1
|
Characterizing the shared signals of face familiarity: Long-term acquaintance, voluntary control, and concealed knowledge. Brain Res 2022; 1796:148094. [PMID: 36116487 DOI: 10.1016/j.brainres.2022.148094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
Abstract
In a recent study using cross-experiment multivariate classification of EEG patterns, we found evidence for a shared familiarity signal for faces, patterns of neural activity that successfully separate trials for familiar and unfamiliar faces across participants and modes of familiarization. Here, our aim was to expand upon this research to further characterize the spatio-temporal properties of this signal. By utilizing the information content present for incidental exposure to personally familiar and unfamiliar faces, we tested how the information content in the neural signal unfolds over time under different task demands - giving truthful or deceptive responses to photographs of genuinely familiar and unfamiliar individuals. For this goal, we re-analyzed data from two previously published experiments using within-experiment leave-one-subject-out and cross-experiment classification of face familiarity. We observed that the general face familiarity signal, consistent with its previously described spatio-temporal properties, is present for long-term personally familiar faces under passive viewing, as well as for acknowledged and concealed familiarity responses. Also, central-posterior regions contain information related to deception. We propose that signals in the 200-400 ms window are modulated by top-down task-related anticipation, while the patterns in the 400-600 ms window are influenced by conscious effort to deceive. To our knowledge, this is the first report describing the representational dynamics of concealed knowledge for faces, using time-resolved multivariate classification.
Collapse
|
2
|
Feng YJ, Hung SM, Hsieh PJ. Detecting spontaneous deception in the brain. Hum Brain Mapp 2022; 43:3257-3269. [PMID: 35344258 PMCID: PMC9189038 DOI: 10.1002/hbm.25849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/01/2022] Open
Abstract
Deception detection can be of great value during the juristic investigation. Although the neural signatures of deception have been widely documented, most prior studies were biased by difficulty levels. That is, deceptive behavior typically required more effort, making deception detection possibly effort detection. Furthermore, no study has examined the generalizability across instructed and spontaneous responses and across participants. To explore these issues, we used a dual‐task paradigm, where the difficulty level was balanced between truth‐telling and lying, and the instructed and spontaneous truth‐telling and lying were collected independently. Using Multivoxel pattern analysis, we were able to decode truth‐telling versus lying with a balanced difficulty level. Results showed that the angular gyrus (AG), inferior frontal gyrus (IFG), and postcentral gyrus could differentiate lying from truth‐telling. Critically, linear classifiers trained to distinguish instructed truthful and deceptive responses could correctly differentiate spontaneous truthful and deceptive responses in AG and IFG with above‐chance accuracy. In addition, with a leave‐one‐participant‐out analysis, multivoxel neural patterns from AG could classify if the left‐out participant was lying or not in a trial. These results indicate the commonality of neural responses subserved instructed and spontaneous deceptive behavior as well as the feasibility of cross‐participant deception validation.
Collapse
Affiliation(s)
- Yen-Ju Feng
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shao-Min Hung
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Po-Jang Hsieh
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Spatially Adjacent Regions in Posterior Cingulate Cortex Represent Familiar Faces at Different Levels of Complexity. J Neurosci 2021; 41:9807-9826. [PMID: 34670848 PMCID: PMC8612644 DOI: 10.1523/jneurosci.1580-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2021] [Accepted: 09/26/2021] [Indexed: 11/21/2022] Open
Abstract
Extensive research has shown that perceptual information of faces is processed in a network of hierarchically-organized areas within ventral temporal cortex. For familiar and famous faces, perceptual processing of faces is normally accompanied by extraction of semantic knowledge about the social status of persons. Semantic processing of familiar faces could entail progressive stages of information abstraction. However, the cortical mechanisms supporting multistage processing of familiar faces have not been characterized. Here, using an event-related fMRI experiment, familiar faces from four celebrity groups (actors, singers, politicians, and football players) and unfamiliar faces were presented to the human subjects (both males and females) while they were engaged in a face categorization task. We systematically explored the cortical representations for faces, familiar faces, subcategories of familiar faces, and familiar face identities using whole-brain univariate analysis, searchlight-based multivariate pattern analysis (MVPA), and functional connectivity analysis. Convergent evidence from all these analyses revealed a set of overlapping regions within posterior cingulate cortex (PCC) that contained decodable fMRI responses for representing different levels of semantic knowledge about familiar faces. Our results suggest a multistage pathway in PCC for processing semantic information of faces, analogous to the multistage pathway in ventral temporal cortex for processing perceptual information of faces.SIGNIFICANCE STATEMENT Recognizing familiar faces is an important component of social communications. Previous research has shown that a distributed network of brain areas is involved in processing the semantic information of familiar faces. However, it is not clear how different levels of semantic information are represented in the brain. Here, we evaluated the multivariate response patterns across the entire cortex to discover the areas that contain information for familiar faces, subcategories of familiar faces, and identities of familiar faces. The searchlight maps revealed that different levels of semantic information are represented in topographically adjacent areas within posterior cingulate cortex (PCC). The results suggest that semantic processing of faces is mediated through progressive stages of information abstraction in PCC.
