collapse
Affiliation(s)
- Mamatha Bhat
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada.,Division of Gastroenterology, University Health Network and University of Toronto, Toronto, Canada, USA.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Akiko Yanagiya
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Tyson Graber
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Nataliya Razumilava
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.,Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - Steve Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Domenick Zammit
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Yunhao Zhao
- Departments of Medicine and Oncology, Lady Davis Institute for Medical Research and Segal Cancer Center, Montreal, Canada
| | - Chadi Zakaria
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Peter Metrakos
- Department of Surgery, McGill University Health Centre, Montreal, Canada
| | - Michael Pollak
- Departments of Medicine and Oncology, Lady Davis Institute for Medical Research and Segal Cancer Center, Montreal, Canada
| | - Nahum Sonenberg
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Gregory Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Maritza Jaramillo
- INRS Institut Armand-Frappier Research Centre, Laval, Quebec, Canada
| | - Masahiro Morita
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
40
|
Effects of IL-8 Up-Regulation on Cell Survival and Osteoclastogenesis in Multiple Myeloma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2171-2182. [PMID: 27301357 DOI: 10.1016/j.ajpath.2016.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/14/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023]
Abstract
IL-8 promotes cancer cell growth, survival, angiogenesis, and metastasis in several tumors. Herein, we investigated the sources of IL-8 production in multiple myeloma (MM) and its potential roles in MM pathogenesis. We found that bone marrow cells from patients with MM secreted higher amounts of IL-8 than healthy donors. IL-8 production was detected in cultures of CD138(+) plasma cells and CD138(-) cells isolated from bone marrows of MM patients, and in three of seven human myeloma cell lines (HMCLs) analyzed. Interactions between MM and stromal cells increased IL-8 secretion by stromal cells through cell-cell adhesion and soluble factors. Interestingly, IL8 expression also increased in HMCLs, stromal cells, and osteoclasts after treatment with the antimyeloma drugs melphalan and bortezomib. In fact, the effect of bortezomib on IL-8 production was higher than that exerted by stromal-MM cell interactions. Addition of exogenous IL-8 did not affect growth of HMCLs, although it protected cells from death induced by serum starvation through a caspase-independent mechanism. Furthermore, IL-8 induced by stromal-MM cell interactions strongly contributed to osteoclast formation in vitro, because osteoclastogenesis was markedly reduced by IL-8-specific neutralizing antibodies. In conclusion, our results implicate IL-8 in myeloma bone disease and point to the potential utility of an anti-IL-8 therapy to prevent unwanted effects of IL-8 up-regulation on survival, angiogenesis, and osteolysis in MM.
Collapse
|
41
|
A dominant-negative F-box deleted mutant of E3 ubiquitin ligase, β-TrCP1/FWD1, markedly reduces myeloma cell growth and survival in mice. Oncotarget 2016; 6:21589-602. [PMID: 26009993 PMCID: PMC4673288 DOI: 10.18632/oncotarget.4120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Treatment of multiple myeloma with bortezomib can result in severe adverse effects, necessitating the development of targeted inhibitors of the proteasome. We show that stable expression of a dominant-negative F-box deleted (ΔF) mutant of the E3 ubiquitin ligase, SCFβ-TrCP/FWD1, in murine 5TGM1 myeloma cells dramatically attenuated their skeletal engraftment and survival when inoculated into immunocompetent C57BL/KaLwRij mice. Similar results were obtained in immunodeficient bg-nu-xid mice, suggesting that the observed effects were independent of host recipient immune status. Bone marrow stroma offered no protection for 5TGM1-ΔF cells in cocultures treated with tumor necrosis factor (TNF), indicating a cell-autonomous anti-myeloma effect. Levels of p100, IκBα, Mcl-1, ATF4, total and cleaved caspase-3, and phospho-β-catenin were elevated in 5TGM1-ΔF cells whereas cIAP was down-regulated. TNF also activated caspase-3 and downregulated Bcl-2, correlating with the enhanced susceptibility of 5TGM1-ΔF cells to apoptosis. Treatment of 5TGM1 tumor-bearing mice with a β-TrCP1/FWD1 inhibitor, pyrrolidine dithiocarbamate (PDTC), significantly reduced tumor burden in bone. PDTC also increased levels of cleaved Mcl-1 and caspase-3 in U266 human myeloma cells, correlating with our murine data and validating the development of specific β-TrCP inhibitors as an alternative therapy to nonspecific proteasome inhibitors for myeloma patients.
