1
|
Huang H, Liang L, Sun D, Li J, Wang W, Zha L, Yang J, Pan K, Fan X, He C, Tang X, Zhang P. Rab37 Promotes Endothelial Differentiation and Accelerates ADSC-Mediated Diabetic Wound Healing through Regulating Secretion of Hsp90α and TIMP1. Stem Cell Rev Rep 2023; 19:1019-1033. [PMID: 36627432 DOI: 10.1007/s12015-022-10491-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/12/2023]
Abstract
Accumulating evidence indicates that adipose tissue-derived mesenchymal stem cells (ADSCs) are an effective treatment for diabetic refractory wounds. However, the application of ADSCs to diabetic wounds is still limited, indicating that we still lack sufficient knowledge regarding regulators/mediators of ADSCs during wound healing. Rab37, a member of RabGTPase, may function as regulator of vesicle trafficking, which is a crucial event for the secretion of cytokines by ADSCs. Our previous study indicated that Rab37 promotes the adiopogenic differentiation of ADSCs. In this study, we explored the role of Rab37 in ADSC-mediated diabetic wound healing. An in vivo study in db/db diabetic mice showed that Rab37-expressing ADSCs shortened the wound closure time, improved re-epithelialization and collagen deposition, and promoted angiogenesis during wound healing. An in vitro study showed that Rab37 promoted the proliferation, migration and endothelial differentiation of ADSCs. LC-MS/MS analysis identified Hsp90α and TIMP1 as up-regulated cytokines in conditioned media of Rab37-ADSCs. The up-regulation of Rab37 enhanced the secretion of Hsp90α and TIMP1 during endothelial differentiation and under high-glucose exposure. Interestingly, Rab37 promoted the expression of TIMP1, but not Hsp90α, during endothelial differentiation. PLA showed that Rab37 can directly bind to Hsp90α orTIMP1 in ADSCs. Moreover, Hsp90α and TIMP1 knockdown compromised the promoting effects of Rab37 on the proliferation, migration and endothelial differentiation of ADSCs. In conclusion, Rab37 promotes the proliferation, migration and endothelial differentiation of ADSCs and accelerates ADSC-mediated diabetic wound healing through regulating the secretion of Hsp90α and TIMP1.
Collapse
Affiliation(s)
- Haili Huang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Ling Liang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Dan Sun
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Jin Li
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Wentao Wang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Lixia Zha
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Jiaqi Yang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Kunyan Pan
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Xianmou Fan
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Chengzhang He
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for Antitumor Active Substance Research and development, Guangdong Medical University, Zhanjiang, China
| | - Peihua Zhang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China.
| |
Collapse
|
2
|
Peptide P11 suppresses the growth of human thyroid carcinoma by inhibiting the PI3K/AKT/mTOR signaling pathway. Mol Biol Rep 2019; 46:2665-2678. [PMID: 31028568 DOI: 10.1007/s11033-019-04698-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023]
Abstract
Thyroid carcinoma is the most common endocrine malignancy, and the incidence of thyroid carcinoma is increasing in recent decades. CYYGQSKYC (P6), a nonapeptide with anti-lymphangiogenic effect by its binding to VEGFR-3 and selectively inhibiting VEGF-C binding to VEGFR-3, could suppress the migration and invasion of cancer cells. LSPPRYP (P9) acts as an effective bFGF/FGFR antagonist and inhibits the growth of the murine melanoma B16-F10 cells. In order to increase the anti-tumor effects of P6 and P9, we connected P6 with P9 via a flexible linker Gly-Gly-Gly (GGG) to reconstruct a novel peptide P11, CYYGQSKYCGGGLSPPRYP. In the present study, the mechanism of action of peptide P11 on the growth of human thyroid carcinoma cells both in vitro and in vivo was determined. Our results showed that peptide P11 inhibited the proliferation, viability, migration, and invasion of human thyroid carcinoma cells. Peptide P11 increased the apoptosis and decreased the protein levels of p-PI3K, p-AKT, and p-mTOR in human thyroid carcinoma cells. In addition, P11 could effectively inhibit the growth of human thyroid carcinoma xenograft tumors in nude mice. In conclusion, peptide P11 could inhibit the growth of human thyroid carcinoma by inhibiting the PI3K/Akt/mTOR signaling pathway. Novel peptides can be designed and applied for the treatment of various types of cancer.
