1
|
Allen MC, Lookmire S, Avci E. An Alternative Micro-Milling Fabrication Process for Rapid and Low-Cost Microfluidics. MICROMACHINES 2024; 15:905. [PMID: 39064416 PMCID: PMC11279306 DOI: 10.3390/mi15070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Microfluidics is an important technology for the biomedical industry and is often utilised in our daily lives. Recent advances in micro-milling technology have allowed for rapid fabrication of smaller and more complex structures, at lower costs, making it a viable alternative to other fabrication methods. The microfluidic chip fabrication developed in this research is a step-by-step process with a self-contained wet milling chamber. Additionally, ethanol solvent bonding is used to allow microfluidic chips to be fully fabricated within approximately an hour. The effect of using this process is tested with quantitative contact profileometery data to determine the expected surface roughness in the microchannels. The effect of surface roughness on the controllability of microparticles is tested in functional microfluidic chips using image processing to calculate particle velocity. This process can produce high-quality channels when compared with similar studies in the literature and surface roughness affects the control of microparticles. Lastly, we discuss how the outcomes of this research can produce rapid and higher-quality microfluidic devices, leading to improvement in the research and development process within the fields of science that utilise microfluidic technology. Such as medicine, biology, chemistry, ecology, and aerospace.
Collapse
Affiliation(s)
- Martin Christopher Allen
- College of Sciences, School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Simon Lookmire
- College of Sciences, School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand;
| | - Ebubekir Avci
- The MacDiarmid Institute, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand;
| |
Collapse
|
2
|
Wang Y, Li M, Zhu H, Min Q, Lou Y, Wu D, Ma J, Yang Z, Zhao M, Pang Y. Fresnel lens three-dimensionally printed on the facet of a single mode fiber for trapping, manipulation, and spectrum. OPTICS LETTERS 2024; 49:3259-3262. [PMID: 38824378 DOI: 10.1364/ol.524889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
Fiber optical tweezers (FOTs) provide a functionality for micro-/nanoparticle manipulation with a slim and flexible optical fiber setup. An added in situ spectroscopic functionality can achieve characterization of the trapped particle, potentially useful for endoscopic, in-vivo studies in an inherently heterogeneous environment if the applicator end is all-fiber-built. Here, we demonstrate all-fiber optical tweezers (a-FOTs) for the trapping and in situ spectral measurement of a single, cell-sized microparticle. The key to ensure the simultaneous bifunctionality is a high numerical aperture (NA) Fresnel lens fabricated by two-photon direct laser writing (DLW) corrected by grid-correction methods. We demonstrate trapping and time-resolved, in situ spectroscopy of a single upconversion particle (UCP), a common fluorescent biomarker in biophotonics. The system achieves a 0.5-s time resolution in the in situ spectral measurement of a trapped UCP. The all-fiber designed system preserves the advantages of flexibility and robustness of the fiber, potentially useful for in-vivo biomedical studies such as cell-to-cell interactions, pH and temperature detection, and nucleic acids detection.
Collapse
|
3
|
Liu Y, Liao Q, Wang Y, Li X, Huang L. Ultracompact metalens-based beam-focusing fiber-optic device with a large numerical aperture. OPTICS LETTERS 2023; 48:1742-1745. [PMID: 37221755 DOI: 10.1364/ol.481037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/23/2023] [Indexed: 05/25/2023]
Abstract
Conventional optical fibers have good light conduction and transmission properties, and have been widely used in the fields of long-distance fiber-optic communication and sensing. However, due to the dielectric properties of the fiber core and cladding materials, the spot size of the transmitted light is dispersive, which greatly limits the application areas of optical fiber. The emergence of metalenses based on artificial periodic micro-nanostructures is opening the door to a variety of fiber innovations. We demonstrate an ultracompact beam-focusing fiber-optic device based on a composite structure of a single-mode fiber (SMF), a multimode fiber (MMF), and a metalens consisting of periodic micro-nano silicon column structures. Convergent beams with numerical apertures (NAs) of up to 0.64@air and a focal length of 63.6 μm are produced by the metalens on the MMF end face. The metalens-based fiber-optic beam-focusing device could find new applications in optical imaging, particle capture and manipulation, sensing, and fiber lasers.
Collapse
|
4
|
Guessoum A, Hajj T, Bouaziz D, Chabrol G, Pfeiffer P, Demagh NE, Lecler S. Molded high curvature core-aligned micro-lenses for single-mode fibers. APPLIED OPTICS 2022; 61:7741-7747. [PMID: 36256376 DOI: 10.1364/ao.462961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
A polymer-based fiber micro-lens molding fabrication technique with, to our knowledge, unprecedented performances is presented along with its advantages and applications. This technique is a fast and affordable tool to achieve a wide variety of possible spherical and aspherical micro-lens sizes and curvatures. The alignment of the micro-lens mold with the fiber core receiving the lens is done optically, which allows high precision. Using the proposed technique, different micro-lenses are fabricated. Then the output beams of two different micro-lenses on single-mode fibers are characterized. Fiber micro-lenses with curvature as small as 5 µm are achieved. This shows how low curvature micro-lenses can achieve collimation and how high curvature ones on single-mode fibers lead to high focusing (FWHM=λ) that is much smaller than what most conventional commercial techniques can reach. Given that this technique imposes no stress and causes no damage to the fiber receiving the micro-lens, it presents a significant potential for compatibility with non-silica-based and micro-structured fibers such as photonic crystal and quasi-crystal fibers.
Collapse
|
5
|
Wang X, Wang Z, Yu C, Ge Z, Yang W. Advances in precise single-cell capture for analysis and biological applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3047-3063. [PMID: 35946358 DOI: 10.1039/d2ay00625a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cells are the basic structural and functional units of living organisms. However, conventional cell analysis only averages millions of cell populations, and some important information is lost. It is essential to quantitatively characterize the physiology and pathology of single-cell activities. Precise single-cell capture is an extremely challenging task during cell sample preparation. In this review, we summarize the category of technologies to capture single cells precisely with a focus on the latest development in the last five years. Each technology has its own set of benefits and specific challenges, which provide opportunities for researchers in different fields. Accordingly, we introduce the applications of captured single cells in cancer diagnosis, analysis of metabolism and secretion, and disease treatment. Finally, some perspectives are provided on the current development trends, future research directions, and challenges of single-cell capture.
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
| | - Zhen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
| | - Chang Yu
- College of Computer Science, Chongqing University, Chongqing 400000, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
6
|
Park S, Lee S, Kim HS, Choi HJ, Jeong OC, Lin R, Cho Y, Lee MH. Square microchannel enables to focus and orient ellipsoidal Euglena gracilis cells by two-dimensional acoustic standing wave. Mikrochim Acta 2022; 189:331. [PMID: 35969307 DOI: 10.1007/s00604-022-05439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
Abstract
Flow cytometry has become an indispensable tool for counting, analyzing, and sorting large cell populations in biological research and medical practice. Unfortunately, it has limitations in the analysis of non-spherically shaped cells due to the variation of their alignment with respect to the flow direction and, hence, the optical interrogation axis, resulting in unreliable cell analysis. Here, we present a simple on-chip acoustofluidic method to fix the orientation of ellipsoidal cells and focus them into a single, aligned stream. Specifically, by generating acoustic standing waves inside a 100 ⋅ 100 µm square-shaped microchannel, we successfully aligned and focused up to 97.7% of a population of Euglena gracilis (an ellipsoidal shaped microalgal species) cells in the center of the microchannel with high precision at a volume rate of 25 to 200 µL min-1. Uniform positioning of ellipsoidal cells is essential for making flow cytometry applicable to the investigation of a greater variety of cell populations and is expected to be beneficial for ecological studies and aquaculture.