Collapse
|
42
|
Zhang XD, Baladandayuthapani V, Lin H, Mulligan G, Li B, Esseltine DLW, Qi L, Xu J, Hunziker W, Barlogie B, Usmani SZ, Zhang Q, Crowley J, Hoering A, Shah JJ, Weber DM, Manasanch EE, Thomas SK, Li BZ, Wang HH, Zhang J, Kuiatse I, Tang JL, Wang H, He J, Yang J, Milan E, Cenci S, Ma WC, Wang ZQ, Davis RE, Yang L, Orlowski RZ. Tight Junction Protein 1 Modulates Proteasome Capacity and Proteasome Inhibitor Sensitivity in Multiple Myeloma via EGFR/JAK1/STAT3 Signaling. Cancer Cell 2016; 29:639-652. [PMID: 27132469 PMCID: PMC4983190 DOI: 10.1016/j.ccell.2016.03.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/26/2015] [Accepted: 03/25/2016] [Indexed: 01/15/2023]
Abstract
Proteasome inhibitors have revolutionized outcomes in multiple myeloma, but they are used empirically, and primary and secondary resistance are emerging problems. We have identified TJP1 as a determinant of plasma cell proteasome inhibitor susceptibility. TJP1 suppressed expression of the catalytically active immunoproteasome subunits LMP7 and LMP2, decreased proteasome activity, and enhanced proteasome inhibitor sensitivity in vitro and in vivo. This occurred through TJP1-mediated suppression of EGFR/JAK1/STAT3 signaling, which modulated LMP7 and LMP2 levels. In the clinic, high TJP1 expression in patient myeloma cells was associated with a significantly higher likelihood of responding to bortezomib and a longer response duration, supporting the use of TJP1 as a biomarker to identify patients most likely to benefit from proteasome inhibitors.
Collapse
Affiliation(s)
- Xing-Ding Zhang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, China; Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, China
| | | | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George Mulligan
- Millennium: The Takeda Oncology Company, Cambridge, MA 02139, USA
| | - Bin Li
- Millennium: The Takeda Oncology Company, Cambridge, MA 02139, USA
| | | | - Lin Qi
- Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, China
| | - Jianliang Xu
- Institute of Molecular and Cell Biology, Singapore 138673, Republic of Singapore
| | - Walter Hunziker
- Institute of Molecular and Cell Biology, Singapore 138673, Republic of Singapore
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Saad Z Usmani
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Hematologic Oncology, Levine Cancer Institute, Carolinas Healthcare System, Charlotte, NC 28204, USA
| | - Qing Zhang
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Hematologic Oncology, Levine Cancer Institute, Carolinas Healthcare System, Charlotte, NC 28204, USA
| | - John Crowley
- Cancer Research and Biostatistics, Seattle, WA 98101, USA
| | - Antje Hoering
- Cancer Research and Biostatistics, Seattle, WA 98101, USA
| | - Jatin J Shah
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Donna M Weber
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elisabet E Manasanch
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sheeba K Thomas
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing-Zong Li
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui-Han Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiexin Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Isere Kuiatse
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin-Le Tang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin He
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Yang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enrico Milan
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Simone Cenci
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan 20132, Italy
| | - Wen-Cai Ma
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhi-Qiang Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard Eric Davis
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lin Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu 215123, China; Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, China.
