1
|
Kuru Bektaşoğlu P, Arıkök AT, Ergüder Bİ, Sargon MF, Altun SA, Ünlüler C, Börekci A, Kertmen H, Çelikoğlu E, Gürer B. Cinnamaldehyde has ameliorative effects on rabbit spinal cord ischemia and reperfusion injury. World Neurosurg X 2024; 21:100254. [PMID: 38148767 PMCID: PMC10750183 DOI: 10.1016/j.wnsx.2023.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Affiliation(s)
- Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Ata Türker Arıkök
- Department of Pathology, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Berrin İmge Ergüder
- Department of Biochemistry, Ankara University School of Medicine, Ankara, Turkey
| | - Mustafa Fevzi Sargon
- Department of Anatomy, Lokman Hekim University School of Medicine, Ankara, Turkey
| | - Seda Akyıldız Altun
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Caner Ünlüler
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Ali Börekci
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Erhan Çelikoğlu
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| |
Collapse
|
2
|
Ozaydin D, Kuru Bektaşoğlu P, Türe D, Bozkurt H, Ergüder Bİ, Sargon MF, Arıkök AT, Kertmen H, Gürer B. Mildronate Has Ameliorative Effects on the Experimental Ischemia/Reperfusion Injury Model in the Rabbit Spinal Cord. World Neurosurg 2023; 173:e717-e726. [PMID: 36889637 DOI: 10.1016/j.wneu.2023.02.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Mildronate is a useful anti-ischemic agent and has antiinflammatory, antioxidant, and neuroprotective activities. The aim of this study is to investigate the potential neuroprotective effects of mildronate in the experimental rabbit spinal cord ischemia/reperfusion injury (SCIRI) model. METHODS Rabbits were randomized into 5 groups of 8 animals as groups 1 (control), 2 (ischemia), 3 (vehicle), 4 (30 mg/kg methylprednisolone [MP]), and 5 (100 mg/kg mildronate). The control group underwent only laparotomy. The other groups have the spinal cord ischemia model by a 20-minute aortic occlusion just caudal to the renal artery. The malondialdehyde and catalase levels and caspase-3, myeloperoxidase, and xanthine oxidase activities were investigated. Neurologic, histopathologic, and ultrastructural evaluations were also performed. RESULTS The serum and tissue myeloperoxidase, malondialdehyde, and caspase-3 values of the ischemia and vehicle groups were statistically significantly higher than those of the MP and mildronate groups (P < 0.001). Serum and tissue catalase values of the ischemia and vehicle groups were statistically significantly lower than those of the control, MP, and mildronate groups (P < 0.001). The histopathologic evaluation showed a statistically significantly lower score in the mildronate and MP groups than in the ischemia and vehicle groups (P < 0.001). The modified Tarlov scores of the ischemia and vehicle groups were statistically significantly lower than those of the control, MP, and mildronate groups (P < 0.001). CONCLUSIONS This study presented the antiinflammatory, antioxidant, antiapoptotic, and neuroprotective effects of mildronate on SCIRI. Future studies will elucidate its possible use in clinical settings in SCIRI.
Collapse
Affiliation(s)
- Dilan Ozaydin
- Department of Neurosurgery, Kartal Dr. Lutfi Kırdar Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Durukan Türe
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Toros University, Mersin, Turkey
| | - Hüseyin Bozkurt
- Department of Neurosurgery, Dışkapı Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Berrin İmge Ergüder
- Ankara University School of Medicine, Department of Biochemistry, Ankara, Turkey
| | - Mustafa Fevzi Sargon
- Lokman Hekim University School of Medicine, Department of Anatomy, Ankara, Turkey
| | - Ata Türker Arıkök
- University of Health Sciences, Dışkapı Education and Research Hospital, Department of Pathology, Ankara, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, Dışkapı Education and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Bora Gürer
- Istinye University Faculty of Medicine, Department of Neurosurgery, Istanbul, Turkey
| |
Collapse
|
3
|
Overexpression of the X-Linked Inhibitor of Apoptosis Protein (XIAP) in Neurons Improves Cell Survival and the Functional Outcome after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24032791. [PMID: 36769152 PMCID: PMC9917926 DOI: 10.3390/ijms24032791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Mechanical trauma to the spinal cord causes extensive neuronal death, contributing to the loss of sensory-motor and autonomic functions below the injury location. Apoptosis affects neurons after spinal cord injury (SCI) and is associated with increased caspase activity. Cleavage of X-linked inhibitor of apoptosis protein (XIAP) after SCI may contribute to this rise in caspase activity. Accordingly, we have shown that the elevation of XIAP resulted in increased neuronal survival after SCI and improved functional recovery. Therefore, we hypothesise that neuronal overexpression of XIAP can be neuroprotective after SCI with improved functional recovery. In line with this, studies of a transgenic mice with overexpression of XIAP in neurons revealed that higher levels of XIAP after spinal cord trauma favours neuronal survival, tissue preservation, and motor recovery after the spinal cord trauma. Using human SH-SY5Y cells overexpressing XIAP, we further showed that XIAP reduced caspase activity and apoptotic cell death after pro-apoptotic stimuli. In conclusion, this study shows that the levels of XIAP expression are an important factor for the outcome of spinal cord trauma and identifies XIAP as an important therapeutic target for alleviating the deleterious effects of SCI.
Collapse
|
4
|
Al-Arbeed TA, Renno WM, Al-Hassan JM. Neuroregeneration of injured peripheral nerve by fraction B of catfish epidermal secretions through the reversal of the apoptotic pathway and DNA damage. Front Pharmacol 2023; 14:1085314. [PMID: 36726586 PMCID: PMC9885176 DOI: 10.3389/fphar.2023.1085314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
Introduction: Crush injuries occur from acute traumatic nerve compression resulting in different degrees of neural damage leading to permanent functional deficits. Recently, we have shown that administration of Fraction B (FB) derived from catfish epidermal secretions accelerates healing of damaged nerve in a sciatic nerve crush injury, as it ameliorates the neurobehavioral deficits and enhances axonal regeneration, as well as protects spinal neurons and increases astrocytic activity and decreasing GAP-43 expression. The present study aimed to investigate the role of FB treatment on the apoptotic pathway in the neuroregeneration of the sciatic nerve crush injury. Methods: Male Wistar rats were randomly assigned into five groups: (I) SHAM, (II) CRUSH, (III) CRUSH + (1.5 mg/kg) FB, (IV) CRUSH + (3 mg/kg) FB, and (V) CRUSH + (4.5 mg/kg) FB. Rats underwent sciatic nerve crush surgery, followed by treatment with FB administered intraperitoneally (IP) daily for two weeks and then sacrificed at the end of the fourth week. Results: FB improved the recovery of neurobehavioral functions with a concomitant increase in axonal regeneration and neuroprotective effects on spinal cord neurons following crush injury. Further, FB enhanced Schwann cells (SCs) proliferation with a significant increase in myelin basic protein expression. FB-treated animals demonstrated higher numbers of neurons in the spinal cord, possibly through ameliorating oxidative DNA damage and alleviating the mitochondrial-dependent apoptotic pathway by inhibiting the release of cytochrome c and the activation of caspase-3 in the spinal cord neurons. Conclusion: FB alleviates the neurodegenerative changes in the lumbar spinal cord neurons and recovers the decrease in the neuronal count through its anti-apoptotic and DNA antioxidative properties.
Collapse
Affiliation(s)
- Taiba A. Al-Arbeed
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Waleed M. Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait,*Correspondence: Waleed M. Renno,
| | - Jassim M. Al-Hassan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
5
|
Roolfs L, Hubertus V, Spinnen J, Shopperly LK, Fehlings MG, Vajkoczy P. Therapeutic Approaches Targeting Vascular Repair After Experimental Spinal Cord Injury: A Systematic Review of the Literature. Neurospine 2022; 19:961-975. [PMID: 36597633 PMCID: PMC9816606 DOI: 10.14245/ns.2244624.312] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/16/2022] [Indexed: 12/27/2022] Open
Abstract
Traumatic spinal cord injury (SCI) disrupts the spinal cord vasculature resulting in ischemia, amplification of the secondary injury cascade and exacerbation of neural tissue loss. Restoring functional integrity of the microvasculature to prevent neural loss and to promote neural repair is an important challenge and opportunity in SCI research. Herein, we summarize the course of vascular injury and repair following SCI and give a comprehensive overview of current experimental therapeutic approaches targeting spinal cord microvasculature to diminish ischemia and thereby facilitate neural repair and regeneration. A systematic review of the published literature on therapeutic approaches to promote vascular repair after experimental SCI was performed using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) standards. The MEDLINE databases PubMed, Embase, and OVID MEDLINE were searched using the keywords "spinal cord injury," "angiogenesis," "angiogenesis inducing agents," "tissue engineering," and "rodent subjects." A total of 111 studies were identified through the search. Five main therapeutic approaches to diminish hypoxia-ischemia and promote vascular repair were identified as (1) the application of angiogenic factors, (2) genetic engineering, (3) physical stimulation, (4) cell transplantation, and (5) biomaterials carrying various factor delivery. There are different therapeutic approaches with the potential to diminish hypoxia-ischemia and promote vascular repair after experimental SCI. Of note, combinatorial approaches using implanted biomaterials and angiogenic factor delivery appear promising for clinical translation.