Collapse
Affiliation(s)
- Sungryul Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | | | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Hong Jin Choi
- Department of Digital Anti-Aging Health Care, Inje University, Gimhae-si, 50834, Republic of Korea
| | - Ok Chan Jeong
- Department of Biomedical Engineering, Inje University, Gimhae-si, 50834, Republic of Korea
| | - Ruixian Lin
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Younghak Cho
- Department of Mechanical Design and Robot Engineering, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Sinha N, Yang H, Janse D, Hendriks L, Rand U, Hauser H, Köster M, van de Vosse FN, de Greef TFA, Tel J. Microfluidic chip for precise trapping of single cells and temporal analysis of signaling dynamics. COMMUNICATIONS ENGINEERING 2022; 1:18. [PMCID: PMC10955935 DOI: 10.1038/s44172-022-00019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2024]
Abstract
Microfluidic designs are versatile examples of technology miniaturisation that find their applications in various cell biology research, especially to investigate the influence of environmental signals on cellular response dynamics. Multicellular systems operate in intricate cellular microenvironments where environmental signals govern well-orchestrated and robust responses, the understanding of which can be realized with integrated microfluidic systems. In this study, we present a fully automated and integrated microfluidic chip that can deliver input signals to single and isolated suspension or adherent cells in a precisely controlled manner. In respective analyses of different single cell types, we observe, in real-time, the temporal dynamics of caspase 3 activation during DMSO-induced apoptosis in single cancer cells (K562) and the translocation of STAT-1 triggered by interferon γ (IFNγ) in single fibroblasts (NIH3T3). Our investigations establish the employment of our versatile microfluidic system in probing temporal single cell signaling networks where alternations in outputs uncover signal processing mechanisms. Nidhi Sinha, Haowen Yang and colleagues report a microfluidic large-scale integration chip to probe temporal single-cell signalling networks via the delivery of patterns of input signalling molecules. The researchers use their device to investigate drug-induced cancer cell apoptosis and single cell transcription (STAT-1) protein signalling dynamics.
Collapse
Affiliation(s)
- Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - David Janse
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Luc Hendriks
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Ulfert Rand
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Frans N. van de Vosse
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Tom F. A. de Greef
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Computational Biology Group, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
8
|
Källberg J, Xiao W, Van Assche D, Baret JC, Taly V. Frontiers in single cell analysis: multimodal technologies and their clinical perspectives. LAB ON A CHIP 2022; 22:2403-2422. [PMID: 35703438 DOI: 10.1039/d2lc00220e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single cell multimodal analysis is at the frontier of single cell research: it defines the roles and functions of distinct cell types through simultaneous analysis to provide unprecedented insight into cellular processes. Current single cell approaches are rapidly moving toward multimodal characterizations. It replaces one-dimensional single cell analysis, for example by allowing for simultaneous measurement of transcription and post-transcriptional regulation, epigenetic modifications and/or surface protein expression. By providing deeper insights into single cell processes, multimodal single cell analyses paves the way to new understandings in various cellular processes such as cell fate decisions, physiological heterogeneity or genotype-phenotype linkages. At the forefront of this, microfluidics is key for high-throughput single cell analysis. Here, we present an overview of the recent multimodal microfluidic platforms having a potential in biomedical research, with a specific focus on their potential clinical applications.
Collapse
Affiliation(s)
- Julia Källberg
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France.
| | - Wenjin Xiao
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France.
| | - David Van Assche
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France.
| | - Jean-Christophe Baret
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac 33600, France.
- Institut Universitaire de France, Paris 75005, France
| | - Valerie Taly
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université Paris Cité, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale contre le cancer, Paris, France.
| |
Collapse
|
9
|
Ezrre S, Reyna MA, Anguiano C, Avitia RL, Márquez H. Lab-on-a-Chip Platforms for Airborne Particulate Matter Applications: A Review of Current Perspectives. BIOSENSORS 2022; 12:191. [PMID: 35448251 PMCID: PMC9024784 DOI: 10.3390/bios12040191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Lab-on-a-Chip (LoC) devices are described as versatile, fast, accurate, and low-cost platforms for the handling, detection, characterization, and analysis of a wide range of suspended particles in water-based environments. However, for gas-based applications, particularly in atmospheric aerosols science, LoC platforms are rarely developed. This review summarizes emerging LoC devices for the classification, measurement, and identification of airborne particles, especially those known as Particulate Matter (PM), which are linked to increased morbidity and mortality levels from cardiovascular and respiratory diseases. For these devices, their operating principles and performance parameters are introduced and compared while highlighting their advantages and disadvantages. Discussing the current applications will allow us to identify challenges and determine future directions for developing more robust LoC devices to monitor and analyze airborne PM.
Collapse
Affiliation(s)
- Sharon Ezrre
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Marco A. Reyna
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Citlalli Anguiano
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Roberto L. Avitia
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Heriberto Márquez
- Departamento de Óptica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Mexico;
| |
Collapse
|
10
|
Konoplev G, Agafonova D, Bakhchova L, Mukhin N, Kurachkina M, Schmidt MP, Verlov N, Sidorov A, Oseev A, Stepanova O, Kozyrev A, Dmitriev A, Hirsch S. Label-Free Physical Techniques and Methodologies for Proteins Detection in Microfluidic Biosensor Structures. Biomedicines 2022; 10:207. [PMID: 35203416 PMCID: PMC8868674 DOI: 10.3390/biomedicines10020207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Proteins in biological fluids (blood, urine, cerebrospinal fluid) are important biomarkers of various pathological conditions. Protein biomarkers detection and quantification have been proven to be an indispensable diagnostic tool in clinical practice. There is a growing tendency towards using portable diagnostic biosensor devices for point-of-care (POC) analysis based on microfluidic technology as an alternative to conventional laboratory protein assays. In contrast to universally accepted analytical methods involving protein labeling, label-free approaches often allow the development of biosensors with minimal requirements for sample preparation by omitting expensive labelling reagents. The aim of the present work is to review the variety of physical label-free techniques of protein detection and characterization which are suitable for application in micro-fluidic structures and analyze the technological and material aspects of label-free biosensors that implement these methods. The most widely used optical and impedance spectroscopy techniques: absorption, fluorescence, surface plasmon resonance, Raman scattering, and interferometry, as well as new trends in photonics are reviewed. The challenges of materials selection, surfaces tailoring in microfluidic structures, and enhancement of the sensitivity and miniaturization of biosensor systems are discussed. The review provides an overview for current advances and future trends in microfluidics integrated technologies for label-free protein biomarkers detection and discusses existing challenges and a way towards novel solutions.
Collapse
Affiliation(s)
- Georgii Konoplev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Darina Agafonova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Liubov Bakhchova
- Institute for Automation Technology, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
| | - Nikolay Mukhin
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marharyta Kurachkina
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marc-Peter Schmidt
- Faculty of Electrical Engineering, University of Applied Sciences Dresden, 01069 Dresden, Germany;
| | - Nikolay Verlov
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov, National Research Centre Kurchatov Institute, 188300 Gatchina, Russia;
| | - Alexander Sidorov
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Fuculty of Photonics, ITMO University, 197101 Saint Petersburg, Russia
| | - Aleksandr Oseev
- FEMTO-ST Institute, CNRS UMR-6174, University Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Oksana Stepanova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Andrey Kozyrev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Alexander Dmitriev
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (FSBSI “IEM”), 197376 Saint Petersburg, Russia;
| | - Soeren Hirsch
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| |
Collapse
|
11
|
Wang M, Guan C, Cheng L, Liu J, Yang J, Shi J, Liu Z, Yang J, Yuan L. Multicore fiber integrated beam shaping devices for long-range plasmonic trapping. OPTICS EXPRESS 2021; 29:28416-28426. [PMID: 34614973 DOI: 10.1364/oe.435643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The multicore fiber beam shaping devices based on surface plasmon polaritons (SPPs) have been proposed and demonstrated. The gold film is covered on the end face of the optical fiber. An air slit is perforated in the center of each core and the gratings with a fixed period are designed on the gold film on one side of the slit to obtain a deflected beam. Multiple deflected beams based on the multicore fiber interfere and form a periodic field, where the period of the interference field is determined by the deflection angle of the beams and the spacing between the cores. The interference field of the multiple deflected beams can be used to trap the nanosphere. The Maxwell stress tensor method is used to calculate the transverse and longitudinal trapping forces on a nanosphere. The nanosphere can be stably trapped at 45 μm away from the end face of the fiber. Such an all-fiber trapping system is compact and flexible integration, and is promising for long-working-distance and multiple-particle trapping.