| | - Robert Z Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Rodriguez TE, Hari P, Stiff PJ, Smith SE, Sterrenberg D, Vesole DH. Busulfan, Melphalan, and Bortezomib versus High-Dose Melphalan as a Conditioning Regimen for Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma. Biol Blood Marrow Transplant 2016; 22:1391-1396. [PMID: 27164062 PMCID: PMC5075527 DOI: 10.1016/j.bbmt.2016.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/18/2016] [Indexed: 11/16/2022]
Abstract
High-dose melphalan 200 mg/m2 (MEL 200) is the standard of care as a conditioning regimen for autologous hematopoietic stem cell transplantation (AHSCT) for multiple myeloma (MM). We compared a novel conditioning combination incorporating busulfan, melphalan, and bortezomib (BUMELVEL) versus standard MEL 200 in newly diagnosed patients undergoing AHSCT for MM. Between July 2009 and May 2012, 43 eligible patients received BUMELVEL conditioning followed by AHSCT. BU was administered i.v. daily for 4 days to achieve a target area under the concentration-time curve total of 20,000 mM·min based on pharmacokinetic analysis after the first dose. MEL 140 mg/m2 (MEL 140) and VEL 1.6 mg/m2 were administered i.v. on days −2 and −1, respectively. Outcomes were compared with a contemporaneous North American cohort (n = 162) receiving MEL 200 matched for age, sex, performance status, stage, interval from diagnosis to AHSCT, and disease status before AHSCT. Multivariate analysis of relapse, progression-free survival (PFS), and overall survival (OS) was performed. The median follow-up was 25 months. No transplant-related mortality was observed in the study cohort at 1 year. PFS at 1 year was superior in the BUMELVEL cohort (90%) in comparison with 77% in MEL 200 historical control subjects (P = .02). Cumulative incidence of relapse was lower in the BUMELVEL group versus the MEL 200 group (10% at 1 year versus 21%; P = .047). OS at 1 year was similar between cohorts (93% versus 93%; P =.89). BU can be safely combined with MEL 140 and VEL without an increase in toxicities or transplant-related mortality. We observed a superior PFS in the BUMELVEL cohort without maintenance therapy, warranting further trials.
Collapse
Affiliation(s)
- Tulio E Rodriguez
- Division of Hematology and Oncology, Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois.
| | - Parameswaran Hari
- Department of Medicine and Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Patrick J Stiff
- Division of Hematology and Oncology, Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Scott E Smith
- Division of Hematology and Oncology, Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Danielle Sterrenberg
- Division of Hematology and Oncology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - David H Vesole
- Multiple Myeloma Division, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey; Multiple Myeloma Program, MedStar Georgetown University Hospital, Washington, DC
| |
Collapse
|
44
|
Beaumont KA, Hill DS, Daignault SM, Lui GYL, Sharp DM, Gabrielli B, Weninger W, Haass NK. Cell Cycle Phase-Specific Drug Resistance as an Escape Mechanism of Melanoma Cells. J Invest Dermatol 2016; 136:1479-1489. [PMID: 26970356 DOI: 10.1016/j.jid.2016.02.805] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/06/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment is characterized by cancer cell subpopulations with heterogeneous cell cycle profiles. For example, hypoxic tumor zones contain clusters of cancer cells that arrest in G1 phase. It is conceivable that neoplastic cells exhibit differential drug sensitivity based on their residence in specific cell cycle phases. In this study, we used two-dimensional and organotypic melanoma culture models in combination with fluorescent cell cycle indicators to investigate the effects of cell cycle phases on clinically used drugs. We demonstrate that G1-arrested melanoma cells, irrespective of the underlying cause mediating G1 arrest, are resistant to apoptosis induced by the proteasome inhibitor bortezomib or the alkylating agent temozolomide. In contrast, G1-arrested cells were more sensitive to mitogen-activated protein kinase pathway inhibitor-induced cell death. Of clinical relevance, pretreatment of melanoma cells with a mitogen-activated protein kinase pathway inhibitor, which induced G1 arrest, resulted in resistance to temozolomide or bortezomib. On the other hand, pretreatment with temozolomide, which induced G2 arrest, did not result in resistance to mitogen-activated protein kinase pathway inhibitors. In summary, we established a model to study the effects of the cell cycle on drug sensitivity. Cell cycle phase-specific drug resistance is an escape mechanism of melanoma cells that has implications on the choice and timing of drug combination therapies.