Collapse
Affiliation(s)
- Laurens Roolfs
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vanessa Hubertus
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jacob Spinnen
- Tissue Engineering Laboratory, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Lennard K. Shopperly
- Tissue Engineering Laboratory, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael G. Fehlings
- Division of Neurosurgery and Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Canada
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany,Corresponding Author Peter Vajkoczy Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
6
|
MicroRNA-138-5p Targets Pro-Apoptotic Factors and Favors Neural Cell Survival: Analysis in the Injured Spinal Cord. Biomedicines 2022; 10:biomedicines10071559. [PMID: 35884864 PMCID: PMC9312482 DOI: 10.3390/biomedicines10071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
The central nervous system microRNA miR-138-5p has attracted much attention in cancer research because it inhibits pro-apoptotic genes including CASP3. We hypothesize that miR-138-5p downregulation after SCI leads to overexpression of pro-apoptotic genes, sensitizing neural cells to noxious stimuli. This study aimed to identify miR-138-5p targets among pro-apoptotic genes overexpressed following SCI and to confirm that miR-138-5p modulates cell death in neural cells. Gene expression and histological analyses revealed that the drop in miR-138-5p expression after SCI is due to the massive loss of neurons and oligodendrocytes and its downregulation in neurons. Computational analyses identified 176 potential targets of miR-138-5p becoming dysregulated after SCI, including apoptotic proteins CASP-3 and CASP-7, and BAK. Reporter, RT-qPCR, and immunoblot assays in neural cell cultures confirmed that miR-138-5p targets their 3′UTRs, reduces their expression and the enzymatic activity of CASP-3 and CASP-7, and protects cells from apoptotic stimuli. Subsequent RT-qPCR and histological analyses in a rat model of SCI revealed that miR-138-5p downregulation correlates with the overexpression of its pro-apoptotic targets. Our results suggest that the downregulation of miR-138-5p after SCI may have deleterious effects on neural cells, particularly on spinal neurons.
Collapse
|
7
|
Hu X, Xu Y, Zhang H, Li Y, Wang X, Xu C, Ni W, Zhou K. Role of necroptosis in traumatic brain and spinal cord injuries. J Adv Res 2021; 40:125-134. [PMID: 36100321 PMCID: PMC9481937 DOI: 10.1016/j.jare.2021.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/04/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| | - Cong Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
8
|
Tu YK, Hsueh YH, Huang HC. Human olfactory ensheathing cell-derived extracellular vesicles: miRNA profile and neuroprotective effect. Curr Neurovasc Res 2021; 18:395-408. [PMID: 34645375 DOI: 10.2174/1567202618666211012162111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extracellular vesicle (EV)-based therapy has been identified as a leading alternative approach in several disease models. EV derived from the olfactory ensheathing cell (OEC) has been documented for its strong neuro-regenerative capacity. However, no information on its cargo that may contribute to its therapeutic effect has been available. OBJECTIVE To report the first miRNA profile of human OEC (hOEC) -EV, and investigate the neuroprotective effects. METHODS hOEC-EV was isolated and sequenced. We established in vitro experiments to assess the therapeutic potential of hOEC-EVs with respect to insulted neural progenitor cells (NPCs), and the angiogenesis effect. Secondary post-injury insults were imitated using t-BHP-mediated oxidative stress. RESULTS We noted a strong abundance of hOEC-EV-miRNAs, including hsa-miR148a-3p, has-miR151a-3p and several members of let-7 family. The common targets of 15 miRNAs among the top 20 miRNAs were thrombospondin 1 and cyclin dependent kinase 6. We demonstrated that hOEC-EVs promote normal NPC proliferation and differentiation to neuron-like morphologies with prolonged axons. hOEC-EVs protect cells from t-BHP mediated apoptosis. We also found that the migration rate of either NPCs or endothelial cells significantly improved with hOEC-EVs. Furthermore, in vitro tube formation assays indicated that angiogenesis, an important process for tissue repair, was significantly enhanced in human umbilical vein endothelial cells exposed to hOEC-EVs. CONCLUSION Our results revealed that hOEC-EVs exert neuroprotective effects by protecting cells from apoptosis and promoting in vitro biological processes that are important to neural tissue repair, including neural cell proliferation, axonal growth, and cell migration, in addition to enhancing angiogenesis. </p>.
Collapse
Affiliation(s)
- Yuan-Kun Tu
- Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city. Taiwan
| | - Yu-Huan Hsueh
- Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city. Taiwan
| | - Hsien-Chang Huang
- Department of Orthopedic Surgery, E-Da Hospitall, I-Shou University, Kaohsiung city. Taiwan
| |
Collapse
|
9
|
Wang J, Rong Y, Ji C, Lv C, Jiang D, Ge X, Gong F, Tang P, Cai W, Liu W, Fan J. MicroRNA-421-3p-abundant small extracellular vesicles derived from M2 bone marrow-derived macrophages attenuate apoptosis and promote motor function recovery via inhibition of mTOR in spinal cord injury. J Nanobiotechnology 2020; 18:72. [PMID: 32404105 PMCID: PMC7222346 DOI: 10.1186/s12951-020-00630-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Spinal cord injury (SCI) has a very disabling central nervous system impact but currently lacks effective treatment. Bone marrow-derived macrophages (BMDMs) are recruited to the injured area after SCI and participate in the regulation of functional recovery with microglia. Previous studies have shown that M2 microglia-derived small extracellular vesicles (SEVs) have neuroprotective effects, but the effects of M2 BMDM-derived sEVs (M2 BMDM-sEVs) have not been reported in SCI treatment. Results In this study, we investigated the role of M2 BMDM-sEVs in vivo and in vitro for SCI treatment and its mechanism. Our results indicated that M2 BMDM-sEVs promoted functional recovery after SCI and reduced neuronal apoptosis in mice. In addition, M2 BMDM-sEVs targeted mammalian target of rapamycin (mTOR) to enhance the autophagy level of neurons and reduce apoptosis. MicroRNA-421-3P (miR-421-3p) can bind to the 3′ untranslated region (3′UTR) of mTOR. MiR-421-3p mimics significantly reduced the activity of luciferase-mTOR 3′UTR constructs and increased autophagy. At the same time, tail vein injection of inhibitors of SEVs (Inh-sEVs), which were prepared by treatment with an miR-421-3p inhibitor, showed diminished protective autophagy of neuronal cells in vivo. Conclusions In conclusion, M2 BMDM-sEVs inhibited the mTOR autophagy pathway by transmitting miR-421-3p, which reduced neuronal apoptosis and promoted functional recovery after SCI, suggesting that M2 BMDM-sEVs may be a potential therapy for SCI.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengtang Lv
- Department of Orthopaedics, Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Dongdong Jiang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fangyi Gong
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Weihua Cai
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Wei Liu
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jin Fan
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
10
|
Lin J, Pan X, Huang C, Gu M, Chen X, Zheng X, Shao Z, Hu S, Wang B, Lin H, Wu Y, Tian N, Wu Y, Gao W, Zhou Y, Zhang X, Wang X. Dual regulation of microglia and neurons by Astragaloside IV-mediated mTORC1 suppression promotes functional recovery after acute spinal cord injury. J Cell Mol Med 2019; 24:671-685. [PMID: 31675186 PMCID: PMC6933381 DOI: 10.1111/jcmm.14776] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/04/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation and neuronal apoptosis contribute to the progression of secondary injury after spinal cord injury (SCI) and are targets for SCI therapy; autophagy is reported to suppress apoptosis in neuronal cells and M2 polarization may attenuate inflammatory response in microglia, while both are negatively regulated by mTORC1 signalling. We hypothesize that mTORC1 suppression may have dual effects on inflammation and neuronal apoptosis and may be a feasible approach for SCI therapy. In this study, we evaluate a novel inhibitor of mTORC1 signalling, Astragaloside IV (AS-IV), in vitro and in vivo. Our results showed that AS-IV may suppress mTORC1 signalling both in neuronal cells and microglial cells in vitro and in vivo. AS-IV treatment may stimulate autophagy in neuronal cells and protect them against apoptosis through autophagy regulation; it may also promote M2 polarization in microglial cells and attenuate neuroinflammation. In vivo, rats were intraperitoneally injected with AS-IV (10 mg/kg/d) after SCI, behavioural and histological evaluations showed that AS-IV may promote functional recovery in rats after SCI. We propose that mTORC1 suppression may attenuate both microglial inflammatory response and neuronal apoptosis and promote functional recovery after SCI, while AS-IV may become a novel therapeutic medicine for SCI.
Collapse
Affiliation(s)
- Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangxiang Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mingbao Gu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ximiao Chen
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi Province, China
| | - Xuanqi Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sunli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hao Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
11
|
cPLA2 activation contributes to lysosomal defects leading to impairment of autophagy after spinal cord injury. Cell Death Dis 2019; 10:531. [PMID: 31296844 PMCID: PMC6624263 DOI: 10.1038/s41419-019-1764-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/02/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
The autophagy–lysosomal pathway plays an essential role in cellular homeostasis as well as a protective function against a variety of diseases including neurodegeneration. Conversely, inhibition of autophagy, for example due to lysosomal dysfunction, can lead to pathological accumulation of dysfunctional autophagosomes and consequent neuronal cell death. We previously reported that autophagy is inhibited and contributes to neuronal cell death following spinal cord injury (SCI). In this study, we examined lysosomal function and explored the mechanism of lysosomal defects following SCI. Our data demonstrated that expression levels and processing of the lysosomal enzyme cathepsin D (CTSD) are decreased by 2 h after SCI. Enzymatic activity levels of CTSD and another lysosomal enzyme, N-acetyl-alpha-glucosaminidase, are both decreased 24 h post injury, indicating general lysosomal dysfunction. Subcellular fractionation and immunohistochemistry analysis demonstrated that this dysfunction is due to lysosomal membrane permeabilization and leakage of lysosomal contents into the cytosol. To directly assess extent and mechanisms of damage to lysosomal membranes, we performed mass spectrometry-based lipidomic analysis of lysosomes purified from SCI and control spinal cord. At 2 h post injury our data demonstrated increase in several classes of lysosophospholipids, the products of phospholipases (PLAs), as well as accumulation of PLA activators, ceramides. Phospholipase cPLA2, the main PLA species expressed in the CNS, has been previously implicated in mediation of secondary injury after SCI, but the mechanisms of its involvement remain unclear. Our data demonstrate that cPLA2 is activated within 2 h after SCI preferentially in the lysosomal fraction, where it colocalizes with lysosomal-associated membrane protein 2 in neurons. Inhibition of cPLA2 in vivo decreased lysosomal damage, restored autophagy flux, and reduced neuronal cell damage. Taken together our data implicate lysosomal defects in pathophysiology of SCI and for the first time indicate that cPLA2 activation leads to lysosomal damage causing neuronal autophagosome accumulation associated with neuronal cell death.