Collapse
|
12
|
Wang H, Enders A, Preuss JA, Bahnemann J, Heisterkamp A, Torres-Mapa ML. 3D printed microfluidic lab-on-a-chip device for fiber-based dual beam optical manipulation. Sci Rep 2021; 11:14584. [PMID: 34272408 PMCID: PMC8285473 DOI: 10.1038/s41598-021-93205-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/18/2021] [Indexed: 11/27/2022] Open
Abstract
3D printing of microfluidic lab-on-a-chip devices enables rapid prototyping of robust and complex structures. In this work, we designed and fabricated a 3D printed lab-on-a-chip device for fiber-based dual beam optical manipulation. The final 3D printed chip offers three key features, such as (1) an optimized fiber channel design for precise alignment of optical fibers, (2) an optically clear window to visualize the trapping region, and (3) a sample channel which facilitates hydrodynamic focusing of samples. A square zig–zag structure incorporated in the sample channel increases the number of particles at the trapping site and focuses the cells and particles during experiments when operating the chip at low Reynolds number. To evaluate the performance of the device for optical manipulation, we implemented on-chip, fiber-based optical trapping of different-sized microscopic particles and performed trap stiffness measurements. In addition, optical stretching of MCF-7 cells was successfully accomplished for the purpose of studying the effects of a cytochalasin metabolite, pyrichalasin H, on cell elasticity. We observed distinct changes in the deformability of single cells treated with pyrichalasin H compared to untreated cells. These results demonstrate that 3D printed microfluidic lab-on-a-chip devices offer a cost-effective and customizable platform for applications in optical manipulation.
Collapse
Affiliation(s)
- Haoran Wang
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Anton Enders
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Callinstrasse 5, 30167, Hannover, Germany
| | - John-Alexander Preuss
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Callinstrasse 5, 30167, Hannover, Germany
| | - Janina Bahnemann
- Institute of Technical Chemistry, Gottfried Wilhelm Leibniz University Hannover, Callinstrasse 5, 30167, Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany. .,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625, Hannover, Germany.
| |
Collapse
|
13
|
Huang D, Xiang N. Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods. LAB ON A CHIP 2021; 21:1409-1417. [PMID: 33605279 DOI: 10.1039/d0lc01223h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Circulating tumor cells (CTCs) play a significant role in cancer diagnosis and treatment monitoring. One of the major challenges in isolating and detecting rare CTCs from blood is that white blood cells (WBCs) have a size overlap with the target CTCs. To address this issue, we constructed a three-stage i-Mag device integrated with passive inertial microfluidics and active magnetophoresis, enabling rapid and precise separation of tumor cells from blood. The first-stage spiral inertial sorter was applied to rapidly remove small-sized red blood cells (RBCs), and then the second-stage serpentine inertial focuser and the third-stage magnetic sorter were used for removing the magnetically labeled WBCs size-independently, to significantly purify the captured tumor cells. Then, the separation performance of our i-Mag device was explored. The results indicated rapid and precise separation of breast cancer cells from diluted whole blood at a high separation efficiency of 93.84% and at a high purity of 51.47%. The purity of the collected tumor cells could be further improved to 93.60% when the blood dilution ratio was increased. We also successfully applied our i-Mag device for the isolation and detection of trace tumor cells. Our i-Mag device has numerous advantages, such as enabling high-throughput processing and high-precision separation, requiring easy manufacturing at a low cost, and providing tumor antigen-independent operation. We believe that the i-Mag device has great potential to act as a precise tool for separating various bioparticles.
Collapse
Affiliation(s)
- Di Huang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, P.R. China
| | | |
Collapse
|
14
|
Plidschun M, Ren H, Kim J, Förster R, Maier SA, Schmidt MA. Ultrahigh numerical aperture meta-fibre for flexible optical trapping. LIGHT, SCIENCE & APPLICATIONS 2021; 10:57. [PMID: 33723210 PMCID: PMC7960731 DOI: 10.1038/s41377-021-00491-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/08/2020] [Accepted: 02/10/2021] [Indexed: 05/04/2023]
Abstract
Strong focusing on diffraction-limited spots is essential for many photonic applications and is particularly relevant for optical trapping; however, all currently used approaches fail to simultaneously provide flexible transportation of light, straightforward implementation, compatibility with waveguide circuitry, and strong focusing. Here, we demonstrate the design and 3D nanoprinting of an ultrahigh numerical aperture meta-fibre for highly flexible optical trapping. Taking into account the peculiarities of the fibre environment, we implemented an ultrathin meta-lens on the facet of a modified single-mode optical fibre via direct laser writing, leading to a diffraction-limited focal spot with a record-high numerical aperture of up to NA ≈ 0.9. The unique capabilities of this flexible, cost-effective, bio- and fibre-circuitry-compatible meta-fibre device were demonstrated by optically trapping microbeads and bacteria for the first time with only one single-mode fibre in combination with diffractive optics. Our study highlights the relevance of the unexplored but exciting field of meta-fibre optics to a multitude of fields, such as bioanalytics, quantum technology and life sciences.
Collapse
Affiliation(s)
- Malte Plidschun
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
- Abbe Center of Photonics and Faculty of Physics, FSU Jena, 07745, Jena, Germany
| | - Haoran Ren
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, LMU München, 80539, München, Germany
| | - Jisoo Kim
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
- Abbe Center of Photonics and Faculty of Physics, FSU Jena, 07745, Jena, Germany
| | - Ronny Förster
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, LMU München, 80539, München, Germany
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Markus A Schmidt
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany.
- Abbe Center of Photonics and Faculty of Physics, FSU Jena, 07745, Jena, Germany.
- Otto Schott Institute of Material Research, FSU Jena, 07745, Jena, Germany.
| |
Collapse
|
15
|
Huang D, Man J, Jiang D, Zhao J, Xiang N. Inertial microfluidics: Recent advances. Electrophoresis 2020; 41:2166-2187. [PMID: 33027533 DOI: 10.1002/elps.202000134] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 02/24/2024]
Abstract
Inertial microfluidics has attracted significant attentions in last decade due to its superior advantages of high throughput, label- and external field-free operation, simplicity, and low cost. A wide variety of channel geometry designs were demonstrated for focusing, concentrating, isolating, or separating of various bioparticles such as blood components, circulating tumor cells, bacteria, and microalgae. In this review, we first briefly introduce the physics of inertial migration and Dean flow for allowing the readers with diverse backgrounds to have a better understanding of the fundamental mechanisms of inertial microfluidics. Then, we present a comprehensive review of the recent advances and applications of inertial microfluidic devices according to different channel geometries ranging from straight channels, curved channels to contraction-expansion-array channels. Finally, the challenges and future perspective of inertial microfluidics are discussed. Owing to its superior benefit for particle manipulation, the inertial microfluidics will play a more important role in biology and medicine applications.
Collapse
Affiliation(s)
- Di Huang
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Jiaxiang Man
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jiyun Zhao
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
16
|
Abstract
Miniaturization and integration of optical tweezers are attractive. Optical fiber-based trapping systems allow optical traps to be realized in miniature systems, but the optical traps in these systems lack reliability or mobility. Here, we present the all-fiber modular optical tweezers (AFMOTs), in which an optical trap can be reliably created and freely moved on a sample substrate. Two inclined optical fibers are permanently fixed to a common board, rendering a modular system where fiber alignments are maintained over months. The freely movable optical trap allows particles to be trapped in their native locations. As a demonstration, we applied AFMOTs to trap and deform freely floating individual cells. By the cell mechanical responses, we differentiated the nontumorigenic breast epithelial cell line (MCF10A) from its cancerous PTEN mutants (MCF10 PTEN-/-). To further expand the functionalities, three modalities of AFMOTs are demonstrated by changing the types of fibers for both the optical trap creation and particle position detection. As a miniature and modular system that creates a reliable and mobile optical trap, AFMOTs can find potential applications ranging from point-of-care diagnostics to education, as well as helping transition the optical trapping technology from the research lab to the field.