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- The Centenary Institute, Newtown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - David S Hill
- The Centenary Institute, Newtown, NSW, Australia; Dermatological Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sheena M Daignault
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Goldie Y L Lui
- The Centenary Institute, Newtown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Danae M Sharp
- The Centenary Institute, Newtown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Brian Gabrielli
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Wolfgang Weninger
- The Centenary Institute, Newtown, NSW, Australia; Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nikolas K Haass
- The Centenary Institute, Newtown, NSW, Australia; The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
45
|
Bashari MH, Fan F, Vallet S, Sattler M, Arn M, Luckner-Minden C, Schulze-Bergkamen H, Zörnig I, Marme F, Schneeweiss A, Cardone MH, Opferman JT, Jäger D, Podar K. Mcl-1 confers protection of Her2-positive breast cancer cells to hypoxia: therapeutic implications. Breast Cancer Res 2016; 18:26. [PMID: 26921175 PMCID: PMC4769490 DOI: 10.1186/s13058-016-0686-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/10/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Molecular mechanisms leading to the adaptation of breast cancer (BC) cells to hypoxia are largely unknown. The anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) is frequently amplified in BC; and elevated Mcl-1 levels have been correlated with poor prognosis. Here we investigated the pathophysiologic role of Mcl-1 in Her2-positive BC cells under hypoxic conditions. METHODS RNA interference and a novel small molecule inhibitor, EU-5346, were used to examine the role of Mcl-1 in Her2-positive BC cell lines and primary BC cells (sensitive or intrinsically resistant to Her2 inhibitors) under hypoxic conditions (using a hypoxic incubation chamber). Mechanisms-of-action were investigated by RT-PCR, mitochondrial isolation, as well as immunoprecipitation/blotting analysis, and microscopy. The specificity against Mcl-1 of the novel small molecule inhibitor EU5346 was verified in Mcl-1(Δ/null) versus Mcl-1(wt/wt) Murine Embryonic Fibroblasts (MEFs). Proliferation, survival, and spheroid formation were assessed in response to Mcl-1 and Her2 inhibition. RESULTS We demonstrate for a strong correlation between high Mcl-1 protein levels and hypoxia, predominantly in Her2-positive BC cells. Surprisingly, genetic depletion of Mcl-1 decreased Her2 and Hif-1α levels followed by inhibition of BC cell survival. In contrast, Mcl-1 protein levels were not downregulated after genetic depletion of Her2 indicating a regulatory role of Mcl-1 upstream of Her2. Indeed, Mcl-1 and Her2 co-localize within the mitochondrial fraction and form a Mcl-1/Her2- protein complex. Similar to genetically targeting Mcl-1 the novel small molecule Mcl-1 inhibitor EU-5346 induced cell death and decreased spheroid formation in Her2-positive BC cells. Of interest, EU-5346 induced ubiquitination of Mcl-1- bound Her2 demonstrating a previously unknown role for Mcl-1 to stabilize Her2 protein levels. Importantly, targeting Mcl-1 was also active in Her2-positive BC cells resistant to Her2 inhibitors, including a brain-primed Her2-positive cell line. CONCLUSION Our data demonstrate a critical role of Mcl-1 in Her2-positive BC cell survival under hypoxic conditions and provide the preclinical framework for the therapeutic use of novel Mcl-1- targeting agents to improve patient outcome in BC.