Collapse
|
12
|
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 2019; 10:282. [PMID: 30967837 PMCID: PMC6439316 DOI: 10.3389/fneur.2019.00282] [Citation(s) in RCA: 635] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a life changing neurological condition with substantial socioeconomic implications for patients and their care-givers. Recent advances in medical management of SCI has significantly improved diagnosis, stabilization, survival rate and well-being of SCI patients. However, there has been small progress on treatment options for improving the neurological outcomes of SCI patients. This incremental success mainly reflects the complexity of SCI pathophysiology and the diverse biochemical and physiological changes that occur in the injured spinal cord. Therefore, in the past few decades, considerable efforts have been made by SCI researchers to elucidate the pathophysiology of SCI and unravel the underlying cellular and molecular mechanisms of tissue degeneration and repair in the injured spinal cord. To this end, a number of preclinical animal and injury models have been developed to more closely recapitulate the primary and secondary injury processes of SCI. In this review, we will provide a comprehensive overview of the recent advances in our understanding of the pathophysiology of SCI. We will also discuss the neurological outcomes of human SCI and the available experimental model systems that have been employed to identify SCI mechanisms and develop therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Scott Matthew Dyck
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Guo Z, Yuan Y, Guo Y, Wang H, Song C, Huang M. Nischarin attenuates apoptosis induced by oxidative stress in PC12 cells. Exp Ther Med 2018; 17:663-670. [PMID: 30651848 PMCID: PMC6307393 DOI: 10.3892/etm.2018.7017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
Nischarin (NISCH) is a cytoplasmic protein known to serve an inhibitory role in breast cancer cell apoptosis, migration and invasion. Recently, NISCH has been reported to be involved in the regulation of spinal cord injury (SCI). However, the molecular mechanism is still unclear. Oxidative stress contributes to tissue injury and cell apoptosis during the development of various diseases, including SCI. The aim of the present study was to investigate the role of NISCH in the regulation of apoptosis induced by oxidative stress in PC12 cells. H2O2 was used to establish an oxidative stress model in PC12 cells. Apoptosis levels were examined using flow cytometry analysis, and the expression of NISCH, Bcl-2, Bcl-2-associated X (Bax) and caspase-3 were examined using western blot and immunofluorescence staining analyses. The results demonstrated that treatment with 100 µM H2O2 significantly increased the apoptotic rate and expression of NISCH in PC12 cells. At 48 h following incubation with 100 µM H2O2, NISCH downregulation partially inhibited apoptosis of PC12 cells. In addition, the expression of Bcl-2 was significantly reduced and the expression of Bax and caspase-3 were significantly increased by H2O2 treatment. These effects were also partially inhibited by the downregulation of NISCH. The authors of the present study therefore hypothesize that NISCH may function as a pro-apoptotic protein that participates in the regulation of oxidative stress, and NISCH downregulation may protect cells from oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Zhanpeng Guo
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yajiang Yuan
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yue Guo
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Changwei Song
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Mina Huang
- Department of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
14
|
Raza SS, Wagner AP, Hussain YS, Khan MA. Mechanisms underlying dental-derived stem cell-mediated neurorestoration in neurodegenerative disorders. Stem Cell Res Ther 2018; 9:245. [PMID: 30257724 PMCID: PMC6158826 DOI: 10.1186/s13287-018-1005-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neurodegenerative disorders have a complex pathology and are characterized by a progressive loss of neuronal architecture in the brain or spinal cord. Neuroprotective agents have demonstrated promising results at the preclinical stage, but this has not been confirmed at the clinical stage. Thus far, no neuroprotective drug that can prevent neuronal degeneration in patients with neurodegenerative disorders is available. MAIN BODY Recent studies have focused on neurorestorative measures, such as cell-based therapy, rather than neuroprotective treatment. The utility of cell-based approaches for the treatment of neurodegenerative disorders has been explored extensively, and the results have been somewhat promising with regard to reversing the outcome. Because of their neural crest origin, ease of harvest, accessibility, ethical suitability, and potential to differentiate into the neurogenic lineage, dental-derived stem cells (DSCs) have become an attractive source for cell-based neurorestoration therapies. In the present review, we summarize the possible use of DSC-based neurorestoration therapy as an alternative treatment for neurodegenerative disorders, with a particular emphasis on the mechanism underlying recovery in neurodegenerative disorders. CONCLUSION Transplantation research in neurodegenerative diseases should aim to understand the mechanism providing benefits both at the molecular and functional level. Due to their ease of accessibility, plasticity, and ethical suitability, DSCs hold promise to overcome the existing challenges in the field of neurodegeneration through multiple mechanisms, such as cell replacement, bystander effect, vasculogenesis, synaptogenesis, immunomodulation, and by inhibiting apoptosis.
Collapse
Affiliation(s)
- Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era Medical College & Hospital, Era University, Lucknow, Uttar Pradesh, 226003, India. .,Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, 226003, India.
| | - Aurel Popa Wagner
- Departmentof Dental Materials, RUHS College of Dental Sciences, Subhash Nagar, Jaipur, Rajasthan, 302002, India.,Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy Craiova, Craiova, Romania.,School of Medicine, Griffith University, Southport, QLD, Australia
| | - Yawer S Hussain
- Department of Neurology, Chair of Vascular Neurology and Dementia, Essen University Hospital, Essen, Germany
| | - Mohsin Ali Khan
- Era Medical College & Hospital, Era University, Lucknow, Uttar Pradesh, 226003, India
| |
Collapse
|
15
|
Shao Z, Lv G, Wen P, Cao Y, Yu D, Lu Y, Li G, Su Z, Teng P, Gao K, Wang Y, Mei X. Silencing of PHLPP1 promotes neuronal apoptosis and inhibits functional recovery after spinal cord injury in mice. Life Sci 2018; 209:291-299. [PMID: 30114409 DOI: 10.1016/j.lfs.2018.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/04/2018] [Accepted: 08/11/2018] [Indexed: 12/21/2022]
Abstract
AIM Spinal cord injury (SCI) causes increased apoptosis of neurons, leading to irreversible dysfunction of the spinal cord. In this study, we investigated the effects of the progression of SCI and potential regulation of apoptosis after the Pleckstrin homology (PH) domain and leucine rich repeat protein phosphatase 1 (PHLPP1) gene was silenced. MAIN METHODS Spinal cord injection, and neuronal transfection with a recombinant adenovirus vector encoding small interfering RNA (siRNA) against PHLPP1 (AdsiPHLPP1) successfully silenced PHLPP1. These created in vivo and in vitro PHLPP1-silenced models, respectively, resulting in stable expression of the transgene in neurons. KEY FINDINGS The results showed that silencing of PHLPP1 evidently reduced levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) after SCI. Western blot analysis revealed that the mice injected with AdsiPHLPP1 showed increased the expression of pro-apoptotic factors (Bax and cleaved-caspase 3), and reduced levels of neurotrophic (BDNF) and anti-apoptotic (Bcl-2) factors, both in vivo and in vitro. The motor function of AdsiPHLPP1-injected mice was restored more slowly than that of wild type (WT) mice. In addition, the number of motor neurons surviving in the anterior horn of the spinal cord was also reduced after SCI. SIGNIFICANCE Our results confirm that silencing of PHLPP1 promotes neuronal apoptosis and inhibits functional recovery after injury in vivo and in vitro. Consequently, PHLPP1 represents a potential therapeutic target gene for the clinical treatment of SCI.
Collapse
Affiliation(s)
- Zhenya Shao
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Gang Lv
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Pushuai Wen
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yang Cao
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Deshui Yu
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yanyan Lu
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Gang Li
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zichen Su
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Peng Teng
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Kang Gao
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yansong Wang
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| |
Collapse
|
16
|
Kjell J, Olson L. Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 2017; 9:1125-1137. [PMID: 27736748 PMCID: PMC5087825 DOI: 10.1242/dmm.025833] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. Summary: In this Review, we discuss the advantages and disadvantages of the rat for studies of experimental spinal cord injury and summarize the knowledge gained from such studies.