Collapse
|
17
|
Xu T, Lim YJ, Zheng Y, Jung M, Gaus K, Gardiner EE, Lee WM. Modified inverted selective plane illumination microscopy for sub-micrometer imaging resolution in polydimethylsiloxane soft lithography devices. LAB ON A CHIP 2020; 20:3960-3969. [PMID: 32940306 DOI: 10.1039/d0lc00598c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Moldable, transparent polydimethylsiloxane (PDMS) elastomer microdevices enable a broad range of complex studies of three-dimensional cellular networks in their microenvironment in vitro. However, the uneven distribution of refractive index change, external to PDMS devices and internally in the sample chamber, creates a significant optical path difference (OPD) that distorts the light sheet beam and so restricts diffraction limited performance. We experimentally showed that an OPD of 120 μm results in the broadening of the lateral point spread function by over 4-fold. In this paper, we demonstrate steps to adapt a commercial inverted selective plane illumination microscope (iSPIM) and remove the OPD so as to achieve sub-micrometer imaging ranging from 0.6 ± 0.04 μm to 0.91 ± 0.03 μm of a fluorescence biological sample suspended in regular saline (RI ≈1.34) enclosed in 1.2 to 2 mm thick micromolded PDMS microdevices. We have proven that the removal of the OPD from the external PDMS layer by refractive index (RI) matching with a readily accessible, inexpensive sucrose solution is critical to achieve a >3-fold imaging resolution improvement. To monitor the RI matching process, a single-mode fiber (SMF) illuminator was integrated into the iSPIM. To remove the OPD inside the PDMS channel, we used an electrically tunable lens (ETL) that par-focuses the light sheet beam with the detection objective lens and so minimised axial distortions to attain sub-micrometer imaging resolution. We termed this new light sheet imaging protocol as modified inverted selective plane illumination microscopy (m-iSPIM). Using the high spatial-temporal 3D imaging of m-iSPIM, we experimentally captured single platelet (≈2 μm) recruitment to a platelet aggregate (22.5 μm × 22.5 μm × 6 μm) under flow at a 150 μm depth within a microfluidic channel. m-iSPIM paves the way for the application of light sheet imaging to a wide range of 3D biological models in microfluidic devices which recapitulate features of the physiological microenvironment and elucidate subcellular responses.
Collapse
Affiliation(s)
- Tienan Xu
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - Yean Jin Lim
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia. and ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Yujie Zheng
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - MoonSun Jung
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Woei Ming Lee
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia. and ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
18
|
Pisco M, Cusano A. Lab-On-Fiber Technology: A Roadmap toward Multifunctional Plug and Play Platforms. SENSORS 2020; 20:s20174705. [PMID: 32825396 PMCID: PMC7506742 DOI: 10.3390/s20174705] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022]
Abstract
This review presents an overview of the “lab-on-fiber technology” vision and the main milestones set in the technological roadmap to achieve the ultimate objective of developing flexible, multifunctional plug and play fiber-optic platforms designed for specific applications. The main achievements, obtained with nanofabrication strategies for unconventional substrates, such as optical fibers, are discussed here. The perspectives and challenges that lie ahead are highlighted with a special focus on full spatial control at the nanoscale and high-throughput production scenarios. The rapid progress in the fabrication stage has opened new avenues toward the development of multifunctional plug and play platforms, discussed here with particular emphasis on new functionalities and unparalleled figures of merit, to demonstrate the potential of this powerful technology in many strategic application scenarios. The paper also analyses the benefits obtained from merging lab-on-fiber (LOF) technology objectives with the emerging field of optomechanics, especially at the microscale and the nanoscale. We illustrate the main advances at the fabrication level, describe the main achievements in terms of functionalities and performance, and highlight future directions and related milestones. All achievements reviewed and discussed clearly suggest that LOF technology is much more than a simple vision and could play a central role not only in scenarios related to diagnostics and monitoring but also in the Information and Communication Technology (ICT) field, where optical fibers have already yielded remarkable results.
Collapse
|
19
|
Samlali K, Ahmadi F, Quach ABV, Soffer G, Shih SCC. One Cell, One Drop, One Click: Hybrid Microfluidics for Mammalian Single Cell Isolation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002400. [PMID: 32705796 DOI: 10.1002/smll.202002400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Generating a stable knockout cell line is a complex process that can take several months to complete. In this work, a microfluidic method that is capable of isolating single cells in droplets, selecting successful edited clones, and expansion of these isoclones is introduced. Using a hybrid microfluidics method, droplets in channels can be individually addressed using a co-planar electrode system. In the hybrid microfluidics device, it is shown that single cells can be trapped and subsequently encapsulate them on demand into pL-sized droplets. Furthermore, droplets containing single cells are either released, kept in the traps, or merged with other droplets by the application of an electric potential to the electrodes that is actuated through an in-house user interface. This high precision control is used to successfully sort and recover single isoclones to establish monoclonal cell lines, which is demonstrated with a heterozygous NCI-H1299 lung squamous cell population resulting from loss-of-function eGFP and RAF1 gene knockout transfections.
Collapse
Affiliation(s)
- Kenza Samlali
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Fatemeh Ahmadi
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Angela B V Quach
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Guy Soffer
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Steve C C Shih
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
20
|
Bakhchova L, Jonušauskas L, Andrijec D, Kurachkina M, Baravykas T, Eremin A, Steinmann U. Femtosecond Laser-Based Integration of Nano-Membranes into Organ-on-a-Chip Systems. MATERIALS 2020; 13:ma13143076. [PMID: 32664211 PMCID: PMC7412128 DOI: 10.3390/ma13143076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/04/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022]
Abstract
Organ-on-a-chip devices are gaining popularity in medical research due to the possibility of performing extremely complex living-body-resembling research in vitro. For this reason, there is a substantial drive in developing technologies capable of producing such structures in a simple and, at the same time, flexible manner. One of the primary challenges in producing organ-on-chip devices from a manufacturing standpoint is the prevalence of layer-by-layer bonding techniques, which result in limitations relating to the applicable materials and geometries and limited repeatability. In this work, we present an improved approach, using three dimensional (3D) laser lithography for the direct integration of a functional part-the membrane-into a closed-channel system. We show that it allows the freely choice of the geometry of the membrane and its integration into a complete organ-on-a-chip system. Considerations relating to sample preparation, the writing process, and the final preparation for operation are given. Overall, we consider that the broader application of 3D laser lithography in organ-on-a-chip fabrication is the next logical step in this field's evolution.
Collapse
Affiliation(s)
- Liubov Bakhchova
- Institute for Automation Engineering, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany;
- Correspondence: ; Tel.: +49-39-1675-7238
| | - Linas Jonušauskas
- Femtika Ltd., LT-10224 Vilnius, Lithuania; (L.J.); (D.A.); (T.B.)
- Laser Research Center, Vilnius University, LT-10223 Vilnius, Lithuania
| | - Dovilė Andrijec
- Femtika Ltd., LT-10224 Vilnius, Lithuania; (L.J.); (D.A.); (T.B.)
| | - Marharyta Kurachkina
- Institute of Physics, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (M.K.); (A.E.)
| | - Tomas Baravykas
- Femtika Ltd., LT-10224 Vilnius, Lithuania; (L.J.); (D.A.); (T.B.)
| | - Alexey Eremin
- Institute of Physics, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (M.K.); (A.E.)
| | - Ulrike Steinmann
- Institute for Automation Engineering, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany;
| |
Collapse
|
21
|
Luan Q, Macaraniag C, Zhou J, Papautsky I. Microfluidic systems for hydrodynamic trapping of cells and clusters. BIOMICROFLUIDICS 2020; 14:031502. [PMID: 34992704 PMCID: PMC8719525 DOI: 10.1063/5.0002866] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 05/07/2023]
Abstract
Microfluidic devices have been widely applied to trapping and isolation of cells and clusters for controllable intercellular environments and high-throughput analysis, triggering numerous advances in disease diagnosis and single-cell analysis. Passive hydrodynamic cell trapping is one of the simple and effective methods that has been gaining attention in recent years. Our aim here is to review the existing passive microfluidic trapping approaches, including microposts, microfiltration, microwells, and trapping chambers, with emphasis on design principles and performance. We summarize the remarkable advances that hydrodynamic trapping methods offer, as well as the existing challenges and prospects for development. Finally, we hope that an improved understanding of hydrodynamic trapping approaches can lead to sophisticated and useful platforms to advance medical and biological research.
Collapse
Affiliation(s)
- Qiyue Luan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Celine Macaraniag
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | - Ian Papautsky
- Author to whom correspondence should be addressed:. Tel.: +1 312 413 3800
| |
Collapse
|
22
|
Rangan S, Schulze HG, Vardaki MZ, Blades MW, Piret JM, Turner RFB. Applications of Raman spectroscopy in the development of cell therapies: state of the art and future perspectives. Analyst 2020; 145:2070-2105. [DOI: 10.1039/c9an01811e] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This comprehensive review article discusses current and future perspectives of Raman spectroscopy-based analyses of cell therapy processes and products.