Collapse
|
3
|
Dupasquier S, Delmarcelle AS, Marbaix E, Cosyns JP, Courtoy PJ, Pierreux CE. Validation of housekeeping gene and impact on normalized gene expression in clear cell renal cell carcinoma: critical reassessment of YBX3/ZONAB/CSDA expression. BMC Mol Biol 2014; 15:9. [PMID: 24885929 PMCID: PMC4045873 DOI: 10.1186/1471-2199-15-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/08/2014] [Indexed: 12/12/2022] Open
Abstract
Background YBX3/ZONAB/CSDA is an epithelial-specific transcription factor acting in the density-based switch between proliferation and differentiation. Our laboratory reported overexpression of YBX3 in clear cell renal cell arcinoma (ccRCC), as part of a wide study of YBX3 regulation in vitro and in vivo. The preliminary data was limited to 5 cases, of which only 3 could be compared to paired normal tissue, and beta-Actin was used as sole reference to normalize gene expression. We thus decided to re-evaluate YBX3 expression by real-time-PCR in a larger panel of ccRCC samples, and their paired healthy tissue, with special attention on experimental biases such as inter-individual variations, primer specificity, and reference gene for normalization. Results Gene expression was measured by RT-qPCR in 16 ccRCC samples, each compared to corresponding healthy tissue to minimize inter-individual variations. Eight potential housekeeping genes were evaluated for expression level and stability among the 16-paired samples. Among tested housekeeping genes, PPIA and RPS13, especially in combination, proved best suitable to normalize gene expression in ccRCC tissues as compared to classical reference genes such as beta-Actin, GAPDH, 18S or B2M. Using this pair as reference, YBX3 expression level among a collection of 16 ccRCC tumors was not significantly increased as compared to normal adjacent tissues. However, stratification according to Fuhrman grade disclosed higher YBX3 expression levels in low-grade tumors and lower in high-grade tumors. Immunoperoxidase confirmed homogeneous nuclear staining for YBX3 in low-grade but revealed nuclear heterogeneity in high-grade tumors. Conclusions This paper underlines that special attention to reference gene products in the design of real-time PCR analysis of tumoral tissue is crucial to avoid misleading conclusions. Furthermore, we found that global YBX3/ZONAB/CSDA mRNA expression level may be considered within a “signature” of RCC grading.
Collapse
Affiliation(s)
- Sébastien Dupasquier
- CELL Unit, de Duve Institute and Université catholique de Louvain UCL-ICP, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
4
|
Saito Y, Nakagami H, Azuma N, Hirata S, Sanada F, Taniyama Y, Morishita R, Kaneda Y, Sasajima T. Critical roles of cold shock domain protein A as an endogenous angiogenesis inhibitor in skeletal muscle. Antioxid Redox Signal 2011; 15:2109-20. [PMID: 21473684 DOI: 10.1089/ars.2010.3714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UNLABELLED Angiogenesis is regulated by the local balance between angiogenic stimulators and inhibitors and is maintained by muscle-derived angiogenic factors in ischemic tissues. AIMS Our objectives were to investigate the effect of cold shock domain protein A (CSDA) as an endogenous angiogenesis inhibitor and to develop a novel strategy of therapeutic angiogenesis by blocking CSDA expression. RESULTS In human skeletal muscle cells, CSDA was upregulated during hypoxia when cells were damaged and apoptosis was induced. CSDA expression could repress the activity of hypoxia inducible factor-1α and nuclear factor κB, because CSDA can competitively bind the hypoxia response element and the nuclear factor κB-binding element. As a result, vascular endothelial growth factor-A, interleukin-6, and interleukin-8 secretions from skeletal muscle cells were decreased. Further, CSDA depletion increased the secretion level of these angiogenic factors. In a hindlimb ischemia model, transfer of short-hairpin RNA targeting CSDA ameliorated ischemia without direct transfer of angiogenic factors. In this ischemic tissue, vascular endothelial growth factor-A, interleukin-6, and CXCL2 protein levels were increased. INNOVATION AND CONCLUSION CSDA appears to play a critical role as an endogenous angiogenesis inhibitor in skeletal muscle, and RNA interference targeting of CSDA is a promising gene therapy strategy for treating peripheral arterial disease.
Collapse
Affiliation(s)
- Yukihiro Saito
- Department of Surgery, Asahikawa Medical University, 2-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Jögi A, Brennan DJ, Rydén L, Magnusson K, Fernö M, Stål O, Borgquist S, Uhlen M, Landberg G, Påhlman S, Pontén F, Jirström K. Nuclear expression of the RNA-binding protein RBM3 is associated with an improved clinical outcome in breast cancer. Mod Pathol 2009; 22:1564-74. [PMID: 19734850 DOI: 10.1038/modpathol.2009.124] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-strand RNA-binding proteins (RBPs) are involved in many aspects of RNA metabolism and in the regulation of gene transcription. The RBP RBM3 was recently suggested to be a proto-oncogene in colorectal cancer; however, such a role has not been corroborated by previous studies in the colon or other tumor types, and the prognostic implications of tumor-specific RBM3 expression remain unclear. Mono-specific antibodies against RBM3 were generated. Antibody specificity was confirmed using siRNA gene silencing, western blotting and immunohistochemistry on a panel of breast cancer cell lines. Using tissue microarrays and IHC, RBM3 protein expression was examined in 48 normal tissues and in 20 common cancers. Additional analysis in two independent breast cancer cohorts (n=1016) with long-term follow-up was also carried out. RBM3 was upregulated in cancer compared to normal tissues. The nuclear expression of RBM3 in breast cancer was associated with low grade (P<0.001), small tumors (P<0.001), estrogen receptor (ER) positivity (P<0.001) and Ki-67 negativity (P<0.001) in both the breast cancer cohorts. An increased nuclear expression of RBM3 was associated with a prolonged overall and recurrence-free survival. The prognostic value was particularly pronounced in hormone receptor-positive tumors and remained significant in multivariate interaction analysis after controlling for tamoxifen treatment (HR: 0.49, 95% CI: 0.30-0.79, P=0.004). These data strongly indicate that nuclear RBM3 is an independent favorable prognostic factor in breast cancer, and seems to have a specific role in ER-positive tumors.
Collapse
Affiliation(s)
- Annika Jögi
- Department of Laboratory Medicine, Center for Molecular Pathology, Malmö University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|