Collapse
Affiliation(s)
- Jacob Kjell
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
17
|
Gürer B, Karakoç A, Bektaşoğlu PK, Kertmen H, Kanat MA, Arıkök AT, Ergüder Bİ, Sargon MF, Öztürk ÖÇ, Çelikoğlu E. Comparative effects of vitamin D and methylprednisolone against ischemia/reperfusion injury of rabbit spinal cords. Eur J Pharmacol 2017; 813:50-60. [DOI: 10.1016/j.ejphar.2017.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023]
|
18
|
Zhang J, Li S, Wu Y. Recovery of spinal cord injury following electroacupuncture in rats through enhancement of Wnt/β-catenin signaling. Mol Med Rep 2017. [DOI: 10.3892/mmr.2017.6801] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Yao NW, Lu Y, Shi LQ, Xu F, Cai XH. Neuroprotective effect of combining tanshinone IIA with low-dose methylprednisolone following acute spinal cord injury in rats. Exp Ther Med 2017; 13:2193-2202. [PMID: 28565827 PMCID: PMC5443198 DOI: 10.3892/etm.2017.4271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/13/2017] [Indexed: 01/20/2023] Open
Abstract
The present study compared the potential neuroprotective effect of tanshinone IIA (TIIA) monotherapy, methylprednisolone (MP) monotherapy and combined treatment in an adult acute spinal cord injury (ASCI) rat model. The current study used the weight-drop method (Allen's Impactor) in the rat model and the mechanical scratch method in primary spinal cord neuron culture to determine whether the combined treatment was able to reduce the required dosage of MP in the treatment of ASCI to produce a similar or improved therapeutic effect. In vivo male Sprague Dawley rats (n=60) were randomly divided into 5 groups, of which 12 rats were selected for the sham group and T9-T11 laminectomies, leading to ASCI, were performed on 48 of the 60 rats using a 10 g ×25 mm weight-drop at the level of T10 spinal cord. Therefore, the ASCI group (n=12) included the 'laminectomy and weight-drop'. The remaining 36 ASCI model animals were subdivided into 3 groups (n=12 each group): TIIA group (30 mg/kg/day), MP group (30 mg/kg) and combined treatment group (TIIA 30 mg/kg/day + MP 20 mg/kg). Neuronal function following ASCI was evaluated using the Basso Beattie Bresnahan (BBB) locomotor rating scale. Levels of the anti-apoptotic factor B-cell lymphoma-2 (Bcl-2), the pro-apoptotic factors Bcl-2 associated protein X (Bax) and caspase-3, and the inflammatory associated factor nuclear factor-κB, were analyzed by western blot analysis. Immunohistochemistry was used to detect caspase-3. To investigate the underlying mechanism, the anti-oxidative effect of combination TIIA and MP treatment was assessed by measuring the activity of malondialdehyde (MDA) and superoxide dismutase (SOD) in ASCI. In agreement with the experiment in vivo, primary neurons were prepared from the spinal cord of one-day-old Sprague-Dawley rats' and co-cultured with astrocytes from the brain cortex. The injury of neurons was induced by mechanical scratch and levels of apoptosis factors were analyzed by western blot analysis. The results of the current study indicated that injured animals in the combined treatment group exhibited a significant increase in BBB scores (P<0.05). TIIA + MP combined treatment and MP treatment was observed to reduce the expression of pro-apoptotic factors and promote neuron survival in vivo and in vitro. Combined treatment may promote neuroprotection through reduced apoptosis and inflammation caused by ASCI, similar to MP alone. Combined treatment reversed the decrease of SOD and the increase of MDA level caused by ASCI. In addition, combined treatment decreased the expression of caspase-3 in the neurons following ASCI in rats, as indicated by immunofluorescence double labeling. Overall, the present study indicates that the combined treatment of TIIA and MP may protect the neurons by stimulating the rapid initiation of neuroprotection following ASCI and reduce the dosage of MP in the treatment of ASCI required to produce the same or improved neuroprotective effects in vivo and in vitro.
Collapse
Affiliation(s)
- Nian-Wei Yao
- Department of Orthopedics, The Third Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China.,Department of Orthopedics, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China.,College of Acupuncture and Orthopedics, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Yuan Lu
- Department of Neurology, Nantong First People's Hospital, Nantong, Jiangsu 226000, P.R. China
| | - Li-Qi Shi
- Department of Orthopedics, Yuyao Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang 315000, P.R. China
| | - Feng Xu
- Department of Orthopedics, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Xian-Hua Cai
- Department of Orthopedics, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
20
|
Zhao H, Chen S, Gao K, Zhou Z, Wang C, Shen Z, Guo Y, Li Z, Wan Z, Liu C, Mei X. Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway. Neuroscience 2017; 348:241-251. [PMID: 28238848 DOI: 10.1016/j.neuroscience.2017.02.027] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition with few effective treatments. Resveratrol, a polyphenolic compound, has exhibited neuroprotective effects in many neurodegenerative diseases. However, the explicit effect and mechanism of resveratrol on SCI is still unclear. Adenosine 5' monophosphate-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1), the downstream protein, play key roles in metabolizing of energy, resisting of resistance, and cellular protein homeostasis. In this study, we determined the effects of resveratrol on SCI and their potential relationship with SIRT1/AMPK signaling pathway, autophagy and apoptosis. To determine the effect of resveratrol on SCI recovery, a spinal cord contusion model was employed. Rats received treatment with resveratrol or DMSO immediately following contusion. We determined that Basso, Beattie, and Bresnahan (BBB) scores were significantly higher for injured rats treated with resveratrol. Nissl and HE staining revealed that resveratrol treatment significantly reduced the loss of motor neurons and lesion size in the spinal cord of injured rats when compared to vehicle-treated animals. Spinal cord tissue was assessed by Western blot, reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemical analyses 7days after injury for changes in expression of SIRT1/AMPK signaling pathway, autophagy and apoptosis proteins. Expression of SIRT1, p-AMPK, Beclin-1, LC3-B, and Bcl-2 was elevated in resveratrol-treated animals, whereas expression of p62, Cleaved Caspase-3, Caspase-9, and Bcl-2 associated X protein (Bax) was inhibited. Immunofluorescence analysis of primary neurons treated with resveratrol alone or in combination with Compound C (AMPK inhibitor) or EX527 (SIRT1 inhibitor) revealed that treatment with the inhibitors blocks the increased LC3-B expression in cells and increases the portion of TUNEL-positive cells. Taken together, these results suggest that resveratrol exerts neuroprotective effects on SCI by regulating autophagy and apoptosis mediated by the SIRT1-AMPK signaling pathway.
Collapse
Affiliation(s)
- Haosen Zhao
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China.
| | - Shurui Chen
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China.
| | - Kai Gao
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining City, PR China
| | - Zipeng Zhou
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Chen Wang
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Zhaoliang Shen
- Department of Orthopedics, Second Hospital of Jinzhou, Jinzhou, PR China
| | - Yue Guo
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Zhuo Li
- Department of Orthopedics, Second Hospital of Jinzhou, Jinzhou, PR China
| | - Zhanghui Wan
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China.
| | - Xifan Mei
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, PR China.
| |
Collapse
|
21
|
Cao Y, Zhou Y, Ni S, Wu T, Li P, Liao S, Hu J, Lu H. Three Dimensional Quantification of Microarchitecture and Vessel Regeneration by Synchrotron Radiation Microcomputed Tomography in a Rat Model of Spinal Cord Injury. J Neurotrauma 2016; 34:1187-1199. [PMID: 27676128 DOI: 10.1089/neu.2016.4697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A full understanding of the mechanisms behind spinal cord injury (SCI) processes requires reliable three-dimensional (3D) imaging tools for a thorough analysis of changes in angiospatial architecture. We aimed to use synchrotron radiation μCT (SRμCT) to characterize 3D temporal-spatial changes in microvasculature post-SCI. Morphometrical measurements revealed a significant decrease in vascular volume fraction, vascular bifurcation density, vascular segment density, and vascular connectivity density 1 day post-injury, followed by a gradual increase at 3, 7, and 14 days. At 1 day post-injury, SRμCT revealed an increase in vascular tortuosity (VT), which reached a plateau after 7 days and decreased slightly during the healing process. In addition, SRμCT images showed that vessels were largely concentrated in the gray matter 1 day post-injury. The maximal endothelial cell proliferation rate was detected at 7 days post-injury. The 3D morphology of the cavity appears in the spinal cord at 28 days post-injury. We describe a methodology for 3D analysis of vascular repair in SCI and reveal that endogenous revascularization occurs during the healing process. The spinal cord microvasculature configuration undergoes 3D remodeling and modification during the post-injury repair process. Examination of these processes might contribute to a full understanding of the compensatory vascular mechanisms after injury and aid in the development of novel and effective treatment for SCI.
Collapse
Affiliation(s)
- Yong Cao
- 1 Department of Spine Surgery, Central South University , Changsha, China
| | - Yuan Zhou
- 2 Department of Thoracic Surgery, Xiangya Hospital, Central South University , Changsha, China
| | - Shuangfei Ni
- 1 Department of Spine Surgery, Central South University , Changsha, China
| | - Tianding Wu
- 1 Department of Spine Surgery, Central South University , Changsha, China
| | - Ping Li
- 1 Department of Spine Surgery, Central South University , Changsha, China
| | - Shenghui Liao
- 3 School of Information Science and Engineering, Central South University , Changsha, Changsha, China
| | - Jianzhong Hu
- 1 Department of Spine Surgery, Central South University , Changsha, China
| | - Hongbin Lu
- 4 Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University , Changsha, China
| |
Collapse
|
22
|
Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats. Neuroscience 2016; 328:40-9. [DOI: 10.1016/j.neuroscience.2016.04.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 11/17/2022]
|
23
|
Liu M, Wu W, Li H, Li S, Huang LT, Yang YQ, Sun Q, Wang CX, Yu Z, Hang CH. Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J Spinal Cord Med 2015; 38:745-53. [PMID: 24970278 PMCID: PMC4725808 DOI: 10.1179/2045772314y.0000000224] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Necroptosis is an emerging programmed necrosis other than traditional necrosis and apoptosis. Until recently, there have not been studies that have investigated a relationship between necroptosis and pathogenesis of cell death after spinal cord injury (SCI). OBJECTIVE To investigate whether necroptosis takes part in the early pathophysiological processes of traumatic SCI in mice. METHODS Female ICR mice were randomized equally into three groups: the sham, the vehicle-treated + SCI group, and the Nec-1-treated + SCI group. To induce SCI, the mice were subjected to a laminectomy at T9 and compression with a vascular clip. After mice were sacrificed 24 hours post-SCI, propidium iodide (PI)-positive cells were detected using in vivo PI labeling. Morphological analyses were performed by hematoxylin and eosin staining and Nissl staining. The samples were evaluated for apoptosis by the in situ TUNEL assay. The expression of caspase-3 was assessed by western blot. Locomotor behavior of hindlimb was evaluated by BMS (Basso mouse scale) score at 1, 3, 5, 7, and 14 days post-injury. RESULTS Compared with dimethyl sulfoxide -treated mice, necrostatin-1-treated mice showed decreased PI-positive cells (P < 0.05), alleviated tissue damage, more surviving neuron at 24 hours after SCI (P < 0.05), and improved functional recovery from days 7 to 14 (P < 0.05). Necrostatin-1 did not reduce the expression of caspase-3 and the number of TUNEL-positive cells at 24 hours after SCI (P > 0.05). CONCLUSIONS Necroptosis contributes to necroptotic cell death and influences functional outcome after SCI in adult mice. The inhibition of necroptosis by necrostatin-1 may have therapeutic potential for patients with SCI.
