1
|
Norouzy N, Nikdoost A, Rezai P. Parallelization of Curved Inertial Microfluidic Channels to Increase the Throughput of Simultaneous Microparticle Separation and Washing. MICROMACHINES 2024; 15:1228. [PMID: 39459102 PMCID: PMC11509581 DOI: 10.3390/mi15101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
The rising global need for clean water highlights the importance of efficient sample preparation methods to separate and wash various contaminants such as microparticles. Microfluidic methods for these purposes have emerged but they mostly deliver either separation or washing, with very low throughputs. Here, we investigate parallelization of a curved-channel particle separation and washing device in order to increase its throughput for sample preparation. A curved microchannel applies inertial forces to focus larger 10 µm microparticles at the inner wall of the channel and separate them from smaller 5 µm microparticles at the outer wall. At the same time, Dean flow recirculation is used to exchange the carrier solution of the large microparticles to a clean buffer (washing). We increased the number of curved channels in a stepwise manner from two to four to eight channels in two different arraying designs, i.e., rectangular and polar arrays. We examined efficient separation of target 10 µm particles from 5 µm particles, while transferring the larger microparticles into a clean buffer. Dean flow recirculation studies demonstrated that the rectangular arrayed device performs better, providing solution exchange efficiencies of more than 96% on average as compared to 89% for the polar array device. Our 8-curve rectangular array device provided a particle separation efficiency of 98.93 ± 0.91%, while maintaining a sample purity of 92.83 ± 1.47% at a high working flow rate of 12.8 mL/min. Moreover, the target particles were transferred into a clean buffer with a solution exchange efficiency of 96.81 ± 0.54% in our 8-curve device. Compared to the literature, our in-plane parallelization design of curved microchannels resulted in a 13-fold increase in the working flow rate of the setup while maintaining a very high performance in particle separation and washing. Our microfluidic device offers the potential to enhance the throughput and the separation and washing efficiencies in applications for biological and environmental samples.
Collapse
Affiliation(s)
| | | | - Pouya Rezai
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, ON M3J 1P3, Canada; (N.N.); (A.N.)
| |
Collapse
|
2
|
Petruzzellis I, Martínez Vázquez R, Caragnano S, Gaudiuso C, Osellame R, Ancona A, Volpe A. Lab-on-Chip Systems for Cell Sorting: Main Features and Advantages of Inertial Focusing in Spiral Microchannels. MICROMACHINES 2024; 15:1135. [PMID: 39337795 PMCID: PMC11434521 DOI: 10.3390/mi15091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Inertial focusing-based Lab-on-Chip systems represent a promising technology for cell sorting in various applications, thanks to their alignment with the ASSURED criteria recommended by the World Health Organization: Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Delivered. Inertial focusing techniques using spiral microchannels offer a rapid, portable, and easy-to-prototype solution for cell sorting. Various microfluidic devices have been investigated in the literature to understand how hydrodynamic forces influence particle focusing in spiral microchannels. This is crucial for the effective prototyping of devices that allow for high-throughput and efficient filtration of particles of different sizes. However, a clear, comprehensive, and organized overview of current research in this area is lacking. This review aims to fill this gap by offering a thorough summary of the existing literature, thereby guiding future experimentation and facilitating the selection of spiral geometries and materials for cell sorting in microchannels. To this end, we begin with a detailed theoretical introduction to the physical mechanisms underlying particle separation in spiral microfluidic channels. We also dedicate a section to the materials and prototyping techniques most commonly used for spiral microchannels, highlighting and discussing their respective advantages and disadvantages. Subsequently, we provide a critical examination of the key details of inertial focusing across various cross-sections (rectangular, trapezoidal, triangular, hybrid) in spiral devices as reported in the literature.
Collapse
Affiliation(s)
- Isabella Petruzzellis
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
| | - Rebeca Martínez Vázquez
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Piazza L. da Vinci 32, 20133 Milan, Italy;
| | - Stefania Caragnano
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
| | - Caterina Gaudiuso
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70125 Bari, Italy;
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Piazza L. da Vinci 32, 20133 Milan, Italy;
| | - Antonio Ancona
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70125 Bari, Italy;
| | - Annalisa Volpe
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70125 Bari, Italy;
| |
Collapse
|
3
|
Park C, Lim W, Song R, Han J, You D, Kim S, Lee JE, van Noort D, Mandenius CF, Lee J, Hyun KA, Jung HI, Park S. Efficient separation of large particles and giant cancer cells using an isosceles trapezoidal spiral microchannel. Analyst 2024; 149:4496-4505. [PMID: 39049608 DOI: 10.1039/d4an00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Polyploid giant cancer cells (PGCCs) contribute to the genetic heterogeneity and evolutionary dynamics of tumors. Their size, however, complicates their isolation from mainstream tumor cell populations. Standard techniques like fluorescence-activated cell sorting (FACS) rely on fluorescent labeling, introducing potential challenges in subsequent PGCC analyses. In response, we developed the Isosceles Trapezoidal Spiral Microchannel (ITSμC), a microfluidic device optimizing the Dean drag force (FD) and exploiting uniform vortices for enhanced separation. Numerical simulations highlighted ITSμC's advantage in producing robust FD compared to rectangular and standard trapezoidal channels. Empirical results confirmed its ability to segregate larger polystyrene (PS) particles (avg. diameter: 50 μm) toward the inner wall, while directing smaller ones (avg. diameter: 23 μm) outward. Utilizing ITSμC, we efficiently isolated PGCCs from doxorubicin-resistant triple-negative breast cancer (DOXR-TNBC) and patient-derived cancer (PDC) cells, achieving outstanding purity, yield, and viability rates (all greater than 90%). This precision was accomplished without fluorescent markers, and the versatility of ITSμC suggests its potential in differentiating a wide range of heterogeneous cell populations.
Collapse
Affiliation(s)
- Chanyong Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Ryungeun Song
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Jeonghun Han
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Daeun You
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Korea
| | - Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Korea
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medi-cine, Seoul 06351, Korea
| | - Danny van Noort
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Carl-Fredrik Mandenius
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Kyung-A Hyun
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Hyo-Il Jung
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
4
|
Jeon H, Perez CR, Kyung T, Birnbaum ME, Han J. Separation of Activated T Cells Using Multidimensional Double Spiral (MDDS) Inertial Microfluidics for High-Efficiency CAR T Cell Manufacturing. Anal Chem 2024; 96:10780-10790. [PMID: 38889002 DOI: 10.1021/acs.analchem.4c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This study introduces a T cell enrichment process, capitalizing on the size differences between activated and unactivated T cells to facilitate the isolation of activated, transducible T cells. By employing multidimensional double spiral (MDDS) inertial sorting, our approach aims to remove unactivated or not fully activated T cells post-activation, consequently enhancing the efficiency of chimeric antigen receptor (CAR) T cell manufacturing. Our findings reveal that incorporating a simple, label-free, and continuous MDDS sorting step yields a purer T cell population, exhibiting significantly enhanced viability and CAR-transducibility (with up to 85% removal of unactivated T cells and approximately 80% recovery of activated T cells); we found approximately 2-fold increase in CAR transduction efficiency for a specific sample, escalating from ∼10% to ∼20%, but this efficiency highly depends on the original T cell sample as MDDS sorting would be more effective for samples possessing a higher proportion of unactivated T cells. This new cell separation process could augment the efficiency, yield, and cost-effectiveness of CAR T cell manufacturing, potentially broadening the accessibility of this transformative therapy and contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Department of Manufacturing Systems and Design Engineering (MSDE), Seoul National University of Science and Technology (SEOULTECH), 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | | | | | - Michael E Birnbaum
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Critical Analytics for Manufacturing Personalized-Medicine (CAMP) IRG, 1 CREATE Way, No. 04-13/14 Enterprise Wing, 138602, Singapore
- Ragon Institute of Mass General, MIT, and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Jongyoon Han
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Critical Analytics for Manufacturing Personalized-Medicine (CAMP) IRG, 1 CREATE Way, No. 04-13/14 Enterprise Wing, 138602, Singapore
| |
Collapse
|
5
|
Lu S, Ma D, Mi X. A High-Throughput Circular Tumor Cell Sorting Chip with Trapezoidal Cross Section. SENSORS (BASEL, SWITZERLAND) 2024; 24:3552. [PMID: 38894343 PMCID: PMC11175239 DOI: 10.3390/s24113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Circulating tumor cells are typically found in the peripheral blood of patients, offering a crucial pathway for the early diagnosis and prediction of cancer. Traditional methods for early cancer diagnosis are inefficient and inaccurate, making it difficult to isolate tumor cells from a large number of cells. In this paper, a new spiral microfluidic chip with asymmetric cross-section is proposed for rapid, high-throughput, label-free enrichment of CTCs in peripheral blood. A mold of the desired flow channel structure was prepared and inverted to make a trapezoidal cross-section using a micro-nanotechnology process of 3D printing. After a systematic study of how flow rate, channel width, and particle concentration affect the performance of the device, we utilized the device to simulate cell sorting of 6 μm, 15 μm, and 25 μm PS (Polystyrene) particles, and the separation efficiency and separation purity of 25 μm PS particles reached 98.3% and 96.4%. On this basis, we realize the enrichment of a large number of CTCs in diluted whole blood (5 mL). The results show that the separation efficiency of A549 was 88.9% and the separation purity was 96.4% at a high throughput of 1400 μL/min. In conclusion, we believe that the developed method is relevant for efficient recovery from whole blood and beneficial for future automated clinical analysis.