Collapse
Affiliation(s)
- Shreyas Rangan
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- School of Biomedical Engineering
| | - H. Georg Schulze
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
| | - Martha Z. Vardaki
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
| | - Michael W. Blades
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - James M. Piret
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- School of Biomedical Engineering
| | - Robin F. B. Turner
- Michael Smith Laboratories
- The University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| |
Collapse
|
23
|
|
24
|
Abstract
Multiphoton 3D lithography is becoming a tool of choice in a wide variety of fields. Regenerative medicine is one of them. Its true 3D structuring capabilities beyond diffraction can be exploited to produce structures with diverse functionality. Furthermore, these objects can be produced from unique materials allowing expanded performance. Here, we review current trends in this research area. We pay particular attention to the interplay between the technology and materials used. Thus, we extensively discuss undergoing light-matter interactions and peculiarities of setups needed to induce it. Then, we continue with the most popular resins, photoinitiators, and general material functionalization, with emphasis on their potential usage in regenerative medicine. Furthermore, we provide extensive discussion of current advances in the field as well as prospects showing how the correct choice of the polymer can play a vital role in the structure’s functionality. Overall, this review highlights the interplay between the structure’s architecture and material choice when trying to achieve the maximum result in the field of regenerative medicine.
Collapse
|
25
|
Jonušauskas L, Baravykas T, Andrijec D, Gadišauskas T, Purlys V. Stitchless support-free 3D printing of free-form micromechanical structures with feature size on-demand. Sci Rep 2019; 9:17533. [PMID: 31772272 PMCID: PMC6879563 DOI: 10.1038/s41598-019-54024-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Femtosecond laser based 3D nanolithography is a powerful tool for fabricating various functional micro- and nano-objects. In this work we present several advances needed to push it from the laboratory level use to the industrial production lines. First, linear stage and galvo-scanners synchronization is employed to produce stitch-free mm-sized structures. Furthermore, it is shown that by varying objective numerical apertures (NA) from 1.4 NA to 0.45 NA, voxel size can be tuned in the range from sub μm to tens of mm, resulting in structuring rates between 1809 μm3/s and 313312 μm3/s at 1 cm/s translation velocity achieved via simultaneous movement of linear stages and scanners. Discovered voxel/throughput scaling peculiarities show good agreement to ones acquired with numerical modeling. Furthermore, support-free 3D printing of complex structures is demonstrated. It is achieved by choosing pre-polymer that is in hard gel form during laser writing and acts as a dissolvable support during manufacturing. All of this is combined to fabricate micromechanical structures. First, 1:40 aspect ratio cantilever and 1.5 mm diameter single-helix spring capable of sustaining extreme deformations for prolonged movement times (up to 10000 deformation cycles) are shown. Then, free-movable highly articulated intertwined micromechanical spider and squids (overall size up to 10 mm) are printed and their movement is tested. The presented results are discussed in the broader sense, touching on the stitching/throughput dilemma and comparing it to the standard microstereolithography. It is shown where multiphoton polymerization can outpace standard stereolithography in terms of throughput while still maintaining superior resolution and higher degree of freedom in terms of printable geometries.
Collapse
Affiliation(s)
- Linas Jonušauskas
- Femtika Ltd., Saulėtekio Ave. 15, Vilnius, LT-10224, Lithuania.
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio Ave. 10, Vilnius, LT-10223, Lithuania.
| | - Tomas Baravykas
- Femtika Ltd., Saulėtekio Ave. 15, Vilnius, LT-10224, Lithuania
| | - Dovilė Andrijec
- Femtika Ltd., Saulėtekio Ave. 15, Vilnius, LT-10224, Lithuania
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio Ave. 10, Vilnius, LT-10223, Lithuania
| | - Tomas Gadišauskas
- Femtika Ltd., Saulėtekio Ave. 15, Vilnius, LT-10224, Lithuania
- The General Jonas Žemaitis Miltitary Academy of Lithuania, Šilo Str. 5A, LT-10322, Vilnius, Lithuania
| | - Vytautas Purlys
- Femtika Ltd., Saulėtekio Ave. 15, Vilnius, LT-10224, Lithuania
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio Ave. 10, Vilnius, LT-10223, Lithuania
| |
Collapse
|
26
|
Wang Z, Lang B, Qu Y, Li L, Song Z, Wang Z. Single-cell patterning technology for biological applications. BIOMICROFLUIDICS 2019; 13:061502. [PMID: 31737153 PMCID: PMC6847985 DOI: 10.1063/1.5123518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/15/2019] [Indexed: 06/01/2023]
Abstract
Single-cell patterning technology has revealed significant contributions of single cells to conduct basic and applied biological studies in vitro such as the understanding of basic cell functions, neuronal network formation, and drug screening. Unlike traditional population-based cell patterning approaches, single-cell patterning is an effective technology of fully understanding cell heterogeneity by precisely controlling the positions of individual cells. Therefore, much attention is currently being paid to this technology, leading to the development of various micro-nanofabrication methodologies that have been applied to locate cells at the single-cell level. In recent years, various methods have been continuously improved and innovated on the basis of existing ones, overcoming the deficiencies and promoting the progress in biomedicine. In particular, microfluidics with the advantages of high throughput, small sample volume, and the ability to combine with other technologies has a wide range of applications in single-cell analysis. Here, we present an overview of the recent advances in single-cell patterning technology, with a special focus on current physical and physicochemical methods including stencil patterning, trap- and droplet-based microfluidics, and chemical modification on surfaces via photolithography, microcontact printing, and scanning probe lithography. Meanwhile, the methods applied to biological studies and the development trends of single-cell patterning technology in biological applications are also described.
Collapse
Affiliation(s)
| | - Baihe Lang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
| | | | | | | | - Zuobin Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
27
|
Advancement of Peptide Nanobiotechnology via Emerging Microfluidic Technology. MICROMACHINES 2019; 10:mi10100627. [PMID: 31547039 PMCID: PMC6843689 DOI: 10.3390/mi10100627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
Peptide nanotechnology has experienced a long and enduring development since its inception. Many different applications have been conceptualized, which depends on the functional groups present on the peptide and the physical shape/size of the peptide nanostructures. One of the most prominent nanostructures formed by peptides are nanoparticles. Until recently, however, it has been challenging to engineer peptide nanoparticles with low dispersity. An emerging and promising technique involves the utility of microfluidics to produce a solution of peptide nanoparticles with narrow dispersity. In this process, two or more streams of liquid are focused together to create conditions that are conducive towards the formation of narrowly dispersed samples of peptide nanoparticles. This makes it possible to harness peptide nanoparticles for the myriad of applications that are dependent on nanoparticle size and uniformity. In this focus review, we aim to show how microfluidics may be utilized to (1) study peptide self-assembly, which is critical to controlling nanostructure shape and size, and peptide-interface interactions, and (2) generate self-assembling peptide-based microgels for miniaturized cell cultures. These examples will illustrate how the emerging microfluidic approach promises to revolutionize the production and application of peptide nanoparticles in ever more diverse fields than before.
Collapse
|
28
|
Liu S, Li Z, Weng Z, Li Y, Shui L, Jiao Z, Chen Y, Luo A, Xing X, He S. Miniaturized optical fiber tweezers for cell separation by optical force. OPTICS LETTERS 2019; 44:1868-1871. [PMID: 30933168 DOI: 10.1364/ol.44.001868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 05/23/2023]
Abstract
In advanced biomedicine and microfluidics, there is a strong desire to sort and manipulate various cells and bacteria based on miniaturized microfluidic chips. Here, by integrating fiber tweezers into a T-type microfluidic channel, we report an optofluidic chip to selectively trap Escherichia coli in human blood solution based on different sizes and shapes. Furthermore, we simulate the trapping and pushing regions of other cells and bacteria, including rod-shaped bacteria, sphere-shaped bacteria, and cancer cells based on finite-difference analysis. With the advantages of controllability, low optical power, and compact construction, the strategy may be possibly applied in the fields of optical separation, cell transportation, and water quality analysis.