Collapse
Affiliation(s)
| | - Wei Wu
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hua Li
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Song Li
- Department of Neurosurgery, Southern Medical University (Guangzhou), Jinling Hospital, Nanjing, Jiangsu Province, China
| | - Li-tian Huang
- Department of Neurosurgery, Southern Medical University (Guangzhou), Jinling Hospital, Nanjing, Jiangsu Province, China
| | - Yi-qing Yang
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qing Sun
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chun-xi Wang
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhuang Yu
- Department of Neurosurgery, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chun-hua Hang
- Department of Neurosurgery, Southern Medical University (Guangzhou), Jinling Hospital, Nanjing, Jiangsu Province, China,Correspondence to: Chun-hua Hang, Department of Neurosurgery, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
24
|
Kjell J, Finn A, Hao J, Wellfelt K, Josephson A, Svensson CI, Wiesenfeld-Hallin Z, Eriksson U, Abrams M, Olson L. Delayed Imatinib Treatment for Acute Spinal Cord Injury: Functional Recovery and Serum Biomarkers. J Neurotrauma 2015; 32:1645-57. [PMID: 25914996 PMCID: PMC4752188 DOI: 10.1089/neu.2014.3863] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
With no currently available drug treatment for spinal cord injury, there is a need for additional therapeutic candidates. We took the approach of repositioning existing pharmacological agents to serve as acute treatments for spinal cord injury and previously found imatinib to have positive effects on locomotor and bladder function in experimental spinal cord injury when administered immediately after the injury. However, for imatinib to have translational value, it needs to have sustained beneficial effects with delayed initiation of treatment, as well. Here, we show that imatinib improves hind limb locomotion and bladder recovery when initiation of treatment was delayed until 4 h after injury and that bladder function was improved with a delay of up to 24 h. The treatment did not induce hypersensitivity. Instead, imatinib-treated animals were generally less hypersensitive to either thermal or mechanical stimuli, compared with controls. In an effort to provide potential biomarkers, we found serum levels of three cytokines/chemokines--monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-3α, and keratinocyte chemoattractant/growth-regulated oncogene (interleukin 8)--to increase over time with imatinib treatment and to be significantly higher in injured imatinib-treated animals than in controls during the early treatment period. This correlated to macrophage activation and autofluorescence in lymphoid organs. At the site of injury in the spinal cord, macrophage activation was instead reduced by imatinib treatment. Our data strengthen the case for clinical trials of imatinib by showing that initiation of treatment can be delayed and by identifying serum cytokines that may serve as candidate markers of effective imatinib doses.
Collapse
Affiliation(s)
- Jacob Kjell
- 1 Department of Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Anja Finn
- 2 Department of Pharmacology and Physiology, Karolinska Institutet , Stockholm, Sweden
| | - Jingxia Hao
- 2 Department of Pharmacology and Physiology, Karolinska Institutet , Stockholm, Sweden
| | - Katrin Wellfelt
- 1 Department of Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Anna Josephson
- 1 Department of Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Camilla I Svensson
- 2 Department of Pharmacology and Physiology, Karolinska Institutet , Stockholm, Sweden
| | | | - Ulf Eriksson
- 3 Department of Medical Biochemisty and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Mathew Abrams
- 1 Department of Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Lars Olson
- 1 Department of Neuroscience, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
25
|
Reigada D, Nieto-Díaz M, Navarro-Ruiz R, Caballero-López MJ, Del Águila A, Muñoz-Galdeano T, Maza RM. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience 2015; 300:404-17. [PMID: 26004679 DOI: 10.1016/j.neuroscience.2015.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 01/12/2023]
Abstract
Secondary death of neural cells plays a key role in the physiopathology and the functional consequences of traumatic spinal cord injury (SCI). Pharmacological manipulation of cell death pathways leading to the preservation of neural cells is acknowledged as a main therapeutic goal in SCI. In the present work, we hypothesize that administration of the neuroprotective cell-permeable compound ucf-101 will reduce neural cell death during the secondary damage of SCI, increasing tissue preservation and reducing the functional deficits. To test this hypothesis, we treated mice with ucf-101 during the first week after a moderate contusive SCI. Our results reveal that ucf-101 administration protects neural cells from the deleterious secondary mechanisms triggered by the trauma, reducing the extension of tissue damage and improving motor function recovery. Our studies also suggest that the effects of ucf-101 may be mediated through the inhibition of HtrA2/OMI and the concomitant increase of inhibitor of apoptosis protein XIAP, as well as the induction of ERK1/2 activation and/or expression. In vitro assays confirm the effects of ucf-101 on both pathways as well as on the reduction of caspase cascade activation and apoptotic cell death in a neuroblastoma cell line. These results suggest that ucf-101 can be a promising therapeutic tool for SCI that deserves more detailed analyses.
Collapse
Affiliation(s)
- D Reigada
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain.
| | - M Nieto-Díaz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - R Navarro-Ruiz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - M J Caballero-López
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - A Del Águila
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - T Muñoz-Galdeano
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - R M Maza
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
26
|
Hu J, Lang Y, Cao Y, Zhang T, Lu H. The Neuroprotective Effect of Tetramethylpyrazine Against Contusive Spinal Cord Injury by Activating PGC-1α in Rats. Neurochem Res 2015; 40:1393-401. [PMID: 25981953 PMCID: PMC4493940 DOI: 10.1007/s11064-015-1606-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/13/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
Tetramethylpyrazine (TMP) has been suggested to have neuroprotective effects against spinal cord injury (SCI); however, few studies have examined these effects and the corresponding mechanism. Therefore, the present study aimed to investigate the neuroprotective effect and underlying mechanism of TMP against contusive SCI. Adult male Sprague-Dawley rats were randomly divided into Sham, normal saline (NS) and TMP groups. Each group was divided into subgroups according to the time of sacrifice: 1, 3, 7, 14, 21 and 28 days post-injury. Laminectomy was performed in all groups, followed by contusive SCI establishment in the TMP and NS groups. TMP (80 mg/kg) was injected thereafter daily from 3 to 7 days post-injury in the TMP group, which was replaced by equal volume of normal saline in the NS group. The Basso-Beattie-Bresnahan (BBB) Locomotor Rating Scale was measured at different time points post-injury to appraise locomotor functional recovery. Quantitative real-time PCR and immunofluorescence were used to assess the spatio-temporal expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), while western blot was adopted to detect the effect of TMP on PGC-1α. Neural apoptotic changes and neuronal survival were evaluated using the TUNEL method and Nissl staining, respectively. TMP treatment markedly increased PGC-1α expression, neuronal survival and BBB locomotor scores, while also reducing neural apoptosis. These results demonstrate that TMP is neuroprotective against contusive SCI, with the inhibition of neural apoptosis and increase of neuronal survival. The sustained expression of PGC-1α may partially contribute to the TMP-mediated neuroprotective effect.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | |
Collapse
|
27
|
Yılmaz T, Kaptanoğlu E. Current and future medical therapeutic strategies for the functional repair of spinal cord injury. World J Orthop 2015; 6:42-55. [PMID: 25621210 PMCID: PMC4303789 DOI: 10.5312/wjo.v6.i1.42] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) leads to social and psychological problems in patients and requires costly treatment and care. In recent years, various pharmacological agents have been tested for acute SCI. Large scale, prospective, randomized, controlled clinical trials have failed to demonstrate marked neurological benefit in contrast to their success in the laboratory. Today, the most important problem is ineffectiveness of nonsurgical treatment choices in human SCI that showed neuroprotective effects in animal studies. Recently, attempted cellular therapy and transplantations are promising. A better understanding of the pathophysiology of SCI started in the early 1980s. Research had been looking at neuroprotection in the 1980s and the first half of 1990s and regeneration studies started in the second half of the 1990s. A number of studies on surgical timing suggest that early surgical intervention is safe and feasible, can improve clinical and neurological outcomes and reduce health care costs, and minimize the secondary damage caused by compression of the spinal cord after trauma. This article reviews current evidence for early surgical decompression and nonsurgical treatment options, including pharmacological and cellular therapy, as the treatment choices for SCI.