Collapse
Affiliation(s)
- Shijie Lu
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Shanghai 201899, China;
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China;
| | - Ding Ma
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianqiang Mi
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Shanghai 201899, China;
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Wang Q, Tang TM, Youlton N, Weldy CS, Kenney AM, Ronen O, Weston Hughes J, Chin ET, Sutton SC, Agarwal A, Li X, Behr M, Kumbier K, Moravec CS, Wilson Tang WH, Margulies KB, Cappola TP, Butte AJ, Arnaout R, Brown JB, Priest JR, Parikh VN, Yu B, Ashley EA. Epistasis regulates genetic control of cardiac hypertrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.06.23297858. [PMID: 37987017 PMCID: PMC10659487 DOI: 10.1101/2023.11.06.23297858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The combinatorial effect of genetic variants is often assumed to be additive. Although genetic variation can clearly interact non-additively, methods to uncover epistatic relationships remain in their infancy. We develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy. We derive deep learning-based estimates of left ventricular mass from the cardiac MRI scans of 29,661 individuals enrolled in the UK Biobank. We report epistatic genetic variation including variants close to CCDC141 , IGF1R , TTN , and TNKS. Several loci where variants were deemed insignificant in univariate genome-wide association analyses are identified. Functional genomic and integrative enrichment analyses reveal a complex gene regulatory network in which genes mapped from these loci share biological processes and myogenic regulatory factors. Through a network analysis of transcriptomic data from 313 explanted human hearts, we found strong gene co-expression correlations between these statistical epistasis contributors in healthy hearts and a significant connectivity decrease in failing hearts. We assess causality of epistatic effects via RNA silencing of gene-gene interactions in human induced pluripotent stem cell-derived cardiomyocytes. Finally, single-cell morphology analysis using a novel high-throughput microfluidic system shows that cardiomyocyte hypertrophy is non-additively modifiable by specific pairwise interactions between CCDC141 and both TTN and IGF1R . Our results expand the scope of genetic regulation of cardiac structure to epistasis.
Collapse
|
7
|
Shen F, Gao J, Zhang J, Ai M, Gao H, Liu Z. Vortex sorting of rare particles/cells in microcavities: A review. BIOMICROFLUIDICS 2024; 18:021504. [PMID: 38571909 PMCID: PMC10987199 DOI: 10.1063/5.0174938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Microfluidics or lab-on-a-chip technology has shown great potential for the separation of target particles/cells from heterogeneous solutions. Among current separation methods, vortex sorting of particles/cells in microcavities is a highly effective method for trapping and isolating rare target cells, such as circulating tumor cells, from flowing samples. By utilizing fluid forces and inertial particle effects, this passive method offers advantages such as label-free operation, high throughput, and high concentration. This paper reviews the fundamental research on the mechanisms of focusing, trapping, and holding of particles in this method, designs of novel microcavities, as well as its applications. We also summarize the challenges and prospects of this technique with the hope to promote its applications in medical and biological research.
Collapse
Affiliation(s)
- Feng Shen
- Authors to whom correspondence should be addressed: and
| | - Jie Gao
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Jie Zhang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Mingzhu Ai
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Hongkai Gao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Zhaomiao Liu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
8
|
Peng T, Qiang J, Yuan S. Sheathless inertial particle focusing methods within microfluidic devices: a review. Front Bioeng Biotechnol 2024; 11:1331968. [PMID: 38260735 PMCID: PMC10801244 DOI: 10.3389/fbioe.2023.1331968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The ability to manipulate and focus particles within microscale fluidic environments is crucial to advancing biological, chemical, and medical research. Precise and high-throughput particle focusing is an essential prerequisite for various applications, including cell counting, biomolecular detection, sample sorting, and enhancement of biosensor functionalities. Active and sheath-assisted focusing techniques offer accuracy but necessitate the introduction of external energy fields or additional sheath flows. In contrast, passive focusing methods exploit the inherent fluid dynamics in achieving high-throughput focusing without external actuation. This review analyzes the latest developments in strategies of sheathless inertial focusing, emphasizing inertial and elasto-inertial microfluidic focusing techniques from the channel structure classifications. These methodologies will serve as pivotal benchmarks for the broader application of microfluidic focusing technologies in biological sample manipulation. Then, prospects for future development are also predicted. This paper will assist in the understanding of the design of microfluidic particle focusing devices.
Collapse
Affiliation(s)
- Tao Peng
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Jun Qiang
- The School of Mechanical Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Shuai Yuan
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Lai TW, Tennakoon T, Chan KC, Liu CH, Chao CYH, Fu SC. The effect of microchannel height on the acoustophoretic motion of sub-micron particles. ULTRASONICS 2024; 136:107126. [PMID: 37553269 DOI: 10.1016/j.ultras.2023.107126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
Acoustophoresis is an effective technique for particle manipulation. Acoustic radiation force scales with particle volume, enabling size separation. Yet, isolating sub-micron particles remains a challenge due to the acoustic streaming effect (ASE). While some studies confirmed the focusing ability of ASE, others reported continuous stirring effects. To investigate the parameters that influence ASE-induced particle motion in a microchannel, this study examined the effect of microchannel height and particle size. We employed standing surface acoustic wave (SSAW) to manipulate polystyrene particles suspended in the water-filled microchannel. The results show that ASE can direct particles as small as 0.31 µm in diameter to the centre of the streaming vortices, and increasing the channel height enhances the focusing effect. Smaller particles circulate in the streaming vortices continuously, with no movement towards the centres. We also discovered that when the channel height is at least 0.75 the fluid wavelength, particles transitioning from acoustic radiation-dominated to ASE-dominated share the same equilibrium position, which differs from the pressure nodes and the vortices' centres. The spatial distance between particles in different categories can lead to particle separation. Therefore, ASE is a potential alternative mechanism for sub-micron particle sorting when the channel height is accurately adjusted.
Collapse
Affiliation(s)
- Tsz Wai Lai
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Thilhara Tennakoon
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ka Chung Chan
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chun-Ho Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Christopher Yu Hang Chao
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China; Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sau Chung Fu
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
10
|
Shen S, Zhang Y, Yang K, Chan H, Li W, Li X, Tian C, Niu Y. Flow-Rate-Insensitive Plasma Extraction by the Stabilization and Acceleration of Secondary Flow in the Ultralow Aspect Ratio Spiral Channel. Anal Chem 2023; 95:18278-18286. [PMID: 38016025 DOI: 10.1021/acs.analchem.3c04179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Although microfluidic devices have made remarkable strides in blood cell separation, there is still a need for further development and improvement in this area. Herein, we present a novel ultralow aspect ratio (H/W = 1:36) spiral channel microfluidic device with ordered micro-obstacles for sheathless and flow-rate-insensitive blood cell separation. By introducing ordered micro-obstacles into the spiral microchannels, reduced magnitude fluctuations in secondary flow across different loops can be obtained through geometric confinement. As a result, the unique Dean-like secondary flow can effectively enhance the separation efficiency of particles in different sizes ranging from 3 to 15 μm. Compared to most existing microfluidic devices, our system offers several advantages of easy manufacturing, convenient operation, long-term stability, highly efficient performance (up to 99.70% rejection efficiency, including platelets), and most importantly, insensitivity to cell sizes as well as flow rates (allowing for efficient separation of different-sized blood cells in a wide flow rate from 1.00 to 2.50 mL/min). The unique characteristics, such as ultralow aspect ratio, sequential micro-obstacles, and controlled secondary flow, make our device a promising solution for practical plasma extraction in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Yali Zhang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Kai Yang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Henryk Chan
- Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield S10 2TN, U.K
| | - Weiwen Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| | - Xiaoping Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| | - Chang Tian
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, P. R. China
| | - Yanbing Niu
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| |
Collapse
|
11
|
Mohammadali R, Bayareh M. Deformability-Based Isolation of Circulating Tumor Cells in Spiral Microchannels. MICROMACHINES 2023; 14:2111. [PMID: 38004968 PMCID: PMC10672993 DOI: 10.3390/mi14112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
The isolation of circulating tumor cells (CTCs) and their analysis are crucial for the preliminary identification of invasive cancer. One of the effective properties that can be utilized to isolate CTCs is their deformability. In this paper, inertial-based spiral microchannels with various numbers of loops are employed to sort deformable CTCs using the finite element method (FEM) and an arbitrary Lagrangian-Eulerian (ALE) approach. The influences of cell deformability, cell size, number of loops, and channel depth on the hydrodynamic behavior of CTCs are discussed. The results demonstrate that the trajectory of cells is affected by the above factors when passing through the spiral channel. This approach can be utilized for sorting and isolating label-free deformable biological cells at large scales in clinical systems.
Collapse
Affiliation(s)
| | - Morteza Bayareh
- Department of Mechanical Engineering, Shahrekord University, Shahrekord 88186-34141, Iran;
| |
Collapse
|
12
|
Shen S, Bai H, Wang X, Chan H, Niu Y, Li W, Tian C, Li X. High-Throughput Blood Plasma Extraction in a Dimension-Confined Double-Spiral Channel. Anal Chem 2023; 95:16649-16658. [PMID: 37917001 DOI: 10.1021/acs.analchem.3c03002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Microfluidic technologies enabling the control of secondary flow are essential for the successful separation of blood cells, a process that is beneficial for a wide range of medical research and clinical diagnostics. Herein, we introduce a dimension-confined microfluidic device featuring a double-spiral channel designed to regulate secondary flows, thereby enabling high-throughput isolation of blood for plasma extraction. By integrating a sequence of micro-obstacles within the double-spiral microchannels, the stable and enhanced Dean-like secondary flow across each loop can be generated. This setup consequently prompts particles of varying diameters (3, 7, 10, and 15 μm) to form different focusing states. Crucially, this system is capable of effectively separating blood cells of different sizes with a cell throughput of (2.63-3.36) × 108 cells/min. The concentration of blood cells in outlet 2 increased 3-fold, from 1.46 × 108 to 4.37 × 108, while the number of cells, including platelets, exported from outlets 1 and 3 decreased by a factor of 608. The engineering approach manipulating secondary flow for plasma extraction points to simplicity in fabrication, ease of operation, insensitivity to cell size, high throughput, and separation efficiency, which has potential utility in propelling the development of miniaturized diagnostic devices in the field of biomedical science.