Collapse
|
29
|
He E, Cai L, Zheng F, Zhou Q, Guo D, Zhou Y, Zhang X, Li Z. Rapid Quantitative Fluorescence Detection of Copper Ions with Disposable Microcapsule Arrays Utilizing Functional Nucleic Acid Strategy. Sci Rep 2019; 9:36. [PMID: 30631123 PMCID: PMC6328549 DOI: 10.1038/s41598-018-36842-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
In this work, an economical and easy-to-use microcapsule array fabricated by ice printing technique has been realized for ultrasensitive fluorescence quantification of copper ions employing functional nucleic acid strategy. With ice printing, the detection reagents are sealed by polystyrene (PS) film isolation and photopolymer, which guarantees a stable and contamination-free environment for functional nucleic acid reaction. Our microcapsule arrays have shown long-term stability (20 days) under -20 °C storage in frozen form before use. During the Cu2+ on-site detection, 1 μL sample is simply injected into the thawy microcapsule by a microliter syringe under room temperature, and after 20 minutes the fluorescence result can be obtained by an LED transilluminator. This method can realize the detection limit to 100 nM (100 fmol/μL) with high specificity.
Collapse
Affiliation(s)
- Enqi He
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.,Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China
| | - Liangyuan Cai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Fengyi Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - Qianyu Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Dan Guo
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yinglin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China.
| | - Xinxiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China.
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China. .,Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
30
|
Wu J, Lin JM. Microfluidic Technology for Single-Cell Capture and Isolation. MICROFLUIDICS FOR SINGLE-CELL ANALYSIS 2019. [DOI: 10.1007/978-981-32-9729-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Galeotti F, Pisco M, Cusano A. Self-assembly on optical fibers: a powerful nanofabrication tool for next generation "lab-on-fiber" optrodes. NANOSCALE 2018; 10:22673-22700. [PMID: 30500026 DOI: 10.1039/c8nr06002a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Self-assembly offers a unique resource for the preparation of discrete structures at the nano- and microscale, which are either not accessible by other fabrication techniques or require highly expensive and technologically demanding processes. The possibility of obtaining spontaneous organization of separated components, whether they are molecules, polymers, nano- or micro-objects, into a larger functional unit, enables the development of ready-to-use plug and play devices and components at lower costs. Expanding the applicability of self-assembly approaches at the nanoscale to non-conventional substrates would open up new avenues towards multifunctional platforms customized for specific applications. Recently, the combination of the amazing morphological and optical features of self-assembled patterns with the intrinsic properties of optical fibers to conduct light to a remote location has demonstrated the potentiality to open up new intriguing scenarios featuring unprecedented functionalities and performances. The integration of advanced materials and structures at the nanoscale with optical fiber substrates is the idea behind the so-called lab-on-fiber technology, which is an emerging technology at the forefront of nanophotonics and nanotechnology research. Self-assembly processes can have a key role in implementing cost-effective solutions suitable for the mass production of technologically advanced platforms based on optical fibers towards their real market exploitation. Novel lab-on-fiber optrodes would arise from the sustainable integration of functional materials at the nano- and microscale onto optical fiber substrates. Such devices are able to be easily integrated in hypodermic needles and catheters for in vivo theranostics and point-of-care diagnostics, opening up new frontiers in multidisciplinary technological development to be exploited in life science applications. This work is conceived to provide an overview of the latest strategies, based on self-assembly processes, which have been implemented for the realization of lab-on-fiber optrodes with particular emphasis on the perspectives and challenges that lie ahead. We discuss the main fabrication techniques and strategies aimed at developing new multifunctional optical fiber nanoprobes and their application in real scenarios. Finally, we highlight some of the other self-assembly processes that have not yet been applied to optical fiber sensors, but have the potentiality to be exploited in the fabrication of future lab-on-fiber devices.
Collapse
Affiliation(s)
- F Galeotti
- Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche (ISMAC-CNR), 20133 Milano, Italy.
| | - M Pisco
- Divisione di Optoelettronica, Dipartimento di Ingegneria, Università del Sannio, 82100 Benevento, Italy.
| | - A Cusano
- Divisione di Optoelettronica, Dipartimento di Ingegneria, Università del Sannio, 82100 Benevento, Italy.
| |
Collapse
|
32
|
Hahn V, Kalt S, Sridharan GM, Wegener M, Bhattacharya S. Polarizing beam splitter integrated onto an optical fiber facet. OPTICS EXPRESS 2018; 26:33148-33157. [PMID: 30645471 DOI: 10.1364/oe.26.033148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
When light either leaves or enters an optical fiber, one often needs free-space optical components to manipulate the state of polarization or the light's phase profile. It is therefore desirable to integrate such components onto a fiber end facet. In this paper, we realize, for the first time, a polarizing beam splitter fabricated directly onto the end facet of a single-mode optical fiber. The element is composed of a refractive prism, intentionally slightly displaced from the core of the fiber, and an elevated and suspended sub-wavelength diffraction grating, the lamellae of which have an aspect ratio of about 5. This integrated micro-optical component is characterized experimentally at 1550 nm wavelength. We find that the two emerging output beams exhibit a degree of polarization of 81 percent and 82 percent for Transverse Magnetic (TM) and Transverse Electric (TE) polarization, respectively.
Collapse
|
33
|
Alam MK, Koomson E, Zou H, Yi C, Li CW, Xu T, Yang M. Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Anal Chim Acta 2018; 1044:29-65. [DOI: 10.1016/j.aca.2018.06.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022]
|
34
|
Donato MG, Rajamanickam VP, Foti A, Gucciardi PG, Liberale C, Maragò OM. Optical force decoration of 3D microstructures with plasmonic particles. OPTICS LETTERS 2018; 43:5170-5173. [PMID: 30320847 DOI: 10.1364/ol.43.005170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Optical forces are used to push and aggregate gold nanorods onto several substrates creating surface-enhanced Raman scattering (SERS) active hot spots for Raman-based identification of proteins. By monitoring the increase of the protein SERS signal, we observe different aggregation times for different curvatures of the substrates. The slower aggregation dynamics on curved surfaces is justified by a simple geometrical model. In particular, this technique is used to decorate three-dimensional microstructures and to quickly realize hybrid micro/nanosensors for highly sensitive detection of biological material directly in a liquid environment.
Collapse
|
35
|
Shinde P, Mohan L, Kumar A, Dey K, Maddi A, Patananan AN, Tseng FG, Chang HY, Nagai M, Santra TS. Current Trends of Microfluidic Single-Cell Technologies. Int J Mol Sci 2018; 19:E3143. [PMID: 30322072 PMCID: PMC6213733 DOI: 10.3390/ijms19103143] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
The investigation of human disease mechanisms is difficult due to the heterogeneity in gene expression and the physiological state of cells in a given population. In comparison to bulk cell measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. In this review, we describe the recent advances in single-cell technologies and their applications in single-cell manipulation, diagnosis, and therapeutics development.
Collapse
Affiliation(s)
- Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Loganathan Mohan
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Amogh Kumar
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Koyel Dey
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Anjali Maddi
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Alexander N Patananan
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu City 30071, Taiwan.
| | - Hwan-You Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu City 30071, Taiwan.
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan.
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| |
Collapse
|
36
|
Sharafeldin M, Jones A, Rusling JF. 3D-Printed Biosensor Arrays for Medical Diagnostics. MICROMACHINES 2018; 9:E394. [PMID: 30424327 PMCID: PMC6187244 DOI: 10.3390/mi9080394] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 11/23/2022]
Abstract
While the technology is relatively new, low-cost 3D printing has impacted many aspects of human life. 3D printers are being used as manufacturing tools for a wide variety of devices in a spectrum of applications ranging from diagnosis to implants to external prostheses. The ease of use, availability of 3D-design software and low cost has made 3D printing an accessible manufacturing and fabrication tool in many bioanalytical research laboratories. 3D printers can print materials with varying density, optical character, strength and chemical properties that provide the user with a vast array of strategic options. In this review, we focus on applications in biomedical diagnostics and how this revolutionary technique is facilitating the development of low-cost, sensitive, and often geometrically complex tools. 3D printing in the fabrication of microfluidics, supporting equipment, and optical and electronic components of diagnostic devices is presented. Emerging diagnostics systems using 3D bioprinting as a tool to incorporate living cells or biomaterials into 3D printing is also reviewed.
Collapse
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry (U-3060), University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, USA.
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Sharkia, Egypt.
| | - Abby Jones
- Department of Chemistry (U-3060), University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, USA.
| | - James F Rusling
- Department of Chemistry (U-3060), University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, USA.