Collapse
Affiliation(s)
- Muhammad Hasan Bashari
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Jl. Eijkman 38, Bandung, 02215, Indonesia
| | - Fengjuan Fan
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | - Sonia Vallet
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | - Martin Sattler
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Melissa Arn
- Eutropics, Inc., 767C Concord Avenue, Cambridge, MA, 02138, USA
| | - Claudia Luckner-Minden
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Henning Schulze-Bergkamen
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Frederik Marme
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | - Andreas Schneeweiss
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
| | | | - Joseph T Opferman
- St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Klaus Podar
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University of Heidelberg, Im Neuenheimer Feld #460, Heidelberg, 69120, Germany.
| |
Collapse
|
46
|
Edwards SKE, Han Y, Liu Y, Kreider BZ, Liu Y, Grewal S, Desai A, Baron J, Moore CR, Luo C, Xie P. Signaling mechanisms of bortezomib in TRAF3-deficient mouse B lymphoma and human multiple myeloma cells. Leuk Res 2015; 41:85-95. [PMID: 26740054 DOI: 10.1016/j.leukres.2015.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/30/2023]
Abstract
Bortezomib, a clinical drug for multiple myeloma (MM) and mantle cell lymphoma, exhibits complex mechanisms of action, which vary depending on the cancer type and the critical genetic alterations of each cancer. Here we investigated the signaling mechanisms of bortezomib in mouse B lymphoma and human MM cells deficient in a new tumor suppressor gene, TRAF3. We found that bortezomib consistently induced up-regulation of the cell cycle inhibitor p21(WAF1) and the pro-apoptotic protein Noxa as well as cleavage of the anti-apoptotic protein Mcl-1. Interestingly, bortezomib induced the activation of NF-κB1 and the accumulation of the oncoprotein c-Myc, but inhibited the activation of NF-κB2. Furthermore, we demonstrated that oridonin (an inhibitor of NF-κB1 and NF-κB2) or AD 198 (a drug targeting c-Myc) drastically potentiated the anti-cancer effects of bortezomib in TRAF3-deficient malignant B cells. Taken together, our findings increase the understanding of the mechanisms of action of bortezomib, which would aid the design of novel bortezomib-based combination therapies. Our results also provide a rationale for clinical evaluation of the combinations of bortezomib and oridonin (or other inhibitors of NF-κB1/2) or AD 198 (or other drugs targeting c-Myc) in the treatment of lymphoma and MM, especially in patients containing TRAF3 deletions or relevant mutations.
Collapse
Affiliation(s)
- Shanique K E Edwards
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States; Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ 08854, United States
| | - Yeming Han
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Yingying Liu
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Benjamin Z Kreider
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Yan Liu
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Sukhdeep Grewal
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Anand Desai
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Jacqueline Baron
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Carissa R Moore
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Chang Luo
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Piscataway, NJ 08854, United States; Member, Rutgers Cancer Institute of New Jersey, United States.
| |
Collapse
|
47
|
Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene 2015; 35:3955-64. [PMID: 26640142 PMCID: PMC5025767 DOI: 10.1038/onc.2015.464] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/09/2015] [Accepted: 10/30/2015] [Indexed: 12/29/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that is largely incurable due to development of resistance to therapy-elicited cell death. Nutrients are intricately connected to maintenance of cellular viability in part by inhibition of apoptosis. We were interested to determine if examination of metabolic regulation of BCL-2 proteins may provide insight on alternative routes to engage apoptosis. MM cells are reliant on glucose and glutamine and withdrawal of either nutrient is associated with varying levels of apoptosis. We and others have demonstrated that glucose maintains levels of key resistance-promoting BCL-2 family member, myeloid cell leukemic factor 1 (MCL-1). Cells continuing to survive in the absence of glucose or glutamine were found to maintain expression of MCL-1 but importantly induce pro-apoptotic BIM expression. One potential mechanism for continued survival despite induction of BIM could be due to binding and sequestration of BIM to alternate pro-survival BCL-2 members. Our investigation revealed that cells surviving glutamine withdrawal in particular, enhance expression and binding of BIM to BCL-2, consequently sensitizing these cells to the BH3 mimetic venetoclax. Glutamine deprivation-driven sensitization to venetoclax can be reversed by metabolic supplementation with TCA cycle intermediate α-ketoglutarate. Inhibition of glucose metabolism with the GLUT4 inhibitor ritonavir elicits variable cytotoxicity in MM that is marginally enhanced with venetoclax treatment, however, targeting glutamine metabolism with 6-diazo-5-oxo-l-norleucine uniformly sensitized MM cell lines and relapse/refractory patient samples to venetoclax. Our studies reveal a potent therapeutic strategy of metabolically driven synthetic lethality involving targeting glutamine metabolism for sensitization to venetoclax in MM.