Collapse
|
28
|
Senturk S, Gurcay AG, Bozkurt I, Gurcan O, Eroglu H, Turkoglu OF, Bodur E, Bavbek M. Effects of tadalafil-Type-V phosphodiesterase enzyme inhibitor-On rats with spinal trauma. Br J Neurosurg 2014; 29:254-9. [PMID: 25380483 DOI: 10.3109/02688697.2014.976174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this research, the effect of tadalafil, a selective inhibitor of cyclic guanosine monophosphate-specific phosphodiesterase type 5, on rats with spinal trauma was evaluated. The evaluation consisted of neurological examination and biochemical parameters. Twenty healthy male Wistar albino rats were used in this study. They were separated into three groups: tadalafil-receiving (TD) group (n=7), laminectomy and trauma (LT) group (n=7), and just laminectomy group (n=6). The TD group received daily dose of tadalafil (10 mg/kg) for a week along with bait and water. Each rat's spinal cord was dissected with utter caution. The spinal cord was traumatized by Allen's weight-drop method. Using a standard apparatus, 5 g of weight was dropped from a height of 10 cm on the spinal cords of the TD and LT (laminectomy+trauma) group. No extra maneuvers were conducted on the laminectomy group. A day later, the rat's functional neurological status was examined followed by re-exploration of the spinal cord for sampling 1 cm of tissue. The Tarlov scale was used to evaluate the functional neurological status. The modified Tarlov scale was rated to be significantly higher in the TD group than that in the LT group. For the biochemical parameters, malondialdehyde (MDA) and cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) involved in the inflammatory process were examined. MDA--an indicator of lipid peroxidation--was found to be significantly lower in the TD group compared with that in the LT group. TNF-α and IL-6 levels were also found to be lower in the TD group compared with those in the LT group. Shortly, this research showed that the use of TD group in spinal trauma resulted in better neurological outcome and significant improvement in biochemical parameters.
Collapse
Affiliation(s)
- Salim Senturk
- Department of Neurosurgery, Hitit University Corum Training and Research Hospital , Corum , Turkey
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tian F, Xu LH, Wang B, Tian LJ, Ji XL. The neuroprotective mechanism of puerarin in the treatment of acute spinal ischemia-reperfusion injury is linked to cyclin-dependent kinase 5. Neurosci Lett 2014; 584:50-5. [PMID: 25301568 DOI: 10.1016/j.neulet.2014.09.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 09/25/2014] [Accepted: 09/27/2014] [Indexed: 12/30/2022]
Abstract
Puerarin is shown to exert a variety of pharmacological effects including neuroprotective properties. However, mechanisms of the action are not fully understood. This study was designed to explore the mechanism of puerarin in treatment of acute spinal ischemia-reperfusion injury in rats. Acute spinal ischemia-reperfusion injury was conducted by aortic occlusion in twenty-eight male Sprague-Dawley rats, weighting 230-250 g. The animals were randomly divided into four groups. In the animals with puerarin treatment, 50 mg/kg of puerarin was injected intraperitoneally after reperfusion, and followed by the same dose of injection every 24h for 2 days. In the animals with roscovitine pre-treatment, 30 mg/kg roscovitine was intravenously administrated 60 min before spinal ischemia started. After spinal ischemia for 60 min followed by 48 h of reperfusion, the motor function, spinal infarction volume, apoptosis indices and the activities of Cdk5 and p25 were examined. Acute spinal ischemia-reperfusion resulted in an injury of the spines associated with motor deficit, elevation of Cdk5 and p25 activities, and increase in the spinal apoptosis number and spinal infarction volume. Puerarin improved motor function associated with the decreased apoptosis number, spinal infarction volume, and Cdk5 and p25 activities. The present study indicated that reduction of spinal injury was associated with inhibition of Cdk5 and p25, and that inhibition of Cdk5 and p25 was one of the neuroprotective mechanisms in the puerarin treatment of acute ischemia/reperfusion-induced spinal injury in rats.
Collapse
Affiliation(s)
- Feng Tian
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China.
| | - Li-Hui Xu
- Department of Orthopedic Surgery, Shenyang Medical College Fengtian Hospital, Liaoning Province, China
| | - Bin Wang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Li-Jie Tian
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China
| | - Xiang-Lu Ji
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
30
|
Figley SA, Khosravi R, Legasto JM, Tseng YF, Fehlings MG. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J Neurotrauma 2014; 31:541-52. [PMID: 24237182 DOI: 10.1089/neu.2013.3034] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Significant vascular changes occur subsequent to spinal cord injury (SCI), which contribute to progressive pathophysiology. In the present study, we used female Wistar rats (300-350 g) and a 35-g clip-compression injury at T6 to T7 to characterize the spatial and temporal vascular changes that ensue post-SCI. Before sacrifice, animals were injected with vascular tracing dyes (2% Evans Blue (EB) or fluorescein isothiocyanate/Lycopersicon esculentum agglutinin [FITC-LEA]) to assess blood-spinal cord barrier (BSCB) integrity or vascular architecture, respectively. Spectrophotometry of EB tissue showed maximal BSCB disruption at 24 h postinjury, with significant disruption observed until 5 days postinjury (p<0.01). FITC-LEA-identified functional vasculature was dramatically reduced by 24 h. Similarly, RECA-1 immunohistochemistry showed a significant decrease in the number of vessels at 24 h postinjury, compared to uninjured animals (p<0.01), with slight increases in endogenous revascularization by 10 days postinjury. White versus gray matter (GM) quantification showed that GM vessels are more susceptible to SCI. Finally, we observed an endogenous angiogenic response between 3 and 7 days postinjury: maximal endothelial cell proliferation was observed at day 5. These data indicate that BSCB disruption and endogenous revascularization occur at specific time points after injury, which may be important for developing effective therapeutic interventions for SCI.
Collapse
Affiliation(s)
- Sarah A Figley
- 1 Department of Genetics and Development, Toronto Western Research Institute, and Spinal Program, Krembil Neuroscience Centre, University Health Network , Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
31
|
Wang L, Jiang DM. Neuroprotective effect of Buyang Huanwu Decoction on spinal ischemia-reperfusion injury in rats is linked with inhibition of cyclin-dependent kinase 5. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:309. [PMID: 24206767 PMCID: PMC4226250 DOI: 10.1186/1472-6882-13-309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/29/2013] [Indexed: 11/10/2022]
Abstract
Background Buyang Huanwu Decoction (BYHWD), a traditional Chinese medicine formula, has been shown to exert a variety of pharmacological effects including neuroprotective properties. However, the mechanism of neuroprotection is not fully understood. This study was designed to explore the mechanism of BYHWD in the treatment of spinal ischemia-reperfusion injury in rats. Methods Twenty-eight male Sprague–Dawley rats, weighting 250–280 g, were used, and were randomly divided into four groups with 7 animals in each: sham operation group (Control), spinal ischemia with saline (SI + Saline), spinal ischemia with BYHWD (SI + BYHWD), and spinal ischemia with roscovitine (SI + R). After 60 minutes of spinal ischemia followed by 72 hours of reperfusion, motor function of hind limbs, spinal ischemic infarction volume, the number of apoptotic cells, and cyclin-dependent kinase 5 (Cdk5) were examined. Result Ischemia-reperfusion resulted in injury of the spines, while BYHWD significantly improved spinal function. The spinal infarction volume, number of apoptotic cells, and Cdk5 were decreased by administration of BYHWD. The similar improvements were seen with the pre-treatment of roscovitine. Conclusions BYHWD prevented the ischemia-reperfusion-induced spinal injury in rats. The protective function of BYHWD was, in part, linked with inhibition of Cdk5.
Collapse
|
32
|
Immunization with a neural-derived peptide protects the spinal cord from apoptosis after traumatic injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:827517. [PMID: 24236295 PMCID: PMC3819886 DOI: 10.1155/2013/827517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/23/2013] [Accepted: 09/06/2013] [Indexed: 11/17/2022]
Abstract
Apoptosis is one of the most destructive mechanisms that develop after spinal cord (SC) injury. Immunization with neural-derived peptides (INDPs) such as A91 has shown to reduce the deleterious proinflammatory response and the amount of harmful compounds produced after SC injury. With the notion that the aforementioned elements are apoptotic inducers, we hypothesized that INDPs would reduce apoptosis after SC injury. In order to test this assumption, adult rats were subjected to SC contusion and immunized either with A91 or phosphate buffered saline (PBS; control group). Seven days after injury, animals were euthanized to evaluate the number of apoptotic cells at the injury site. Apoptosis was evaluated using DAPI and TUNEL techniques; caspase-3 activity was also evaluated. To further elucidate the mechanisms through which A91 exerts this antiapoptotic effects we quantified tumor necrosis factor-alpha (TNF-α). To also demonstrate that the decrease in apoptotic cells correlated with a functional improvement, locomotor recovery was evaluated. Immunization with A91 significantly reduced the number of apoptotic cells and decreased caspase-3 activity and TNF-α concentration. Immunization with A91 also improved the functional recovery of injured rats. The present study shows the beneficial effect of INDPs on preventing apoptosis and provides more evidence on the neuroprotective mechanisms exerted by this strategy.
Collapse
|
33
|
AR-A014418 as a glycogen synthase kinase-3 inhibitor: Anti-apoptotic and therapeutic potential in experimental spinal cord injury. Neurocirugia (Astur) 2013; 24:22-32. [DOI: 10.1016/j.neucir.2011.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/26/2011] [Indexed: 12/22/2022]
|
34
|
Veeravalli KK, Dasari VR, Rao JS. Regulation of proteases after spinal cord injury. J Neurotrauma 2012; 29:2251-62. [PMID: 22709139 DOI: 10.1089/neu.2012.2460] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury is a major medical problem worldwide. Unfortunately, we still do not have suitable therapeutic agents for the treatment of spinal cord injury and prevention of its devastating consequences. Scientists and physicians are baffled by the challenges of controlling progressive neurodegeneration in spinal cord injury, which has not been healed with any currently-available treatments. Although extensive work has been carried out to better understand the pathophysiology of spinal cord injury, our current understanding of the repair mechanisms of secondary injury processes is still meager. Several investigators reported the crucial role played by various proteases after spinal cord injury. Understanding the beneficial and harmful roles these proteases play after spinal cord injury will allow scientists to plan and design appropriate treatment strategies to improve functional recovery after spinal cord injury. This review will focus on various proteases such as matrix metalloproteinases, cysteine proteases, and serine proteases and their inhibitors in the context of spinal cord injury.