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269, USA.
- Department of Surgery and Neag Cancer Center, UConn Health, Farmington, CT 06032, USA.
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland.
| |
Collapse
|
37
|
Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress. SENSORS 2018; 18:s18051623. [PMID: 29783713 PMCID: PMC5982924 DOI: 10.3390/s18051623] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/28/2022]
Abstract
Analyzing the cells in various body fluids can greatly deepen the understanding of the mechanisms governing the cellular physiology. Due to the variability of physiological and metabolic states, it is important to be able to perform such studies on individual cells. Therefore, we developed an optofluidic system in which we precisely manipulated and monitored individual cells of Escherichia coli. We tested optical micromanipulation in a microfluidic chamber chip by transferring individual bacteria into the chambers. We then subjected the cells in the chambers to antibiotic cefotaxime and we observed the changes by using time-lapse microscopy. Separately, we used laser tweezers Raman spectroscopy (LTRS) in a different micro-chamber chip to manipulate and analyze individual cefotaxime-treated E. coli cells. Additionally, we performed conventional Raman micro-spectroscopic measurements of E. coli cells in a micro-chamber. We found observable changes in the cellular morphology (cell elongation) and in Raman spectra, which were consistent with other recently published observations. The principal component analysis (PCA) of Raman data distinguished between the cefotaxime treated cells and control. We tested the capabilities of the optofluidic system and found it to be a reliable and versatile solution for this class of microbiological experiments.
Collapse
|
38
|
Paiè P, Zandrini T, Vázquez RM, Osellame R, Bragheri F. Particle Manipulation by Optical Forces in Microfluidic Devices. MICROMACHINES 2018; 9:E200. [PMID: 30424133 PMCID: PMC6187572 DOI: 10.3390/mi9050200] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/09/2023]
Abstract
Since the pioneering work of Ashkin and coworkers, back in 1970, optical manipulation gained an increasing interest among the scientific community. Indeed, the advantages and the possibilities of this technique are unsubtle, allowing for the manipulation of small particles with a broad spectrum of dimensions (nanometers to micrometers size), with no physical contact and without affecting the sample viability. Thus, optical manipulation rapidly found a large set of applications in different fields, such as cell biology, biophysics, and genetics. Moreover, large benefits followed the combination of optical manipulation and microfluidic channels, adding to optical manipulation the advantages of microfluidics, such as a continuous sample replacement and therefore high throughput and automatic sample processing. In this work, we will discuss the state of the art of these optofluidic devices, where optical manipulation is used in combination with microfluidic devices. We will distinguish on the optical method implemented and three main categories will be presented and explored: (i) a single highly focused beam used to manipulate the sample, (ii) one or more diverging beams imping on the sample, or (iii) evanescent wave based manipulation.
Collapse
Affiliation(s)
- Petra Paiè
- Istituto di Fotonica e Nanotecnlogie IFN-CNR, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Tommaso Zandrini
- Istituto di Fotonica e Nanotecnlogie IFN-CNR, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Rebeca Martínez Vázquez
- Istituto di Fotonica e Nanotecnlogie IFN-CNR, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnlogie IFN-CNR, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Francesca Bragheri
- Istituto di Fotonica e Nanotecnlogie IFN-CNR, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| |
Collapse
|
39
|
Anastasiadi G, Leonard M, Paterson L, Macpherson WN. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation. OPTICS EXPRESS 2018; 26:3557-3567. [PMID: 29401883 DOI: 10.1364/oe.26.003557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
Optical tweezing is a non-invasive technique that can enable a variety of single cell experiments; however, it tends to be based on a high numerical aperture (NA) microscope objective to both deliver the tweezing laser light and image the sample. This introduces restrictions in system flexibility when both trapping and imaging. Here, we demonstrate a novel, high NA tweezing system based on micro-machined multicore optical fibers. Using the machined, multicore fiber tweezer, cells are optically manipulated under a variety of microscopes, without requiring a high NA objective lens. The maximum NA of the fiber-based tweezer demonstrated is 1.039. A stable trap with a maximum total power 30 mW has been characterized to exert a maximum optical force of 26.4 pN, on a trapped, 7 μm diameter yeast cell. Single cells are held 15-35 μm from the fiber end and can be manipulated in the x, y and z directions throughout the sample. In this way, single cells are controllably trapped under a Raman microscope to categorize the yeast cells as live or dead, demonstrating trapping by the machined multicore fiber-based tweezer decoupled from the imaging or excitation objective lens.
Collapse
|
40
|
|
41
|
Vitali V, Yang T, Minzioni P. Separation efficiency maximization in acoustofluidic systems: study of the sample launch-position. RSC Adv 2018; 8:38955-38964. [PMID: 35558286 PMCID: PMC9090638 DOI: 10.1039/c8ra08860h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
The development of lab-on-chip microfluidic systems based on acoustic actuation, and in particular on the acoustophoretic force, has recently attracted significant attention from the scientific community thanks, in part, to the possibility of sample sorting on the basis of both geometrical and mechanical properties. It is commonly recognized that sample prefocusing and launch-position optimization have a substantial effect on the performance of these systems but a clear explanation of how these two parameters influence the system efficiency is still missing. In this manuscript we discuss the impact of both the sample launch position and the sample distribution at the input by the theoretical analysis of a simplified system and by numerical simulations of realistic configurations. The results show that the system performance can be greatly improved by selecting the proper microchannel dimensions and sample-launch position, offering relevant guidelines for the design of micro-acoustofluidic lab-on-chip devices. We theoretically and numerically show how to optimize the separation-efficiency of acoustofluidic systems by a non-trivial selection of sample-injection position.![]()
Collapse
Affiliation(s)
- Valerio Vitali
- University of Pavia
- Dept. of Electrical, Computer and Biomedical Engineering
- 27100 Pavia
- Italy
| | - Tie Yang
- School of Physical Science and Technology
- Southwest University
- Chongqing 400715
- China
| | - Paolo Minzioni
- University of Pavia
- Dept. of Electrical, Computer and Biomedical Engineering
- 27100 Pavia
- Italy
| |
Collapse
|
42
|
Affiliation(s)
- Sonja M. Weiz
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences (IIN); IFW Dresden; Helmholtzstraße 20 01069 Dresden Germany
- Material Systems for Nanoelectronics; Chemnitz University of Technology; Reichenhainer Straße 70 09107 Chemnitz Germany
| |
Collapse
|
43
|
Song Y, Cui L, López JÁS, Xu J, Zhu YG, Thompson IP, Huang WE. Raman-Deuterium Isotope Probing for in-situ identification of antimicrobial resistant bacteria in Thames River. Sci Rep 2017; 7:16648. [PMID: 29192181 PMCID: PMC5709456 DOI: 10.1038/s41598-017-16898-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/10/2017] [Indexed: 11/09/2022] Open
Abstract
The emergence and widespread distribution of antimicrobial resistant (AMR) bacteria has led to an increasing concern with respect to potential environmental and public health risks. Culture-independent and rapid identification of AMR bacteria in-situ in complex environments is important in understanding the role of viable but non-culturable and antibiotic persistent bacteria and in revealing potential pathogens without waiting for colony formation. In this study, a culture-independent and non-destructive phenotyping approach, so called Raman Deuterium Stable Isotope Probing (Raman-DIP), was developed to identify AMR bacteria in the River Thames. It is demonstrated that Raman-DIP was able to accurately identify resistant and susceptible bacteria within 24 hours. The work shows that, in the River Thames, the majority of the bacteria (76 ± 2%) were metabolically active, whilst AMR bacteria to carbenicillin, kanamycin and both two antibiotics were 35 ± 5%, 28 ± 3%, 25 ± 1% of the total bacterial population respectively. Raman activated cell ejection (RACE) was applied to isolate single AMR bacteria for the first time, linking AMR phenotype (reistance to antibiotics) and genotype (DNA sequence). The sequences of the RACE sorted cells indicate that they were potential human pathogens Aeromonas sp., Stenotrophomonas sp. and an unculturable bacterium. This work demonstrates Raman-DIP and RACE are effective culture-independent approach for rapid identification of AMR bacteria at the single cell level in their natural conditions.