Collapse
Affiliation(s)
- Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Hanjie Bai
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Xin Wang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Henryk Chan
- Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield S10 2TN, U.K
| | - Yanbing Niu
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Weiwen Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| | - Chang Tian
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, P. R. China
| | - Xiaoping Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| |
Collapse
|
13
|
Cai S, Deng Y, Wang Z, Zhu J, Huang C, Du L, Wang C, Yu X, Liu W, Yang C, Wang Z, Wang L, Ma K, Huang R, Zhou X, Zou H, Zhang W, Huang Y, Li Z, Qin T, Xu T, Guo X, Yu Z. Development and clinical validation of a microfluidic-based platform for CTC enrichment and downstream molecular analysis. Front Oncol 2023; 13:1238332. [PMID: 37849806 PMCID: PMC10578963 DOI: 10.3389/fonc.2023.1238332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
Background Although many CTC isolation and detection methods can provide information on cancer cell counts, downstream gene and protein analysis remain incomplete. Therefore, it is crucial to develop a technology that can provide comprehensive information on both the number and profile of CTC. Methods In this study, we developed a novel microfluidics-based CTC separation and enrichment platform that provided detailed information about CTC. Results This platform exhibits exceptional functionality, achieving high rates of CTC recovery (87.1%) and purification (∼4 log depletion of WBCs), as well as accurate detection (95.10%), providing intact and viable CTCs for downstream analysis. This platform enables successful separation and enrichment of CTCs from a 4 mL whole-blood sample within 15 minutes. Additionally, CTC subtypes, selected protein expression levels on the CTC surface, and target mutations in selected genes can be directly analyzed for clinical utility using immunofluorescence and real-time polymerase chain reaction, and the detected PD-L1 expression in CTCs is consistent with immunohistochemical assay results. Conclusion The microfluidic-based CTC enrichment platform and downstream molecular analysis together provide a possible alternative to tissue biopsy for precision cancer management, especially for patients whose tissue biopsies are unavailable.
Collapse
Affiliation(s)
- Songhua Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Youjun Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Junyu Zhu
- Institute of Cancer Control, Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Chujian Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Longde Du
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chunguang Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiangyang Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wenyi Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chenglin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhe Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Lixu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Kai Ma
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Rui Huang
- Shenzhen Futian Research Institute, City University of Hong Kong, Shenzhen, China
| | - Xiaoyu Zhou
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Heng Zou
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Wenchong Zhang
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Yan Huang
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Zhi Li
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Tiaoping Qin
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Tao Xu
- Department of Medical Affairs, Cellomics (ShenZhen) Limited, Shenzhen, China
| | - Xiaotong Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
14
|
Akbari Z, Raoufi MA, Mirjalali S, Aghajanloo B. A review on inertial microfluidic fabrication methods. BIOMICROFLUIDICS 2023; 17:051504. [PMID: 37869745 PMCID: PMC10589053 DOI: 10.1063/5.0163970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
In recent decades, there has been significant interest in inertial microfluidics due to its high throughput, ease of fabrication, and no need for external forces. The focusing efficiency of inertial microfluidic systems relies entirely on the geometrical features of microchannels because hydrodynamic forces (inertial lift forces and Dean drag forces) are the main driving forces in inertial microfluidic devices. In the past few years, novel microchannel structures have been propounded to improve particle manipulation efficiency. However, the fabrication of these unconventional structures has remained a serious challenge. Although researchers have pushed forward the frontiers of microfabrication technologies, the fabrication techniques employed for inertial microfluidics have not been discussed comprehensively. This review introduces the microfabrication approaches used for creating inertial microchannels, including photolithography, xurography, laser cutting, micromachining, microwire technique, etching, hot embossing, 3D printing, and injection molding. The advantages and disadvantages of these methods have also been discussed. Then, the techniques are reviewed regarding resolution, structures, cost, and materials. This review provides a thorough insight into the manufacturing methods of inertial microchannels, which could be helpful for future studies to improve the harvesting yield and resolution by choosing a proper fabrication technique.
Collapse
Affiliation(s)
- Zohreh Akbari
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Sheyda Mirjalali
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Behrouz Aghajanloo
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Adel M, Allam A, Sayour AE, Ragai HF, Umezu S, Fath El-Bab AMR. Fabrication of Spiral Low-Cost Microchannel with Trapezoidal Cross Section for Cell Separation Using a Grayscale Approach. MICROMACHINES 2023; 14:1340. [PMID: 37512651 PMCID: PMC10384897 DOI: 10.3390/mi14071340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Trapezoidal cross-sectional spiral microfluidic channels showed high resolution and throughput in cell separation in bio-applications. The main challenges are the complexity and high cost of the fabrication process of trapezoidal cross-sectional channels on the micro-scale. In this work, we present the application of grayscale in microfluidic channel design to overcome the complexity of the fabrication process. We also use direct engraving with a CO2 laser beam on polymethyl methacrylate (PMMA) material to drastically reduce the microfluidic chip's cost (to <30 cents) and fabrication time (to 20 min). The capability of the present fabrication methodology for cell sorting applications is demonstrated through experimental tests for the separation of white blood cells (WBCs) from whole blood at different dilution factors. The experimental results indicated that an 800 µL/min flow rate provided the optimal separation efficiency using the fabricated chip. A 90.14% separation efficiency at 1% hematocrit diluted blood sample was reported.
Collapse
Affiliation(s)
- Mohamed Adel
- Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
- Mechanical Engineering Department, Helwan University, Cairo 11792, Egypt
| | - Ahmed Allam
- Department of Electronics and Communications Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
| | - Ashraf E Sayour
- Molecular Biomimetics Research Group, Animal Health Research Institute, Agricultural Research Center, Giza 12618, Egypt
| | - Hani F Ragai
- Electronics and Communications Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt
| | - Shinjiro Umezu
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ahmed M R Fath El-Bab
- Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
| |
Collapse
|
16
|
Gao H, Zhou J, Naderi MM, Peng Z, Papautsky I. Evolution of focused streams for viscoelastic flow in spiral microchannels. MICROSYSTEMS & NANOENGINEERING 2023; 9:73. [PMID: 37288322 PMCID: PMC10241945 DOI: 10.1038/s41378-023-00520-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 06/09/2023]
Abstract
Particle migration dynamics in viscoelastic fluids in spiral channels have attracted interest in recent years due to potential applications in the 3D focusing and label-free sorting of particles and cells. Despite a number of recent studies, the underlying mechanism of Dean-coupled elasto-inertial migration in spiral microchannels is not fully understood. In this work, for the first time, we experimentally demonstrate the evolution of particle focusing behavior along a channel downstream length at a high blockage ratio. We found that flow rate, device curvature, and medium viscosity play important roles in particle lateral migration. Our results illustrate the full focusing pattern along the downstream channel length, with side-view imaging yielding observations on the vertical migration of focused streams. Ultimately, we anticipate that these results will offer a useful guide for elasto-inertial microfluidics device design to improve the efficiency of 3D focusing in cell sorting and cytometry applications.
Collapse
Affiliation(s)
- Hua Gao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607 USA
| | - Jian Zhou
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607 USA
| | - Mohammad Moein Naderi
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607 USA
| | - Zhangli Peng
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607 USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607 USA
| |
Collapse
|
17
|
Farahinia A, Zhang W, Badea I. Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115300. [PMID: 37300027 DOI: 10.3390/s23115300] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
The treatment of cancers is a significant challenge in the healthcare context today. Spreading circulating tumor cells (CTCs) throughout the body will eventually lead to cancer metastasis and produce new tumors near the healthy tissues. Therefore, separating these invading cells and extracting cues from them is extremely important for determining the rate of cancer progression inside the body and for the development of individualized treatments, especially at the beginning of the metastasis process. The continuous and fast separation of CTCs has recently been achieved using numerous separation techniques, some of which involve multiple high-level operational protocols. Although a simple blood test can detect the presence of CTCs in the blood circulation system, the detection is still restricted due to the scarcity and heterogeneity of CTCs. The development of more reliable and effective techniques is thus highly desired. The technology of microfluidic devices is promising among many other bio-chemical and bio-physical technologies. This paper reviews recent developments in the two types of microfluidic devices, which are based on the size and/or density of cells, for separating cancer cells. The goal of this review is to identify knowledge or technology gaps and to suggest future works.
Collapse
Affiliation(s)
- Alireza Farahinia
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
18
|
Akbarnataj K, Maleki S, Rezaeian M, Haki M, Shamloo A. Novel size-based design of spiral microfluidic devices with elliptic configurations and trapezoidal cross-section for ultra-fast isolation of circulating tumor cells. Talanta 2023; 254:124125. [PMID: 36462283 DOI: 10.1016/j.talanta.2022.124125] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Investigation and analysis of circulating tumor cells (CTCs) have been valuable resources for detecting and diagnosing cancer in its early stages. Recently, enumeration and separation of CTCs via microfluidic devices have attracted significant attention due to their low cost and easy setup. In this study, novel microfluidic devices based on size-dependent cell-sorting with a trapezoidal cross-section and elliptic spiral configurations were proposed to reach label-free, ultra-fast CTCs enrichment. Firstly, the possibility and quality of separation in the devices were evaluated via a numerical simulation. Subsequently, these devices were fabricated to investigate the effects of the altering curvature and the trapezoidal cross-section on the isolation of CTCs from the peripheral blood sample at varying flow rates ranging from 0.5 mL/min to 3.5 mL/min. The experimental results indicated that the flow rate of 2.5 mL/min provided the optimal separation efficiency in the proposed devices, which was in fine agreement with the numerical analysis results. In this experiment, the purity values of CTCs between 88% and 90% were achieved, which is an indicator of the high capability of the proposed devices for the isolation and enrichment of CTCs. This strategy is hoped to overcome the limitations of classical affinity-based CTC separation approaches in the future.