Collapse
|
48
|
Lawson AP, Long MJC, Coffey RT, Qian Y, Weerapana E, El Oualid F, Hedstrom L. Naturally Occurring Isothiocyanates Exert Anticancer Effects by Inhibiting Deubiquitinating Enzymes. Cancer Res 2015; 75:5130-5142. [PMID: 26542215 DOI: 10.1158/0008-5472.can-15-1544] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/31/2015] [Indexed: 01/09/2023]
Abstract
The anticancer properties of cruciferous vegetables are well known and attributed to an abundance of isothiocyanates such as benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC). While many potential targets of isothiocyanates have been proposed, a full understanding of the mechanisms underlying their anticancer activity has remained elusive. Here we report that BITC and PEITC effectively inhibit deubiquitinating enzymes (DUB), including the enzymes USP9x and UCH37, which are associated with tumorigenesis, at physiologically relevant concentrations and time scales. USP9x protects the antiapoptotic protein Mcl-1 from degradation, and cells dependent on Mcl-1 were especially sensitive to BITC and PEITC. These isothiocyanates increased Mcl-1 ubiquitination and either isothiocyanate treatment, or RNAi-mediated silencing of USP9x decreased Mcl-1 levels, consistent with the notion that USP9x is a primary target of isothiocyanate activity. These isothiocyanates also increased ubiquitination of the oncogenic fusion protein Bcr-Abl, resulting in degradation under low isothiocyanate concentrations and aggregation under high isothiocyanate concentrations. USP9x inhibition paralleled the decrease in Bcr-Abl levels induced by isothiocyanate treatment, and USP9x silencing was sufficient to decrease Bcr-Abl levels, further suggesting that Bcr-Abl is a USP9x substrate. Overall, our findings suggest that USP9x targeting is critical to the mechanism underpinning the well-established anticancer activity of isothiocyanate. We propose that the isothiocyanate-induced inhibition of DUBs may also explain how isothiocyanates affect inflammatory and DNA repair processes, thus offering a unifying theme in understanding the function and useful application of isothiocyanates to treat cancer as well as a variety of other pathologic conditions.