Collapse
Affiliation(s)
- Krishna Kumar Veeravalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61605, USA
| | | | | |
Collapse
|
35
|
Lin HS, Ji ZS, Zheng LH, Guo GQ, Chen B, Wu H, Zhang GW. Effect of methylprednisolone on the activities of caspase-3, -6, -8 and -9 in rabbits with acute spinal cord injury. Exp Ther Med 2012; 4:49-54. [PMID: 23060921 DOI: 10.3892/etm.2012.552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 03/28/2012] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of methylprednisolone (MP) on the activities of caspase-3, -6, -8 and -9 in rabbits with acute spinal cord injury (ASCI) and to explore the mechanism underlying the antiapoptotic effect of MP on ASCI. Modified Allen's method was employed to establish the ASCI animal model. The animals were randomly divided into a sham (S; n=12), ASCI (C; n=36) and MP group (T; n=36). At 8, 24 and 72 h and 7, 14 and 28 days after ASCI, the animals were sacrificed and the spinal cord was collected. The absorbance (A) was measured with a microplate reader and the activities of caspase-3, -6, -8 and -9 were calculated followed by comparisons among the groups. In the S group, the activities of the four caspases were low. In the C and T groups, the caspase activities increased at 8 h after injury, peaked at 24 h and remained at a high level 3 days after injury. However, the caspase activities began to decrease at 7 days after injury and were significantly reduced at 14 and 28 days after ASCI. Furthermore, the caspase activities in the T group were markedly lower than those in the C group at 8 and 24 h and 3 and 7 days after surgery (P<0.05), but significant differences were not observed at 14 and 28 days after injury (P>0.05). In conclusion, MP exerted an antiapoptotic effect via inhibition of the activities of caspase-3, -6, -8 and -9 in an animal model of ASCI.
Collapse
Affiliation(s)
- Hong-Sheng Lin
- Department of Orthopedics, First Affiliated Hospital of Jinan University, Guangzhou 510630; ; Institute of Orthopedic Diseases, Jinan University, Guangzhou 510632
| | | | | | | | | | | | | |
Collapse
|
36
|
Feng SQ, Kong XH, Liu Y, Ban DX, Ning GZ, Chen JT, Guo SF, Wang P. Regeneration of spinal cord with cell and gene therapy. Orthop Surg 2012; 1:153-63. [PMID: 22009833 DOI: 10.1111/j.1757-7861.2009.00018.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Transplantation of fetal spinal cord cells (FSCC) can promote regeneration of injured spinal cord, while Schwann cells (SC) and some growth factors have a similar effect. However, the synergistic effects and optimal combination of these modalities have not yet been evaluated. In the current study, the efficiency of cell therapy of FSCC and/or SC, with/without growth factors (nerve growth factor [NGF] and brain-derived neurotrophic factor [BDNF]) was examined, with the aim of establishing an optimized protocol for spinal cord injury. METHODS One hundred and twenty adult rats were randomly divided into six groups with 20 rats in each group. One week after the thoracic spinal cord injury model had been created, the rats were treated with different therapeutic modalities: Dulbecco's modified Eagles medium (DMEM) in Group I, FSCC in Group II, FSCC plus SC in Group III, FSCC plus SC over-expressing NGF in Group IV, FSCC plus SC over-expressing BDNF in Group V, and FSCC plus SC over-expressing both NGF and BDNF in Group VI. Subsequently, the rats were subjected to behavioral tests once a week after injury, while histology, immunohistochemistry and electron microscopy were performed at one and three month post-operation. RESULTS Both SC and FSCC promoted regeneration of spinal cord injury when used separately, while a combination of the two types of cell resulted in better recovery than either alone. Both growth factors (NGF and BDNF) enhanced the outcomes of cell therapy, while synergistic effects meant that a combination of each individual component (group VI) achieved the best results according to locomotion scale, histology and immunoreactivity in the injured cords. CONCLUSION SC, NGF and BDNF can enhance the outcome of FSCC therapy, while the combination of FSC with SC, NGF and BDNF is possibly the optimal protocol for clinical treatment of acute spinal cord injury.
Collapse
Affiliation(s)
- Shi-qing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Priestley JV, Michael-Titus AT, Tetzlaff W. Limiting spinal cord injury by pharmacological intervention. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:463-484. [PMID: 23098731 DOI: 10.1016/b978-0-444-52137-8.00029-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The direct primary mechanical trauma to neurons, glia and blood vessels that occurs with spinal cord injury (SCI) is followed by a complex cascade of biochemical and cellular changes which serve to increase the size of the injury site and the extent of cellular and axonal loss. The aim of neuroprotective strategies in SCI is to limit the extent of this secondary cell loss by inhibiting key components of the evolving injury cascade. In this review we will briefly outline the pathophysiological events that occur in SCI, and then review the wide range of neuroprotective agents that have been evaluated in preclinical SCI models. Agents will be considered under the following categories: antioxidants, erythropoietin and derivatives, lipids, riluzole, opioid antagonists, hormones, anti-inflammatory agents, statins, calpain inhibitors, hypothermia, and emerging strategies. Several clinical trials of neuroprotective agents have already taken place and have generally had disappointing results. In attempting to identify promising new treatments, we will therefore highlight agents with (1) low known risks or established clinical use, (2) behavioral data gained in clinically relevant animal models, (3) efficacy when administered after the injury, and (4) robust effects seen in more than one laboratory and/or more than one model of SCI.
Collapse
|
38
|
Kuzhandaivel A, Nistri A, Mazzone GL, Mladinic M. Molecular Mechanisms Underlying Cell Death in Spinal Networks in Relation to Locomotor Activity After Acute Injury in vitro. Front Cell Neurosci 2011; 5:9. [PMID: 21734866 PMCID: PMC3119860 DOI: 10.3389/fncel.2011.00009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 12/12/2022] Open
Abstract
Understanding the pathophysiological changes triggered by an acute spinal cord injury is a primary goal to prevent and treat chronic disability with a mechanism-based approach. After the primary phase of rapid cell death at the injury site, secondary damage occurs via autodestruction of unscathed tissue through complex cell-death mechanisms that comprise caspase-dependent and caspase-independent pathways. To devise novel neuroprotective strategies to restore locomotion, it is, therefore, necessary to focus on the death mechanisms of neurons and glia within spinal locomotor networks. To this end, the availability of in vitro preparations of the rodent spinal cord capable of expressing locomotor-like oscillatory patterns recorded electrophysiologically from motoneuron pools offers the novel opportunity to correlate locomotor network function with molecular and histological changes long after an acute experimental lesion. Distinct forms of damage to the in vitro spinal cord, namely excitotoxic stimulation or severe metabolic perturbation (with oxidative stress, hypoxia/aglycemia), can be applied with differential outcome in terms of cell types and functional loss. In either case, cell death is a delayed phenomenon developing over several hours. Neurons are more vulnerable to excitotoxicity and more resistant to metabolic perturbation, while the opposite holds true for glia. Neurons mainly die because of hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) with subsequent DNA damage and mitochondrial energy collapse. Conversely, glial cells die predominantly by apoptosis. It is likely that early neuroprotection against acute spinal injury may require tailor-made drugs targeted to specific cell-death processes of certain cell types within the locomotor circuitry. Furthermore, comparison of network size and function before and after graded injury provides an estimate of the minimal network membership to express the locomotor program.
Collapse
|
39
|
Yu WR, Liu T, Kiehl TR, Fehlings MG. Human neuropathological and animal model evidence supporting a role for Fas-mediated apoptosis and inflammation in cervical spondylotic myelopathy. Brain 2011; 134:1277-92. [PMID: 21490053 DOI: 10.1093/brain/awr054] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although cervical spondylotic myelopathy is a common cause of chronic spinal cord dysfunction in humans, little is known about the molecular mechanisms underlying the progressive neural degeneration characterized by this condition. Based on animal models of cervical spondylotic myelopathy and traumatic spinal cord injury, we hypothesized that Fas-mediated apoptosis and inflammation may play an important role in the pathobiology of human cervical spondylotic myelopathy. We further hypothesized that neutralization of the Fas ligand using a function-blocking antibody would reduce cell death, attenuate inflammation, promote axonal repair and enhance functional neurological outcomes in animal models of cervical spondylotic myelopathy. We examined molecular changes in post-mortem human spinal cord tissue from eight patients with cervical spondylotic myelopathy and four control cases. Complementary studies were conducted using a mouse model of cervical spondylotic myelopathy (twy/twy mice that develop spontaneous cord compression at C2-C3). We observed Fas-mediated apoptosis of neurons and oligodendrocytes and an increase in inflammatory cells in the compressed spinal cords of patients with cervical spondylotic myelopathy. Furthermore, neutralization of Fas ligand with a function-blocking antibody in twy/twy mice reduced neural inflammation at the lesion mediated by macrophages and activated microglia, glial scar formation and caspase-9 activation. It was also associated with increased expression of Bcl-2 and promoted dramatic functional neurological recovery. Our data demonstrate, for the first time in humans, the potential contribution of Fas-mediated cell death and inflammation to the pathobiology of cervical spondylotic myelopathy. Complementary data in a murine model of cervical spondylotic myelopathy further suggest that targeting the Fas death receptor pathway is a viable neuroprotective strategy to attenuate neural degeneration and optimize neurological recovery in cervical spondylotic myelopathy. Our findings highlight the possibility of medical treatments for cervical spondylotic myelopathy that are complementary to surgical decompression.