Collapse
Affiliation(s)
- Kazem Akbarnataj
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran; Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sasan Maleki
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, 11155-9161, Iran
| | - Masoud Rezaeian
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, 11155-9161, Iran
| | - Mohammad Haki
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, 11155-9161, Iran
| | - Amir Shamloo
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, 11155-9161, Iran.
| |
Collapse
|
19
|
High-throughput isolation of cancer cells in spiral microchannel by changing the direction, magnitude and location of the maximum velocity. Sci Rep 2023; 13:3213. [PMID: 36828913 PMCID: PMC9958115 DOI: 10.1038/s41598-023-30275-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Circulating tumor cells (CTCs) are scarce cancer cells that rarely spread from primary or metastatic tumors inside the patient's bloodstream. Determining the genetic characteristics of these paranormal cells provides significant data to guide cancer staging and treatment. Cell focusing using microfluidic chips has been implemented as an effective method for enriching CTCs. The distinct equilibrium positions of particles with different diameters across the microchannel width in the simulation showed that it was possible to isolate and concentrate breast cancer cells (BCCs) from WBCs at a moderate Reynolds number. Therefore we demonstrate high throughput isolation of BCCs using a passive, size-based, label-free microfluidic method based on hydrodynamic forces by an unconventional (combination of long loops and U-turn) spiral microfluidic device for isolating both CTCs and WBCs with high efficiency and purity (more than 90%) at a flow rate about 1.7 mL/min, which has a high throughput compared to similar ones. At this golden flow rate, up to 92% of CTCs were separated from the cell suspension. Its rapid processing time, simplicity, and potential ability to collect CTCs from large volumes of patient blood allow the practical use of this method in many applications.
Collapse
|
20
|
Analysis of circulating tumour cells separation in a curved microchannel under a high gravitational field. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Xiang N, Ni Z. Inertial microfluidics: current status, challenges, and future opportunities. LAB ON A CHIP 2022; 22:4792-4804. [PMID: 36263793 DOI: 10.1039/d2lc00722c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inertial microfluidics uses the hydrodynamic effects induced at finite Reynolds numbers to achieve passive manipulation of particles, cells, or fluids and offers the advantages of high-throughput processing, simple channel geometry, and label-free and external field-free operation. Since its proposal in 2007, inertial microfluidics has attracted increasing interest and is currently widely employed as an important sample preparation protocol for single-cell detection and analysis. Although great success has been achieved in the inertial microfluidics field, its performance and outcome can be further improved. From this perspective, herein, we reviewed the current status, challenges, and opportunities of inertial microfluidics concerning the underlying physical mechanisms, available simulation tools, channel innovation, multistage, multiplexing, or multifunction integration, rapid prototyping, and commercial instrument development. With an improved understanding of the physical mechanisms and the development of novel channels, integration strategies, and commercial instruments, improved inertial microfluidic platforms may represent a new foundation for advancing biomedical research and disease diagnosis.
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
22
|
Shirai K, Guan G, Meihui T, Xiaoling P, Oka Y, Takahashi Y, Bhagat AAS, Yanagida M, Iwanaga S, Matsubara N, Mukohara T, Yoshida T. Hybrid double-spiral microfluidic chip for RBC-lysis-free enrichment of rare cells from whole blood. LAB ON A CHIP 2022; 22:4418-4429. [PMID: 36305222 DOI: 10.1039/d2lc00713d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drug selection and treatment monitoring via minimally invasive liquid biopsy using circulating tumor cells (CTCs) are expected to be realized in the near future. For clinical applications of CTCs, simple, high-throughput, single-step CTC isolation from whole blood without red blood cell (RBC) lysis and centrifugation remains a crucial challenge. In this study, we developed a novel cancer cell separation chip, "hybrid double-spiral chip", that involves the serial combination of two different Dean flow fractionation (DFF) separation modes of half and full Dean cycles, which is the hybrid DFF separation mode for ultra-high-throughput blood processing at high precision and size-resolution separation. The chip allows fast processing of 5 mL whole blood within 30 min without RBC lysis and centrifugation. RBC and white blood cell (WBC) depletion rates of over 99.9% and 99%, respectively, were achieved. The average recovery rate of spiked A549 cancer cells was 87% with as low as 200 cells in 5 mL blood. The device can achieve serial reduction in the number of cells from approximately 1010 cells of whole blood to 108 cells, and subsequently to an order of 106 cells. The developed method can be combined with measurements of all recovered cells using imaging flow cytometry. As proof of concept, CTCs were successfully enriched and enumerated from the blood of metastatic breast cancer patients (N = 10, 1-69 CTCs per 5 mL) and metastatic prostate cancer patients (N = 10, 1-39 CTCs per 5 mL). We believe that the developed method will be beneficial for automated clinical analysis of rare CTCs from whole blood.
Collapse
Affiliation(s)
- Kentaro Shirai
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Guofeng Guan
- Biolidics Limited, 37 Jalan Pemimpin, 577177 Singapore
| | - Tan Meihui
- Biolidics Limited, 37 Jalan Pemimpin, 577177 Singapore
| | - Peng Xiaoling
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Yuma Oka
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Yusuke Takahashi
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | | | | | - Shigeki Iwanaga
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Nobuaki Matsubara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Japan
| | - Tomokazu Yoshida
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| |
Collapse
|
23
|
Ni C, Zhou Z, Zhu Z, Jiang D, Xiang N. Controllable Size-Independent Three-Dimensional Inertial Focusing in High-Aspect-Ratio Asymmetric Serpentine Microchannels. Anal Chem 2022; 94:15639-15647. [DOI: 10.1021/acs.analchem.2c02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Ni
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Zheng Zhou
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Zhixian Zhu
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| | - Di Jiang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing210037, China
- Jiangsu Yuyue Medical Equipment and Supply Co., Ltd., Jiangsu, Danyang212300, China
| | - Nan Xiang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing211189, China
| |
Collapse
|
24
|
Xu X, Huang X, Sun J, Chen J, Wu G, Yao Y, Zhou N, Wang S, Sun L. 3D-Stacked Multistage Inertial Microfluidic Chip for High-Throughput Enrichment of Circulating Tumor Cells. CYBORG AND BIONIC SYSTEMS 2022; 2022:9829287. [PMID: 38645277 PMCID: PMC11030111 DOI: 10.34133/2022/9829287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
Whether for cancer diagnosis or single-cell analysis, it remains a major challenge to isolate the target sample cells from a large background cell for high-efficiency downstream detection and analysis in an integrated chip. Therefore, in this paper, we propose a 3D-stacked multistage inertial microfluidic sorting chip for high-throughput enrichment of circulating tumor cells (CTCs) and convenient downstream analysis. In this chip, the first stage is a spiral channel with a trapezoidal cross-section, which has better separation performance than a spiral channel with a rectangular cross-section. The second and third stages adopt symmetrical square serpentine channels with different rectangular cross-section widths for further separation and enrichment of sample cells reducing the outlet flow rate for easier downstream detection and analysis. The multistage channel can separate 5 μm and 15 μm particles with a separation efficiency of 92.37% and purity of 98.10% at a high inlet flow rate of 1.3 mL/min. Meanwhile, it can separate tumor cells (SW480, A549, and Caki-1) from massive red blood cells (RBCs) with a separation efficiency of >80%, separation purity of >90%, and a concentration fold of ~20. The proposed work is aimed at providing a high-throughput sample processing system that can be easily integrated with flowing sample detection methods for rapid CTC analysis.
Collapse
Affiliation(s)
- X. Xu
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang, China
| | - X. Huang
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang, China
| | - J. Sun
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang, China
| | - J. Chen
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang, China
| | - G. Wu
- Institute for Translational Medicine, Zhejiang University, Hangzhou, 310029 Zhejiang, China
| | - Y. Yao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024 Zhejiang, China
| | - N. Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024 Zhejiang, China
| | - S. Wang
- Institute for Translational Medicine, Zhejiang University, Hangzhou, 310029 Zhejiang, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - L. Sun
- Ministry of Education Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang, China
| |
Collapse
|
25
|
Microfluidic-Based Novel Optical Quantification of Red Blood Cell Concentration in Blood Flow. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9060247. [PMID: 35735490 PMCID: PMC9219653 DOI: 10.3390/bioengineering9060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
The optical quantification of hematocrit (volumetric percentage of red blood cells) in blood flow in microfluidic systems provides enormous help in designing microfluidic biosensing platforms with enhanced sensitivity. Although several existing methods, such as centrifugation, complete blood cell count, etc., have been developed to measure the hematocrit of the blood at the sample preparation stage, these methods are impractical to measure the hematocrit in dynamic microfluidic blood flow cases. An easy-to-access optical method has emerged as a hematocrit quantification technique to address this limitation, especially for the microfluidic-based biosensing platform. A novel optical quantification method is demonstrated in this study, which can measure the hematocrit of the blood flow at a targeted location in a microchannel at any given instant. The images of the blood flow were shot using a high-speed camera through an inverted transmission microscope at various light source intensities, and the grayscale of the images was measured using an image processing code. By measuring the average grayscale of the images of blood flow at different luminous exposures, a relationship between hematocrit and grayscale has been developed. The quantification of the hematocrit in the microfluidic system can be instant and easy with this method. The innovative proposed technique has been evaluated with porcine blood samples with hematocrit ranging from 5% to 70%, flowing through 1000 µm wide and 100 µm deep microchannels. The experimental results obtained strongly supported the proposed optical technique of hematocrit measurement in microfluidic systems.