Collapse
Affiliation(s)
- Yizhi Song
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom
| | - Li Cui
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - José Ángel Siles López
- Chemical Engineering Department, University of Córdoba, Campus Universitario de Rabanales, Ctra. N-IV, km 396, building Marie Curie (C-3), CP/14071, Córdoba, Spain
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom.
| |
Collapse
|
44
|
Alrasheed S, Di Fabrizio E. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors. Sci Rep 2017; 7:10524. [PMID: 28874769 PMCID: PMC5585175 DOI: 10.1038/s41598-017-11140-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/18/2017] [Indexed: 11/08/2022] Open
Abstract
We present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity. Such high field enhancement has potential applications in optics, including sensors and high resolution imaging devices. In addition, the resonance splitting allows for greater flexibility in using the same array at different wavelengths. We then further propose a practical design to realize such a device and include dimers of different shapes and materials.
Collapse
Affiliation(s)
- Salma Alrasheed
- King Abdullah University of Science and Technology, PSE and BESE Divisions, Thuwal, 23955-6900, Saudi Arabia.
| | - Enzo Di Fabrizio
- King Abdullah University of Science and Technology, PSE and BESE Divisions, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
45
|
Gencturk E, Mutlu S, Ulgen KO. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. BIOMICROFLUIDICS 2017; 11:051502. [PMID: 29152025 PMCID: PMC5654984 DOI: 10.1063/1.4998604] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 05/10/2023]
Abstract
Silicon and glass were the main fabrication materials of microfluidic devices, however, plastics are on the rise in the past few years. Thermoplastic materials have recently been used to fabricate microfluidic platforms to perform experiments on cellular studies or environmental monitoring, with low cost disposable devices. This review describes the present state of the development and applications of microfluidic systems used in cell biology and analyses since the year 2000. Cultivation, separation/isolation, detection and analysis, and reaction studies are extensively discussed, considering only microorganisms (bacteria, yeast, fungi, zebra fish, etc.) and mammalian cell related studies in the microfluidic platforms. The advantages/disadvantages, fabrication methods, dimensions, and the purpose of creating the desired system are explained in detail. An important conclusion of this review is that these microfluidic platforms are still open for research and development, and solutions need to be found for each case separately.
Collapse
Affiliation(s)
- Elif Gencturk
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Senol Mutlu
- Department of Electrical and Electronics Engineering, BUMEMS Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
46
|
Zhou SF, Gopalakrishnan S, Xu YH, To SKY, Wong AST, Pang SW, Lam YW. Substrates with patterned topography reveal metastasis of human cancer cells. Biomed Mater 2017; 12:055001. [DOI: 10.1088/1748-605x/aa785d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Kim JB, Jeong KH. Batch fabrication of functional optical elements on a fiber facet using DMD based maskless lithography. OPTICS EXPRESS 2017; 25:16854-16859. [PMID: 28789184 DOI: 10.1364/oe.25.016854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
We report a facile and direct fabrication method for integrating functional optical microstructures on the top surface of an optical fiber. A programmable maskless fabrication system was developed by using digital micromirror device (DMD), which allows rapid prototyping and low-cost fabrication without physical photomask. This maskless UV exposure system has the spatial resolution of 2.2 μm for an exposed area of 245 μm x 185 μm. Diverse optical microstructures were photolithographically defined on multimode fibers and a single mode optical fiber serially spliced with a coreless silica fiber segment. This method provides a new route for developing compact functional fiber-optic applications such as laser scanning, biosensing, or laser endomicroscopy.
Collapse
|
48
|
Deng Y, Renaud P, Guo Z, Huang Z, Chen Y. Single cell isolation process with laser induced forward transfer. J Biol Eng 2017; 11:2. [PMID: 28101134 PMCID: PMC5237295 DOI: 10.1186/s13036-016-0045-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/26/2016] [Indexed: 01/31/2023] Open
Abstract
Background A viable single cell is crucial for studies of single cell biology. In this paper, laser-induced forward transfer (LIFT) was used to isolate individual cell with a closed chamber designed to avoid contamination and maintain humidity. Hela cells were used to study the impact of laser pulse energy, laser spot size, sacrificed layer thickness and working distance. The size distribution, number and proliferation ratio of separated cells were statistically evaluated. Glycerol was used to increase the viscosity of the medium and alginate were introduced to soften the landing process. Results The role of laser pulse energy, the spot size and the thickness of titanium in energy absorption in LIFT process was theoretically analyzed with Lambert-Beer and a thermal conductive model. After comprehensive analysis, mechanical damage was found to be the dominant factor affecting the size and proliferation ratio of the isolated cells. An orthogonal experiment was conducted, and the optimal conditions were determined as: laser pulse energy, 9 μJ; spot size, 60 μm; thickness of titanium, 12 nm; working distance, 700 μm;, glycerol, 2% and alginate depth, greater than 1 μm. With these conditions, along with continuous incubation, a single cell could be transferred by the LIFT with one shot, with limited effect on cell size and viability. Conclusion LIFT conducted in a closed chamber under optimized condition is a promising method for reliably isolating single cells.
Collapse
Affiliation(s)
- Yu Deng
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 China ; Microsystems Laboratory, STI-LMIS, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland ; Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006 China
| | - Philippe Renaud
- Microsystems Laboratory, STI-LMIS, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Zhongning Guo
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 China
| | - Zhigang Huang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006 China
| |
Collapse
|
49
|
Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications. Methods Mol Biol 2017. [PMID: 28044297 DOI: 10.1007/978-1-4939-6734-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cell populations are heterogeneous: they can comprise different cell types or even cells at different stages of the cell cycle and/or of biological processes. Furthermore, molecular processes taking place in cells are stochastic in nature. Therefore, cellular analysis must be brought down to the single cell level to get useful insight into biological processes, and to access essential molecular information that would be lost when using a cell population analysis approach. Furthermore, to fully characterize a cell population, ideally, information both at the single cell level and on the whole cell population is required, which calls for analyzing each individual cell in a population in a parallel manner. This single cell level analysis approach is particularly important for diagnostic applications to unravel molecular perturbations at the onset of a disease, to identify biomarkers, and for personalized medicine, not only because of the heterogeneity of the cell sample, but also due to the availability of a reduced amount of cells, or even unique cells. This chapter presents a versatile platform meant for the parallel analysis of individual cells, with a particular focus on diagnostic applications and the analysis of cancer cells. We first describe one essential step of this parallel single cell analysis protocol, which is the trapping of individual cells in dedicated structures. Following this, we report different steps of a whole analytical process, including on-chip cell staining and imaging, cell membrane permeabilization and/or lysis using either chemical or physical means, and retrieval of the cell molecular content in dedicated channels for further analysis. This series of experiments illustrates the versatility of the herein-presented platform and its suitability for various analysis schemes and different analytical purposes.
Collapse
|
50
|
Huang L, Bian S, Cheng Y, Shi G, Liu P, Ye X, Wang W. Microfluidics cell sample preparation for analysis: Advances in efficient cell enrichment and precise single cell capture. BIOMICROFLUIDICS 2017; 11:011501. [PMID: 28217240 PMCID: PMC5303167 DOI: 10.1063/1.4975666] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/24/2017] [Indexed: 05/03/2023]
Abstract
Single cell analysis has received increasing attention recently in both academia and clinics, and there is an urgent need for effective upstream cell sample preparation. Two extremely challenging tasks in cell sample preparation-high-efficiency cell enrichment and precise single cell capture-have now entered into an era full of exciting technological advances, which are mostly enabled by microfluidics. In this review, we summarize the category of technologies that provide new solutions and creative insights into the two tasks of cell manipulation, with a focus on the latest development in the recent five years by highlighting the representative works. By doing so, we aim both to outline the framework and to showcase example applications of each task. In most cases for cell enrichment, we take circulating tumor cells (CTCs) as the target cells because of their research and clinical importance in cancer. For single cell capture, we review related technologies for many kinds of target cells because the technologies are supposed to be more universal to all cells rather than CTCs. Most of the mentioned technologies can be used for both cell enrichment and precise single cell capture. Each technology has its own advantages and specific challenges, which provide opportunities for researchers in their own area. Overall, these technologies have shown great promise and now evolve into real clinical applications.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Shengtai Bian
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Yinuo Cheng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Guanya Shi
- Department of Automotive Engineering, Tsinghua University , Beijing, China
| | - Peng Liu
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| |
Collapse
|