Collapse
Affiliation(s)
- Wen Ru Yu
- Department of Pathology, Toronto Western Research Institute, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, and University of Toronto, Room 4W-449, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada
| | | | | | | |
Collapse
|
40
|
Wang M, Zhai P, Chen X, Schreyer DJ, Sun X, Cui F. Bioengineered scaffolds for spinal cord repair. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:177-94. [PMID: 21338266 DOI: 10.1089/ten.teb.2010.0648] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spinal cord injury can lead to devastating and permanent loss of neurological function, affecting all levels below the site of trauma. Unfortunately, the injured adult mammalian spinal cord displays little regenerative capacity and little functional recovery in large part due to a tissue environment that is nonpermissive for regenerative axon growth. Artificial tissue repair scaffolds may provide a physical guide to allow regenerative axon growth that bridges the lesion cavity and restores functional neural connectivity. By integrating different strategies, including the use of various biomaterials and microstructures as well as incorporation of bioactive molecules and living cells, combined or synergistic effects for spinal cord repair through regenerative axon growth may be achieved. This article briefly reviews the development of bioengineered scaffolds for spinal cord repair, focusing on spinal cord injury and the subsequent cellular response, scaffold materials, fabrication techniques, and current therapeutic strategies. Key issues and challenges are also identified and discussed along with recommendations for future research.
Collapse
Affiliation(s)
- Mindan Wang
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Fas and FasL Expression in the Spinal Cord Following Cord Hemisection in the Monkey. Neurochem Res 2010; 36:419-25. [DOI: 10.1007/s11064-010-0357-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2010] [Indexed: 12/13/2022]
|
42
|
Rowland JW, Hawryluk GWJ, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2009; 25:E2. [PMID: 18980476 DOI: 10.3171/foc.2008.25.11.e2] [Citation(s) in RCA: 519] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review summarizes the current understanding of spinal cord injury pathophysiology and discusses important emerging regenerative approaches that have been translated into clinical trials or have a strong potential to do so. The pathophysiology of spinal cord injury involves a primary mechanical injury that directly disrupts axons, blood vessels, and cell membranes. This primary mechanical injury is followed by a secondary injury phase involving vascular dysfunction, edema, ischemia, excitotoxicity, electrolyte shifts, free radical production, inflammation, and delayed apoptotic cell death. Following injury, the mammalian central nervous system fails to adequately regenerate due to intrinsic inhibitory factors expressed on central myelin and the extracellular matrix of the posttraumatic gliotic scar. Regenerative approaches to block inhibitory signals including Nogo and the Rho-Rho-associated kinase pathways have shown promise and are in early stages of clinical evaluation. Cell-based strategies including using neural stem cells to remyelinate spared axons are an attractive emerging approach.
Collapse
Affiliation(s)
- James W Rowland
- Division of Genetics and Development, Toronto Western Research Institute, Institute of Medical Science, University of Toronto, Canada
| | | | | | | |
Collapse
|
43
|
Yu WR, Liu T, Fehlings TK, Fehlings MG. Involvement of mitochondrial signaling pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury. Eur J Neurosci 2009; 29:114-31. [DOI: 10.1111/j.1460-9568.2008.06555.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Çolak A, Karaoğlan A, Kaya M, Sağmanligil A, Akdemir O, Şahan E, Çelik Ö. Calpain inhibitor AK 295 inhibits calpain-induced apoptosis and improves neurologic function after traumatic spinal cord injury in rats. Neurocirugia (Astur) 2009. [DOI: 10.1016/s1130-1473(09)70163-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Antar V, Akdemir O, Sağmanligil A, Sahan E, Çelik Ö, Çolak A, Karaoğlan A. Q-VD-OPh, a pancaspase inhibitor, reduces trauma-induced apoptosis and improves the recovery of hind-limb function in rats after spinal cord injury. Neurocirugia (Astur) 2009. [DOI: 10.1016/s1130-1473(09)70130-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Akdemir O, Uçankale M, Karaoğlan A, Barut Ş, Sağmanligil A, Bilguvar K, Çirakoğlu B, Şahan E, Çolak A. Therapeutic efficacy of SJA6017, a calpain inhibitor, in rat spinal cord injury. J Clin Neurosci 2008; 15:1130-6. [DOI: 10.1016/j.jocn.2007.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 08/22/2007] [Indexed: 11/27/2022]
|
47
|
Abstract
STUDY DESIGN Randomized controlled trial. OBJECTIVE To characterize the increase in gelatinase A (MMP2) activity after spinal cord injury (SCI) in the mouse model, and the effects of MMP2/MMP9 inhibition on apoptotic cells. SUMMARY OF BACKGROUND DATA Clinical consequences of SCI are due to a series of secondary injury cascades. Matrix metalloproteinases are thought play a key role in this, leading to apoptotic cell death. METHODS SCI via a drop tower in mice was used. MMP2 beta-gal reporter mice were used to quantify the level of MMP2 after SCI. In a follow-up experiment, mice which underwent SCI were randomized to daily SQ injections of MMP2/MMP9 inhibitor versus placebo. MMP2 levels were quantified and histology was performed with TUNEL and Luxol fast blue staining. RESULTS MMP2 transcription was significantly upregulated after SCI, by the beta-gal assay. Inhibition of MMP2/MMP9 activity after SCI led to statistically significant decreases in apoptosis within the zone of injury. There was a trend towards preservation of myelin by preserved luxol fast blue staining. CONCLUSION After SCI, MMP2 is upregulated along with neuron and glial cells apoptosis. The level of apoptosis could be reduced with MMP2/MMP9 inhibition. This supports MMP2 as cause for apoptosis after SCI with the potential for therapeutic intervention as apoptosis can be reduced with MMP2 inhibition.
Collapse
|
48
|
Tauroursodeoxycholic acid and secondary damage after spinal cord injury in rats. J Clin Neurosci 2008; 15:665-71. [DOI: 10.1016/j.jocn.2007.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/05/2007] [Accepted: 05/30/2007] [Indexed: 11/18/2022]
|
49
|
Akdemir O, Berksoy I, Karaoğlan A, Barut S, Bilguvar K, Cirakoğlu B, Sahan E, Colak A. Therapeutic efficacy of Ac-DMQD-CHO, a caspase 3 inhibitor, for rat spinal cord injury. J Clin Neurosci 2008; 15:672-8. [PMID: 18378144 DOI: 10.1016/j.jocn.2007.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 12/01/2022]
Abstract
We investigated the therapeutic efficacy of Ac-DMQD-CHO, a caspase-3 inhibitor, and functional recovery in spinal cord injury in a rat model. Thirty rats were randomized into three groups of 10 each. In groups 2 and 3, spinal cord trauma was produced in the thoracic region. Group 3 rats were treated with Ac-DMQD-CHO. Treatment responses were evaluated based on histopathological and TUNEL staining findings at 24 h and 5 days post-injury. Neurologic performance was assessed during and following treatment. Twenty-four hours after injury, light microscopy examination revealed diffuse hemorrhagic necrosis, edema, vascular thrombi, and polymorphonuclear leukocyte infiltration in group 2 and 3 rats, but cavitation and demyelinization were less prominent in group 3. At this time point, treatment of the rats with Ac-DMQD-CHO significantly reduced the number of apoptotic cells. Traumatic injury to the spinal cord causes apoptosis and administration of Ac-DMQD-CHO decreases apoptosis and improves functional outcome.
Collapse
Affiliation(s)
- Osman Akdemir
- Department of Neurosurgery, Taksim Education and Research Hospital, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Neuroprotective effects of Ac.YVAD.cmk on experimental spinal cord injury in rats. ACTA ACUST UNITED AC 2008; 69:561-7. [PMID: 18262241 DOI: 10.1016/j.surneu.2007.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 03/12/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND Apoptosis as a cell death mechanism is important in numerous diseases, including traumatic SCI. We evaluated the neuroprotective effects of Ac.YVAD.cmk and functional outcomes in a rat SCI model. METHODS Thirty rats were randomized into 3 groups of 10: sham-operated, trauma only, and trauma plus Ac.YVAD.cmk treatment. Trauma was produced in the thoracic region by a weight-drop technique. Group 3 rats received Ac.YVAD.cmk (1 mg/kg, ip) 1 minute after trauma. The rats were killed at 24 hours and 5 days after injury. Efficacy was evaluated with light microscopy and TUNEL staining. Functional outcomes were assessed with the inclined plane technique and a modified version of the Tarlov grading system. RESULTS At 24 hours postinjury, the respective mean number of apoptotic cells in groups 1, 2, and 3 were 0, 5.26 +/- 0.19, and 0.97 +/- 0.15. Microscopic examination of group 2 tissues showed widespread hemorrhage, edema, necrosis, and polymorphic nuclear leukocyte infiltration and vascular thrombi. Group 3 tissues revealed similar features, but cavitation and demyelination were less prominent than those in group 2 samples at this period. At 5 days postinjury, the respective mean inclined plane angles in groups 1, 2, and 3 were 65.5 +/- 2.09, 42.00 +/- 2.74, and 52.5 +/- 1.77. Motor grading of animals revealed a similar trend. These differences were statistically significant (P < .05). CONCLUSIONS Ac.YVAD.cmk inhibited posttraumatic apoptosis in a rat SCI model. This may provide the basis for development of new therapeutic strategies for the treatment of SCI.
Collapse
|