Collapse
|
26
|
Ebrahimi S, Tahmasebipour M. Numerical Study of a Centrifugal Platform for the Inertial Separation of Circulating Tumor Cells Using Contraction-Expansion Array Microchannels. ARCHIVES OF RAZI INSTITUTE 2022; 77:647-660. [PMID: 36284940 PMCID: PMC9548281 DOI: 10.22092/ari.2022.357477.2046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 06/15/2023]
Abstract
Label-free inertial separation of the circulating tumor cells (CTCs) has attracted significant attention recently. The present study proposed a centrifugal platform for the inertial separation of the CTCs from the white blood cells. Particle trajectories of the contraction-expansion array (CEA) microchannels were analyzed by the finite element method. Four expansion geometries (i.e., circular, rectangular, trapezoidal, and triangular) were compared to explore their differences in separation possibilities. Different operational and geometrical parameters were investigated to achieve maximum separation efficiency. Results indicated that the trapezoidal CEA microchannel with ten expansions and a 100 µm channel depth had the best separation performance at an angular velocity of 100 rad/s. Reynolds number of 47 was set as the optimum value to apply minimum shear stress on the CTCs leading to 100% efficiency and 95% purity. Furthermore, the proposed system was simulated for whole blood by considering the red blood cells.
Collapse
Affiliation(s)
- Sh Ebrahimi
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14395 -1561, Iran
- Micro/Nanofabrication Technologies Lab, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14395 -1561, Iran
| | - M Tahmasebipour
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14395 -1561, Iran
- Micro/Nanofabrication Technologies Lab, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14395 -1561, Iran
| |
Collapse
|
27
|
Jeon H, Cremers C, Le D, Abell J, Han J. Multi-dimensional-double-spiral (MDDS) inertial microfluidic platform for sperm isolation directly from the raw semen sample. Sci Rep 2022; 12:4212. [PMID: 35273303 PMCID: PMC8913683 DOI: 10.1038/s41598-022-08042-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Here, we propose a fully-automated platform using a spiral inertial microfluidic device for standardized semen preparation that can process patient-derived semen samples with diverse fluidic conditions without any pre-washing steps. We utilized the multi-dimensional double spiral (MDDS) device to effectively isolate sperm cells from other non-sperm seminal cells (e.g., leukocytes) in the semen sample. The recirculation platform was employed to minimize sample dependency and achieve highly purified and concentrated (up to tenfold) sperm cells in a rapid and fully-automated manner (~ 10 min processing time for 50 mL of diluted semen sample). The clinical (raw) semen samples obtained from healthy donors were directly used without any pre-washing step to evaluate the developed separation platform, which showed excellent performance with ~ 80% of sperm cell recovery, and > 99.95% and > 98% removal of 10-μm beads (a surrogate for leukocytes) from low-viscosity and high-viscosity semen samples, respectively. We expect that the novel platform will be an efficient and automated tool to achieve purified sperm cells directly from raw semen samples for assisted reproductive technologies (ARTs) as an alternative to density centrifugation or swim-up methods, which often suffer from the low recovery of sperm cells and labor-intensive steps.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Claudia Cremers
- Ohana Biosciences, 20 Acorn Park Dr, Cambridge, MA, 02140, USA
| | - Doris Le
- Ohana Biosciences, 20 Acorn Park Dr, Cambridge, MA, 02140, USA
| | - Justin Abell
- Ohana Biosciences, 20 Acorn Park Dr, Cambridge, MA, 02140, USA
| | - Jongyoon Han
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA. .,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| |
Collapse
|
28
|
Tang H, Niu J, Jin H, Lin S, Cui D. Geometric structure design of passive label-free microfluidic systems for biological micro-object separation. MICROSYSTEMS & NANOENGINEERING 2022; 8:62. [PMID: 35685963 PMCID: PMC9170746 DOI: 10.1038/s41378-022-00386-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/27/2022] [Accepted: 03/18/2022] [Indexed: 05/05/2023]
Abstract
Passive and label-free microfluidic devices have no complex external accessories or detection-interfering label particles. These devices are now widely used in medical and bioresearch applications, including cell focusing and cell separation. Geometric structure plays the most essential role when designing a passive and label-free microfluidic chip. An exquisitely designed geometric structure can change particle trajectories and improve chip performance. However, the geometric design principles of passive and label-free microfluidics have not been comprehensively acknowledged. Here, we review the geometric innovations of several microfluidic schemes, including deterministic lateral displacement (DLD), inertial microfluidics (IMF), and viscoelastic microfluidics (VEM), and summarize the most creative innovations and design principles of passive and label-free microfluidics. We aim to provide a guideline for researchers who have an interest in geometric innovations of passive label-free microfluidics.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Han Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Shujing Lin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| |
Collapse
|
29
|
Abdulla A, Zhang T, Li S, Guo W, Warden AR, Xin Y, Maboyi N, Lou J, Xie H, Ding X. Integrated microfluidic single-cell immunoblotting chip enables high-throughput isolation, enrichment and direct protein analysis of circulating tumor cells. MICROSYSTEMS & NANOENGINEERING 2022; 8:13. [PMID: 35136652 PMCID: PMC8807661 DOI: 10.1038/s41378-021-00342-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 05/14/2023]
Abstract
Effective capture and analysis of a single circulating tumor cell (CTC) is instrumental for early diagnosis and personalized therapy of tumors. However, due to their extremely low abundance and susceptibility to interference from other cells, high-throughput isolation, enrichment, and single-cell-level functional protein analysis of CTCs within one integrated system remains a major challenge. Herein, we present an integrated multifunctional microfluidic system for highly efficient and label-free CTC isolation, CTC enrichment, and single-cell immunoblotting (ieSCI). The ieSCI-chip is a multilayer microfluidic system that combines an inertia force-based cell sorter with a membrane filter for label-free CTC separation and enrichment and a thin layer of a photoactive polyacrylamide gel with microwell arrays at the bottom of the chamber for single-cell immunoblotting. The ieSCI-chip successfully identified a subgroup of apoptosis-negative (Bax-negative) cells, which traditional bulk analysis did not detect, from cisplatin-treated cells. Furthermore, we demonstrated the clinical application of the ieSCI-chip with blood samples from breast cancer patients for personalized CTC epithelial-to-mesenchymal transition (EMT) analysis. The expression level of a tumor cell marker (EpCAM) can be directly determined in isolated CTCs at the single-cell level, and the therapeutic response to anticancer drugs can be simultaneously monitored. Therefore, the ieSCI-chip provides a promising clinical translational tool for clinical drug response monitoring and personalized regimen development.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- Project by National Innovation Special Zone, Project 2017SHZDZX01, 17DZ2203400, and 18430760500 by Shanghai Municipal Science and Technology, Project G20180101 by Shanghai Agriculture Applied Technology Development Program, Project ZXWF082101 by Shanghai Municipal Education Commission, Project 2017ZX10203205-006-002 by National Key Research and Development Program of China, Project 19X190020154, ZH2018ZDA01, YG2016QN24 and YG2016MS60 by Shanghai Jiao Tong University Biomedical Interdisciplinary Program, Project ZH2018QNA54 and ZH2018QNA49 by the Medical-Engineering Cross Foundation of Shanghai Jiao Tong University, Project 2019CXJQ03 by Innovation Group Project of Shanghai Municipal Health Comission, Project 19MC1910800 by Shanghai Clinical Medical Research Center, Project SD0820016 by the third batch of industrialization project of Innovation Incubation Fund of Nantong and Shanghai Jiao Tong University, Project SL2020MS026 by the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University, Project Agri-X20200101 by Shanghai Jiao Tong University, SJTU Global Strategic Partnership Fund (2020 SJTU-HUJI).