Collapse
Affiliation(s)
- Ann P Lawson
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA
| | - Marcus J C Long
- Graduate Program in Biochemistry and Biophysics, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA
| | - Rory T Coffey
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA.,Graduate Program in Molecular and Cellular Biology, Brandeis University, MS008, 415 South St., Waltham MA 02453-9110
| | - Yu Qian
- Department of Chemistry, Merkert Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467-3860 USA
| | - Eranthie Weerapana
- Department of Chemistry, Merkert Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467-3860 USA
| | | | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA.,Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453-9110 USA
| |
Collapse
|
49
|
Chan ML, Liang JW, Hsu LC, Chang WL, Lee SS, Guh JH. Zerumbone, a ginger sesquiterpene, induces apoptosis and autophagy in human hormone-refractory prostate cancers through tubulin binding and crosstalk between endoplasmic reticulum stress and mitochondrial insult. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:1223-36. [PMID: 26246051 DOI: 10.1007/s00210-015-1152-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/13/2015] [Indexed: 12/25/2022]
Abstract
Zerumbone, a natural monocyclic sesquiterpene, is the main component of the tropical plant Zingiber zerumbet Smith. Zerumbone induced antiproliferative and apoptotic effects against PC-3 and DU-145, two human hormone-refractory prostate cancer (HRPC) cell lines. Zerumbone inhibited microtubule assembly and induced an increase of MPM-2 expression (specific recognition of mitotic proteins). It also caused an increase of phosphorylation of Bcl-2 and Bcl-xL, two key events in tubulin-binding effect, indicating tubulin-binding capability and mitotic arrest to zerumbone action. Furthermore, zerumbone induced several cellular effects distinct from tubulin-binding properties. First, zerumbone significantly increased, while paclitaxel (as a tubulin-binding control) decreased, Mcl-1 protein expression. Second, paclitaxel but not zerumbone induced Cdk1 activity. Third, zerumbone other than paclitaxel induced Cdc25C downregulation. The data suggest that, in addition to targeting tubulin/microtubule, zerumbone may act on other targets for signaling transduction. Zerumbone induced mitochondrial damage and endoplasmic reticulum (ER) stress as evidenced by the loss of mitochondrial membrane potential and upregulation of GRP-78 and CHOP/GADD153 expression. Zerumbone induced an increase of intracellular Ca(2+) levels, a crosstalk marker between ER stress and mitochondrial insult, associated with the formation of active calpain I fragment. It induced apoptosis through a caspase-dependent way and caused autophagy as evidenced by dramatic LC3-II formation. In summary, the data suggest that zerumbone is a multiple targeting compound that inhibits tubulin assembly and induces a crosstalk between ER stress and mitochondrial insult, leading to apoptosis and autophagy in HRPCs.
Collapse
Affiliation(s)
- Mei-Ling Chan
- School of Pharmacy, National Taiwan University, No.33, Linsen S. Rd., Taipei, 100, Taiwan
| | - Jui-Wei Liang
- School of Pharmacy, National Taiwan University, No.33, Linsen S. Rd., Taipei, 100, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, No.33, Linsen S. Rd., Taipei, 100, Taiwan
| | - Wei-Ling Chang
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Shoei-Sheng Lee
- School of Pharmacy, National Taiwan University, No.33, Linsen S. Rd., Taipei, 100, Taiwan.
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, No.33, Linsen S. Rd., Taipei, 100, Taiwan.
| |
Collapse
|
50
|
Zaman S, Wang R, Gandhi V. Targeting executioner procaspase-3 with the procaspase-activating compound B-PAC-1 induces apoptosis in multiple myeloma cells. Exp Hematol 2015; 43:951-962.e3. [PMID: 26257207 DOI: 10.1016/j.exphem.2015.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that has a low apoptotic index. We investigated a new class of small molecules that target the terminal apoptosis pathway, called procaspase activating compounds (PACs), in myeloma cells. PAC agents (PAC-1 and B-PAC-1) convert executioner procaspases (procaspase 3, 6, and 7) to active caspases 3, 6, and 7, which cleave target substrates to induce cellular apoptosis cascade. We hypothesized that targeting this terminal step could overcome survival and drug-resistance signals in myeloma cells and induce programmed cell death. Myeloma cells expressed executioner caspases. Additionally, our studies demonstrated that B-PAC-1 is cytotoxic to chemotherapy-resistant or sensitive myeloma cell lines (n = 7) and primary patient cells (n = 11). Exogenous zinc abrogated B-PAC-1-induced cell demise. Apoptosis induced by B-PAC-1 treatment was similar in the presence or absence of growth-promoting cytokines such as interleukin 6 and hepatocyte growth factor. Presence or absence of antiapoptotic proteins such as BCL-2, BCL-XL, or MCL-1 did not impact B-PAC-1-mediated programmed cell death. Collectively, our data demonstrate the proapoptotic effect of B-PAC-1 in MM and suggest that activating terminal executioner procaspases 3, 6, and 7 bypasses survival and drug-resistance signals in myeloma cells. This novel strategy has the potential to become an effective antimyeloma therapy.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rui Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|