Collapse
Affiliation(s)
- Aynur Abdulla
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Ting Zhang
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Shanhe Li
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Wenke Guo
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Antony R. Warden
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Yufang Xin
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Nokuzola Maboyi
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Jiatao Lou
- Shanghai General Hospital, Shanghai Jiao Tong University, No.85 Wujing Road, Shanghai, 200080 China
| | - Haiyang Xie
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| |
Collapse
|
30
|
Hassanpour Tamrin S, Sanati Nezhad A, Sen A. Label-Free Isolation of Exosomes Using Microfluidic Technologies. ACS NANO 2021; 15:17047-17079. [PMID: 34723478 DOI: 10.1021/acsnano.1c03469] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exosomes are cell-derived structures packaged with lipids, proteins, and nucleic acids. They exist in diverse bodily fluids and are involved in physiological and pathological processes. Although their potential for clinical application as diagnostic and therapeutic tools has been revealed, a huge bottleneck impeding the development of applications in the rapidly burgeoning field of exosome research is an inability to efficiently isolate pure exosomes from other unwanted components present in bodily fluids. To date, several approaches have been proposed and investigated for exosome separation, with the leading candidate being microfluidic technology due to its relative simplicity, cost-effectiveness, precise and fast processing at the microscale, and amenability to automation. Notably, avoiding the need for exosome labeling represents a significant advance in terms of process simplicity, time, and cost as well as protecting the biological activities of exosomes. Despite the exciting progress in microfluidic strategies for exosome isolation and the countless benefits of label-free approaches for clinical applications, current microfluidic platforms for isolation of exosomes are still facing a series of problems and challenges that prevent their use for clinical sample processing. This review focuses on the recent microfluidic platforms developed for label-free isolation of exosomes including those based on sieving, deterministic lateral displacement, field flow, and pinched flow fractionation as well as viscoelastic, acoustic, inertial, electrical, and centrifugal forces. Further, we discuss advantages and disadvantages of these strategies with highlights of current challenges and outlook of label-free microfluidics toward the clinical utility of exosomes.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, CCIT 125, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati Nezhad
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, CCIT 125, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
31
|
Xu X, Huang X, Sun J, Wang R, Yao J, Han W, Wei M, Chen J, Guo J, Sun L, Yin M. Recent progress of inertial microfluidic-based cell separation. Analyst 2021; 146:7070-7086. [PMID: 34761757 DOI: 10.1039/d1an01160j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell separation has consistently been a pivotal technology of sample preparation in biomedical research. Compared with conventional bulky cell separation technologies applied in the clinic, cell separation based on microfluidics can accurately manipulate the displacement of liquid or cells at the microscale, which has great potential in point-of-care testing (POCT) applications due to small device size, low cost, low sample consumption, and high operating accuracy. Among various microfluidic cell separation technologies, inertial microfluidics has attracted great attention due to its simple structure and high throughput. In recent years, many researchers have explored the principles and applications of inertial microfluidics and developed different channel structures, including straight channels, curved channels, and multistage channels. However, the recently developed multistage channels have not been discussed and classified in detail compared with more widely discussed straight and curved channels. Therefore, in this review, a comprehensive and detailed review of recent progress in the multistage channel is presented. According to the channel structure, the inertial microfluidic separation technology is divided into (i) straight channel, (ii) curved channel, (iii) composite channel, and (iv) integrated device. The structural development of straight and curved channels is discussed in detail. And based on straight and curved channels, the multistage cell separation structures are reviewed, with a special focus on a variety of latest structures and related innovations of composite and integrated channels. Finally, the future prospects for the existing challenges in the development of inertial microfluidic cell separation technology are presented.
Collapse
Affiliation(s)
- Xuefeng Xu
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Xiwei Huang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jingjing Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Renjie Wang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jiangfan Yao
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Wentao Han
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Maoyu Wei
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jin Chen
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jinhong Guo
- School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lingling Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Ming Yin
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
32
|
Mehran A, Rostami P, Saidi MS, Firoozabadi B, Kashaninejad N. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section. BIOSENSORS 2021; 11:bios11110406. [PMID: 34821622 PMCID: PMC8615462 DOI: 10.3390/bios11110406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 06/12/2023]
Abstract
Rapid isolation of white blood cells (WBCs) from whole blood is an essential part of any WBC examination platform. However, most conventional cell separation techniques are labor-intensive and low throughput, require large volumes of samples, need extensive cell manipulation, and have low purity. To address these challenges, we report the design and fabrication of a passive, label-free microfluidic device with a unique U-shaped cross-section to separate WBCs from whole blood using hydrodynamic forces that exist in a microchannel with curvilinear geometry. It is shown that the spiral microchannel with a U-shaped cross-section concentrates larger blood cells (e.g., WBCs) in the inner cross-section of the microchannel by moving smaller blood cells (e.g., RBCs and platelets) to the outer microchannel section and preventing them from returning to the inner microchannel section. Therefore, it overcomes the major limitation of a rectangular cross-section where secondary Dean vortices constantly enforce particles throughout the entire cross-section and decrease its isolation efficiency. Under optimal settings, we managed to isolate more than 95% of WBCs from whole blood under high-throughput (6 mL/min), high-purity (88%), and high-capacity (360 mL of sample in 1 h) conditions. High efficiency, fast processing time, and non-invasive WBC isolation from large blood samples without centrifugation, RBC lysis, cell biomarkers, and chemical pre-treatments make this method an ideal choice for downstream cell study platforms.
Collapse
Affiliation(s)
- Amirhossein Mehran
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11155, Iran; (A.M.); (P.R.); (M.S.S.)
| | - Peyman Rostami
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11155, Iran; (A.M.); (P.R.); (M.S.S.)
| | - Mohammad Said Saidi
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11155, Iran; (A.M.); (P.R.); (M.S.S.)
| | - Bahar Firoozabadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11155, Iran; (A.M.); (P.R.); (M.S.S.)
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| |
Collapse
|
33
|
Kwon T, Choi K, Han J. Separation of Ultra-High-Density Cell Suspension via Elasto-Inertial Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101880. [PMID: 34396694 DOI: 10.1002/smll.202101880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Indexed: 05/20/2023]
Abstract
Separation of high-density suspension particles at high throughput is crucial for many chemical, biomedical, and environmental applications. In this study, elasto-inertial microfluidics is used to manipulate ultra-high-density cells to achieve stable equilibrium positions in microchannels, aided by the inherent viscoelasticity of high-density cell suspension. It is demonstrated that ultra-high-density Chinese hamster ovary cell suspension (>26 packed cell volume% (PCV%), >95 million cells mL-1 ) can be focused at distinct lateral equilibrium positions under high-flow-rate conditions (up to 10 mL min-1 ). The effect of flow rates, channel dimensions, and cell densities on this unique focusing behavior is studied. Cell clarification is further demonstrated using this phenomenon, from 29.7 PCV% (108.1 million cells mL-1 ) to 8.3 PCV% (33.2 million cells mL-1 ) with overall 72.1% reduction efficiency and 10 mL min-1 processing rate. This work explores an extreme case of elasto-inertial particle focusing where ultra-high-density culture suspension is efficiently manipulated at high throughput. This result opens up new opportunities for practical applications of high-particle-density suspension manipulation.
Collapse
Affiliation(s)
- Taehong Kwon
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA, 02142, USA
| | - Kyungyong Choi
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA, 02142, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA, 02142, USA
| | - Jongyoon Han
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA, 02142, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, MA, 02142, USA
| |
Collapse
|
34
|
Dean migration of unfocused micron sized particles in low aspect ratio spiral microchannels. Biomed Microdevices 2021; 23:40. [PMID: 34309731 DOI: 10.1007/s10544-021-00575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
We present an analysis of the microfluidic Dean migration of 2.5 µm particles, which do not meet focus criterion, in tall and low aspect ratio microchannels. We demonstrate the use of such low aspect ratio and tall spirals (h > 50 µm) for isolating high concentration (> 106 particles or cells/mL) micron sized particles without an initial off-chip dilution step. We specifically show the need for a sheath fluid for isolation and systematically analyze the particle stream profile (i.e. thickness and distance from the channel wall) as a function of downstream channel length and curvature ratio, with changes in the fluid velocity and the flow rate ratio of particles to sheath fluid (FRR). We also show that the width of the particle stream can control the particle migration and that a threshold stream width and Dean drag is necessary to initiate the particle stream migration from the channel wall. We then propose a design guide based on the selection of optimum curvatures, flow velocities and the FRRs required for achieving a narrow particle stream through a particular outlet. Finally, we use the design guide to demonstrate the isolation of bacteria from bladder epithelial cells.
Collapse
|
35
|
Wang Y, Nunna BB, Talukder N, Etienne EE, Lee ES. Blood Plasma Self-Separation Technologies during the Self-Driven Flow in Microfluidic Platforms. Bioengineering (Basel) 2021; 8:94. [PMID: 34356201 PMCID: PMC8301051 DOI: 10.3390/bioengineering8070094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Blood plasma is the most commonly used biofluid in disease diagnostic and biomedical analysis due to it contains various biomarkers. The majority of the blood plasma separation is still handled with centrifugation, which is off-chip and time-consuming. Therefore, in the Lab-on-a-chip (LOC) field, an effective microfluidic blood plasma separation platform attracts researchers' attention globally. Blood plasma self-separation technologies are usually divided into two categories: active self-separation and passive self-separation. Passive self-separation technologies, in contrast with active self-separation, only rely on microchannel geometry, microfluidic phenomena and hydrodynamic forces. Passive self-separation devices are driven by the capillary flow, which is generated due to the characteristics of the surface of the channel and its interaction with the fluid. Comparing to the active plasma separation techniques, passive plasma separation methods are more considered in the microfluidic platform, owing to their ease of fabrication, portable, user-friendly features. We propose an extensive review of mechanisms of passive self-separation technologies and enumerate some experimental details and devices to exploit these effects. The performances, limitations and challenges of these technologies and devices are also compared and discussed.
Collapse
Affiliation(s)
- Yudong Wang
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Bharath Babu Nunna
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA
| | - Niladri Talukder
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Ernst Emmanuel Etienne
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Eon Soo Lee
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| |
Collapse
|
36
|
Fallahi H, Yadav S, Phan HP, Ta H, Zhang J, Nguyen NT. Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. LAB ON A CHIP 2021; 21:2008-2018. [PMID: 34008666 DOI: 10.1039/d1lc00082a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Inertial microfluidics is a simple, low cost, efficient size-based separation technique which is being widely investigated for rare-cell isolation and detection. Due to the fixed geometrical dimensions of the current rigid inertial microfluidic systems, most of them are only capable of isolating and separating cells with certain types and sizes. Herein, we report the design, fabrication, and validation of a stretchable inertial microfluidic device with a tuneable separation threshold that can be used for heterogenous mixtures of particles and cells. Stretchability allows for the fine-tuning of the critical sorting size, resulting in a high separation resolution that makes the separation of cells with small size differences possible. We validated the tunability of the separation threshold by stretching the length of a microchannel to separate the particle sizes of interest. We also evaluated the focusing efficiency, flow behaviour, and the positions of cancer cells and white blood cells (WBCs) in an elongated channel, separately. In addition, the performance of the device was verified by isolating cancer cells from WBCs which revealed a high recovery rate and purity. The stretchable chip showed promising results in the separation of cells with comparable sizes. Further validation of the chip using whole blood spiked with cancer cells delivered a 98.6% recovery rate with 90% purity. Elongating a stretchable microfluidic chip enables onsite modification of the dimensions of a microchannel leading to a precise tunability of the separation threshold as well as a high separation resolution.
Collapse
Affiliation(s)
- Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hoang-Phuong Phan
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hang Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
37
|
Qamareen A, Ansari MA, Alam SS, Alazzam A. Modulation of secondary flows in curved serpentine micromixers. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1887153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Arees Qamareen
- Department of Mechanical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Mubashshir A. Ansari
- Department of Mechanical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Shah S. Alam
- Department of Mechanical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Anas Alazzam
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
38
|
Tavassoli H, Rorimpandey P, Kang YC, Carnell M, Brownlee C, Pimanda JE, Chan PPY, Chandrakanthan V. Label-Free Isolation and Single Cell Biophysical Phenotyping Analysis of Primary Cardiomyocytes Using Inertial Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006176. [PMID: 33369875 DOI: 10.1002/smll.202006176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/23/2020] [Indexed: 06/12/2023]
Abstract
To advance the understanding of cardiomyocyte (CM) identity and function, appropriate tools to isolate pure primary CMs are needed. A label-free method to purify viable CMs from mouse neonatal hearts is developed using a simple particle size-based inertial microfluidics biochip achieving purities of over 90%. Purified CMs are viable and retained their identity and function as depicted by the expression of cardiac-specific markers and contractility. The physico-mechanical properties of sorted cells are evaluated using downstream real-time deformability cytometry. CMs exhibited different physico-mechanical properties when compared with non-CMs. Taken together, this CM isolation and phenotyping method could serve as a valuable tool to progress the understanding of CM identity and function, and ultimately benefit cell therapy and diagnostic applications.
Collapse
Affiliation(s)
- Hossein Tavassoli
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Prunella Rorimpandey
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Young Chan Kang
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Carnell
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chris Brownlee
- Flow Cytometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John E Pimanda
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, 2052, Australia
| | - Peggy P Y Chan
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Vashe Chandrakanthan
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
39
|
Zhou J, Papautsky I. Resolving dynamics of inertial migration in straight and curved microchannels by direct cross-sectional imaging. BIOMICROFLUIDICS 2021; 15:014101. [PMID: 33425090 PMCID: PMC7785325 DOI: 10.1063/5.0032653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 06/09/2023]
Abstract
The explosive development of inertial microfluidic systems for label-free sorting and isolation of cells demands improved understanding of the underlying physics that dictate the intriguing phenomenon of size-dependent migration in microchannels. Despite recent advances in the physics underlying inertial migration, migration dynamics in 3D is not fully understood. These investigations are hampered by the lack of easy access to the channel cross section. In this work, we report on a simple method of direct imaging of the channel cross section that is orthogonal to the flow direction using a common inverted microscope, providing vital information on the 3D cross-sectional migration dynamics. We use this approach to revisit particle migration in both straight and curved microchannels. In the rectangular channel, the high-resolution cross-sectional images unambiguously confirm the two-stage migration model proposed earlier. In the curved channel, we found two vertical equilibrium positions and elucidate the size-dependent vertical and horizontal migration dynamics. Based on these results, we propose a critical ratio of blockage ratio (β) to Dean number (De) where no net lateral migration occurs (β/De ∼ 0.01). This dimensionless number (β/De) predicts the direction of lateral migration (inward or outward) in curved and spiral channels, and thus serves as a guideline in design of such channels for particle and cell separation applications. Ultimately, the new approach to direct imaging of the channel cross section enables a wealth of previously unavailable information on the dynamics of inertial migration, which serves to improve our understanding of the underlying physics.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, 218 SEO, Chicago, Illinois 60607, USA
| | - Ian Papautsky
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, 218 SEO, Chicago, Illinois 60607, USA
| |
Collapse
|
40
|
|
41
|
Huang D, Man J, Jiang D, Zhao J, Xiang N. Inertial microfluidics: Recent advances. Electrophoresis 2020; 41:2166-2187. [PMID: 33027533 DOI: 10.1002/elps.202000134] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 02/24/2024]
Abstract
Inertial microfluidics has attracted significant attentions in last decade due to its superior advantages of high throughput, label- and external field-free operation, simplicity, and low cost. A wide variety of channel geometry designs were demonstrated for focusing, concentrating, isolating, or separating of various bioparticles such as blood components, circulating tumor cells, bacteria, and microalgae. In this review, we first briefly introduce the physics of inertial migration and Dean flow for allowing the readers with diverse backgrounds to have a better understanding of the fundamental mechanisms of inertial microfluidics. Then, we present a comprehensive review of the recent advances and applications of inertial microfluidic devices according to different channel geometries ranging from straight channels, curved channels to contraction-expansion-array channels. Finally, the challenges and future perspective of inertial microfluidics are discussed. Owing to its superior benefit for particle manipulation, the inertial microfluidics will play a more important role in biology and medicine applications.
Collapse
Affiliation(s)
- Di Huang
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Jiaxiang Man
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jiyun Zhao
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
42
|
Huang Y, Yu S, Chao S, Wu L, Tao M, Situ B, Ye X, Zhang Y, Luo S, Chen W, Jiang X, Guan G, Zheng L. Isolation of circulating fetal trophoblasts by a four-stage inertial microfluidic device for single-cell analysis and noninvasive prenatal testing. LAB ON A CHIP 2020; 20:4342-4348. [PMID: 33155006 DOI: 10.1039/d0lc00895h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Noninvasive detection of circulating fetal cells carrying the entire fetal genome is a promising way for prenatal testing of genetic diseases. However, ideal approaches for efficient separation of these valuable cells are not available. Here, a novel inertial microfluidic chip (CelutriateChip 1) is developed for ultra-fast, label-free enrichment of circulating trophoblasts (CTBs) from the whole blood samples of pregnant women. The unique structural design of the four-stage curved channel in CelutriateChip 1 enables CTBs with larger size to be efficiently separated from the blood samples under the effect of inertial and Dean drag forces. The transition of the target cells among the stages enables CelutriateChip 1 to achieve one or two orders of magnitude higher throughput compared to single channel inertial microfluidic chips. After optimization of conditions, CTBs can be recovered from 2 mL of whole blood within 5 min with an average recovery efficiency ranging from 52.3% to 65.8% and high white blood cell depletion (99.95%). CTBs collected from the chip can be isolated at the single-cell level and used for downstream immunofluorescence staining and genetic genotyping. Clinical tests are performed on 30 pregnant women and the results demonstrate that CTBs are obtainable in 86.67% of pregnancy cases. A single-base variant in the HBB gene can be accurately detected by sequencing of rare CTBs. This simple, antibody-free and low-cost approach holds promise for obtaining rare CTBs for prenatal detection of various genetic diseases.
Collapse
Affiliation(s)
- Yifang Huang
- Department of Laboratory Medicine and, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Guglielmi R, Lai Z, Raba K, van Dalum G, Wu J, Behrens B, Bhagat AAS, Knoefel WT, Neves RPL, Stoecklein NH. Technical validation of a new microfluidic device for enrichment of CTCs from large volumes of blood by using buffy coats to mimic diagnostic leukapheresis products. Sci Rep 2020; 10:20312. [PMID: 33219265 PMCID: PMC7680114 DOI: 10.1038/s41598-020-77227-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/29/2020] [Indexed: 02/04/2023] Open
Abstract
Diagnostic leukapheresis (DLA) enables to sample larger blood volumes and increases the detection of circulating tumor cells (CTC) significantly. Nevertheless, the high excess of white blood cells (WBC) of DLA products remains a major challenge for further downstream CTC enrichment and detection. To address this problem, we tested the performance of two label-free CTC technologies for processing DLA products. For the testing purposes, we established ficollized buffy coats (BC) with a WBC composition similar to patient-derived DLA products. The mimicking-DLA samples (with up to 400 × 106 WBCs) were spiked with three different tumor cell lines and processed with two versions of a spiral microfluidic chip for label-free CTC enrichment: the commercially available ClearCell FR1 biochip and a customized DLA biochip based on a similar enrichment principle, but designed for higher throughput of cells. While the samples processed with FR1 chip displayed with increasing cell load significantly higher WBC backgrounds and decreasing cell recovery, the recovery rates of the customized DLA chip were stable, even if challenged with up to 400 × 106 WBCs (corresponding to around 120 mL peripheral blood or 10% of a DLA product). These results indicate that the further up-scalable DLA biochip has potential to process complete DLA products from 2.5 L of peripheral blood in an affordable way to enable high-volume CTC-based liquid biopsies.
Collapse
Affiliation(s)
- R Guglielmi
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - Z Lai
- Biolidics Limited, Singapore, Singapore
| | - K Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - G van Dalum
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - J Wu
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - B Behrens
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - A A S Bhagat
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - W T Knoefel
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - R P L Neves
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany
| | - N H Stoecklein
- Department of General, Visceral and Pediatric Surgery, University Hospital, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Bldg. 12.46, 40225, Duesseldorf, Germany.
| |
Collapse
|
44
|
Lu X, Chow JJM, Koo SH, Tan TY, Jiang B, Ai Y. Enhanced Molecular Diagnosis of Bloodstream Candida Infection with Size-Based Inertial Sorting at Submicron Resolution. Anal Chem 2020; 92:15579-15586. [DOI: 10.1021/acs.analchem.0c03718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoguang Lu
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 487372 Singapore
| | - Joycelyn Jia Ming Chow
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 487372 Singapore
| | - Seok Hwee Koo
- Clinical Trials & Research Unit, Changi General Hospital, 529889 Singapore
| | - Thean Yen Tan
- Clinical Trials & Research Unit, Changi General Hospital, 529889 Singapore
| | - Boran Jiang
- Department of Laboratory Medicine, Changi General Hospital, 529889 Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 487372 Singapore
| |
Collapse
|
45
|
Palumbo J, Navi M, Tsai SSH, Spelt JK, Papini M. Lab on a rod: Size-based particle separation and sorting in a helical channel. BIOMICROFLUIDICS 2020; 14:064104. [PMID: 33224403 PMCID: PMC7661098 DOI: 10.1063/5.0030917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Size-based particle separation using inertial microfluidics in spiral channels has been well studied over the past decade. Though these devices can effectively separate particles, they require a relatively large device footprint with a typical outer channel radius of approximately 15 mm. In this paper, we describe a microfluidic device with a footprint diameter of 5.5 mm, containing a helical channel capable of inertial particle separation fabricated using abrasive jet micromachining. The separation of particles in several channel geometries was studied using wide-field fluorescence microscopy. A maximum separation efficiency of approximately 90% was achieved at a flow rate of 1.5 ml/min with a purity of approximately 95% at the outlet, where large particles were collected. An accompanying computational fluid dynamics model was developed to allow researchers to quickly assess the separation capability of their helical or spiral devices.
Collapse
Affiliation(s)
- Joshua Palumbo
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | | | | | - Jan K. Spelt
- Authors to whom correspondence should be addressed:, Tel.: +1 416 978 5435, Fax: +1 416 978 7753 and , Tel.: +1 416 979 5000 ext. 7655, Fax: +1 416 979 5265
| | - Marcello Papini
- Authors to whom correspondence should be addressed:, Tel.: +1 416 978 5435, Fax: +1 416 978 7753 and , Tel.: +1 416 979 5000 ext. 7655, Fax: +1 416 979 5265
| |
Collapse
|
46
|
Tang W, Zhu S, Jiang D, Zhu L, Yang J, Xiang N. Channel innovations for inertial microfluidics. LAB ON A CHIP 2020; 20:3485-3502. [PMID: 32910129 DOI: 10.1039/d0lc00714e] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inertial microfluidics has gained significant attention since first being proposed in 2007 owing to the advantages of simplicity, high throughput, precise manipulation, and freedom from an external field. Superior performance in particle focusing, filtering, concentrating, and separating has been demonstrated. As a passive technology, inertial microfluidics technology relies on the unconventional use of fluid inertia in an intermediate Reynolds number range to induce inertial migration and secondary flow, which depend directly on the channel structure, leading to particle migration to the lateral equilibrium position or trapping in a specific cavity. With the advances in micromachining technology, many channel structures have been designed and fabricated in the past decade to explore the fundamentals and applications of inertial microfluidics. However, the channel innovations for inertial microfluidics have not been discussed comprehensively. In this review, the inertial particle manipulations and underlying physics in conventional channels, including straight, spiral, sinusoidal, and expansion-contraction channels, are briefly described. Then, recent innovations in channel structure for inertial microfluidics, especially channel pattern modification and unconventional cross-sectional shape, are reviewed. Finally, the prospects for future channel innovations in inertial microfluidic chips are also discussed. The purpose of this review is to provide guidance for the continued study of innovative channel designs to improve further the accuracy and throughput of inertial microfluidics.
Collapse
Affiliation(s)
- Wenlai Tang
- School of Electrical and Automation Engineering, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, 210023, China.
| | | | | | | | | | | |
Collapse
|
47
|
Jeon H, Jundi B, Choi K, Ryu H, Levy BD, Lim G, Han J. Fully-automated and field-deployable blood leukocyte separation platform using multi-dimensional double spiral (MDDS) inertial microfluidics. LAB ON A CHIP 2020; 20:3612-3624. [PMID: 32990714 DOI: 10.1039/d0lc00675k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A fully-automated and portable leukocyte separation platform was developed based on a new type of inertial microfluidic device, multi-dimensional double spiral (MDDS) device, as an alternative to centrifugation. By combining key innovations in inertial microfluidic device designs and check-valve-based recirculation processes, highly purified and concentrated WBCs (up to >99.99% RBC removal, ∼80% WBC recovery, >85% WBC purity, and ∼12-fold concentrated WBCs compared to the input sample) were achieved in less than 5 minutes, with high reliability and repeatability (coefficient of variation, CV < 5%). Using this, one can harvest up to 0.4 million of intact WBCs from 50 μL of human peripheral blood (50 μL), without any cell damage or phenotypic changes in a fully-automated operation. Alternatively, hand-powered operation is demonstrated with comparable separation efficiency and speed, which eliminates the need for electricity altogether for truly field-friendly sample preparation. The proposed platform is therefore highly deployable for various point-of-care applications, including bedside assessment of the host immune response and blood sample processing in resource-limited environments.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. and Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Bakr Jundi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kyungyong Choi
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Hyunryul Ryu
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Geunbae Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jongyoon Han
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA and Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| |
Collapse
|
48
|
Natu R, Guha S, Dibaji SAR, Herbertson L. Assessment of Flow through Microchannels for Inertia-Based Sorting: Steps toward Microfluidic Medical Devices. MICROMACHINES 2020; 11:E886. [PMID: 32987728 PMCID: PMC7598645 DOI: 10.3390/mi11100886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
The development of new standardized test methods would allow for the consistent evaluation of microfluidic medical devices and enable high-quality products to reach the market faster. A comprehensive flow characterization study was conducted to identify regulatory knowledge gaps using a generic inertia-based spiral channel model for particle sorting and facilitate standards development in the microfluidics community. Testing was performed using 2-20 µm rigid particles to represent blood elements and flow rates of 200-5000 µL/min to assess the effects of flow-related factors on overall system performance. Two channel designs were studied to determine the variability associated with using the same microchannel multiple times (coefficient of variation (CV) of 27% for Design 1 and 18% for Design 2, respectively). The impact of commonly occurring failure modes on device performance was also investigated by simulating progressive and complete channel outlet blockages. The pressure increased by 10-250% of the normal channel pressure depending on the extent of the blockage. Lastly, two common data analysis approaches were compared-imaging and particle counting. Both approaches were similar in terms of their sensitivity and consistency. Continued research is needed to develop standardized test methods for microfluidic systems, which will improve medical device performance testing and drive innovation in the biomedical field.
Collapse
Affiliation(s)
| | | | | | - Luke Herbertson
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (R.N.); (S.G.); (S.A.R.D.)
| |
Collapse
|
49
|
Zeming KK, Sato Y, Yin L, Huang NJ, Wong LH, Loo HL, Lim YB, Lim CT, Chen J, Preiser PR, Han J. Microfluidic label-free bioprocessing of human reticulocytes from erythroid culture. LAB ON A CHIP 2020; 20:3445-3460. [PMID: 32793940 DOI: 10.1039/c9lc01128e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In vitro erythroid cultures from human hematopoietic stem cells produce immature red blood cells (RBCs) called reticulocytes, which are important for RBCs production, and are widely used in scientific studies of malaria pathology, hematological diseases and protein translation. However, in vitro reticulocyte cultures contain expelled cell nuclei and erythroblasts as undesirable by-products and current purification methods such as density gradient centrifugation and fluorescence-activated cell sorting (FACS) are not optimal for integrated bioprocessing and downstream therapeutic applications. Developments in Dean flow fractionation (DFF) and deterministic lateral displacement (DLD) microfluidic sorting methods are ideal alternatives due to label-free size sorting, throughput scalability and low manufacturing cost. DFF sorting of reticulocytes from whole erythroid culture showed a 2.4-fold increase in cell recovery compared to FACS albeit with a lower purity; DLD sorting showed comparable cell recovery and purity with FACS using an inverse-L pillar structure to emphasize size and deformability sorting of reticulocytes. The viability and functional assurance of purified reticulocytes showed conserved cell deformability and supported the propagation of malaria parasites. Collectively, our study on label-free RBCs isolation represents a significant technical advancement towards developing in vitro generated viable human RBCs, opening opportunities for close-loop cell manufacturing, downstream therapeutic and research purposes.
Collapse
Affiliation(s)
- Kerwin Kwek Zeming
- Critical Analytics for Manufacturing of Personalized Medicine, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, 138602, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Howell J, Hammarton TC, Altmann Y, Jimenez M. High-speed particle detection and tracking in microfluidic devices using event-based sensing. LAB ON A CHIP 2020; 20:3024-3035. [PMID: 32700715 DOI: 10.1039/d0lc00556h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Visualising fluids and particles within channels is a key element of microfluidic work. Current imaging methods for particle image velocimetry often require expensive high-speed cameras with powerful illuminating sources, thus potentially limiting accessibility. This study explores for the first time the potential of an event-based camera for particle and fluid behaviour characterisation in a microfluidic system. Event-based cameras have the unique capacity to detect light intensity changes asynchronously and to record spatial and temporal information with low latency, low power and high dynamic range. Event-based cameras could consequently be relevant for detecting light intensity changes due to moving particles, chemical reactions or intake of fluorescent dyes by cells to mention a few. As a proof-of-principle, event-based sensing was tested in this work to detect 1 μm and 10 μm diameter particles flowing in a microfluidic channel for average fluid velocities of up to 1.54 m s-1. Importantly, experiments were performed by directly connecting the camera to a standard fluorescence microscope, only relying on the microscope arc lamp for illumination. We present a data processing strategy that allows particle detection and tracking in both bright-field and fluorescence imaging. Detection was achieved up to a fluid velocity of 1.54 m s-1 and tracking up to 0.4 m s-1 suggesting that event-based cameras could be a new paradigm shift in microscopic imaging.
Collapse
Affiliation(s)
- Jessie Howell
- Biomedical Engineering Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| | | | | | | |
Collapse
|