Collapse
|
4
|
Elbich DB, Webb CE, Dennis NA. The influence of item familiarization on neural discriminability during associative memory encoding and retrieval. Brain Cogn 2021; 152:105760. [PMID: 34126588 DOI: 10.1016/j.bandc.2021.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/13/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Associative memory requires one to encode and form memory representations not just for individual items, but for the association or link between those items. Past work has suggested that associative memory is facilitated when individual items are familiar rather than simultaneously learning the items and their associative link. The current study employed multivoxel pattern analyses (MVPA) to investigate whether item familiarization prior to associative encoding affects the distinctiveness of neural patterns, and whether that distinctiveness is also present during associative retrieval. Our results suggest that prior exposure to item stimuli impacts the representations of their shared association compared to stimuli that are novel at the time of associative encoding throughout most of the associative memory network. While this distinction was also present at retrieval, the overall extent of the difference was diminished. Overall the results suggest that stimulus familiarity influences the representation of associative pairings during memory encoding and retrieval, and the pair-specific representation is maintained across memory phases irrespective of this distinction.
Collapse
Affiliation(s)
- Daniel B Elbich
- Department of Neurology, The Pennsylvania State University, Hershey, PA, United States; Department of Psychology, The Pennsylvania State University, University Park, PA, United States
| | - Christina E Webb
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States; Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, United States
| | - Nancy A Dennis
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
5
|
Woolnough O, Rollo PS, Forseth KJ, Kadipasaoglu CM, Ekstrom AD, Tandon N. Category Selectivity for Face and Scene Recognition in Human Medial Parietal Cortex. Curr Biol 2020; 30:2707-2715.e3. [PMID: 32502406 DOI: 10.1016/j.cub.2020.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2023]
Abstract
The rapid recognition and memory of faces and scenes implies the engagement of category-specific computational hubs in the ventral visual stream with the distributed cortical memory network. To better understand how recognition and identification occur in humans, we performed direct intracranial recordings, in a large cohort of patients (n = 50), from the medial parietal cortex (MPC) and the medial temporal lobe (MTL), structures known to be engaged during face and scene identification. We discovered that the MPC is topologically tuned to face and scene recognition, with clusters in MPC performing scene recognition bilaterally and face recognition in right subparietal sulcus. The MTL displayed a selectivity gradient with anterior, entorhinal cortex showing face selectivity and posterior parahippocampal regions showing scene selectivity. In both MPC and MTL, stimulus-specific identifiable exemplars led to greater activity in these cortical patches. These two regions work in concert for recognition of faces and scenes. Feature selectivity and identity-sensitive activity in the two regions was coincident, and they exhibited theta-phase locking during face and scene recognition. These findings together provide clear evidence for a specific role of subregions in the MPC for the recognition of unique entities.
Collapse
Affiliation(s)
- Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, USA; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, USA; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kiefer J Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, USA; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cihan M Kadipasaoglu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, USA; Memorial Hermann Hospital, Texas Medical Center, Houston, TX 77030, USA
| | - Arne D Ekstrom
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX 77030, USA; Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Memorial Hermann Hospital, Texas Medical Center, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Xu L, Yi Y, Liang G, Zhang W. Antimony Doped Tin Oxide Nanoparticles Deposited onto Nb−TiO
2
Nanotubes for Electrochemical Degradation of Bio‐refractory Pollutions. ELECTROANAL 2020. [DOI: 10.1002/elan.201900775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li Xu
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin 300072 P. R. China
| | - Yan Yi
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin 300072 P. R. China
| | - Gaorui Liang
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin 300072 P. R. China
| | - Wen Zhang
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin 300072 P. R. China
| |
Collapse
|
7
|
Can fMRI discriminate between deception and false memory? A meta-analytic comparison between deception and false memory studies. Neurosci Biobehav Rev 2019; 104:43-55. [DOI: 10.1016/j.neubiorev.2019.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/14/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022]
|
8
|
Simões M, Monteiro R, Andrade J, Mouga S, França F, Oliveira G, Carvalho P, Castelo-Branco M. A Novel Biomarker of Compensatory Recruitment of Face Emotional Imagery Networks in Autism Spectrum Disorder. Front Neurosci 2018; 12:791. [PMID: 30443204 PMCID: PMC6221955 DOI: 10.3389/fnins.2018.00791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/12/2018] [Indexed: 11/25/2022] Open
Abstract
Imagery of facial expressions in Autism Spectrum Disorder (ASD) is likely impaired but has been very difficult to capture at a neurophysiological level. We developed an approach that allowed to directly link observation of emotional expressions and imagery in ASD, and to derive biomarkers that are able to classify abnormal imagery in ASD. To provide a handle between perception and action imagery cycles it is important to use visual stimuli exploring the dynamical nature of emotion representation. We conducted a case-control study providing a link between both visualization and mental imagery of dynamic facial expressions and investigated source responses to pure face-expression contrasts. We were able to replicate the same highly group discriminative neural signatures during action observation (dynamical face expressions) and imagery, in the precuneus. Larger activation in regions involved in imagery for the ASD group suggests that this effect is compensatory. We conducted a machine learning procedure to automatically identify these group differences, based on the EEG activity during mental imagery of facial expressions. We compared two classifiers and achieved an accuracy of 81% using 15 features (both linear and non-linear) of the signal from theta, high-beta and gamma bands extracted from right-parietal locations (matching the precuneus region), further confirming the findings regarding standard statistical analysis. This robust classification of signals resulting from imagery of dynamical expressions in ASD is surprising because it far and significantly exceeds the good classification already achieved with observation of neutral face expressions (74%). This novel neural correlate of emotional imagery in autism could potentially serve as a clinical interventional target for studies designed to improve facial expression recognition, or at least as an intervention biomarker.
Collapse
Affiliation(s)
- Marco Simões
- Coimbra Institute for Biomedical Imaging and Translational Research, Instituto de Ciências Nucleares Aplicadas à Saúde, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Informatics and Systems, University of Coimbra, Coimbra, Portugal
| | - Raquel Monteiro
- Coimbra Institute for Biomedical Imaging and Translational Research, Instituto de Ciências Nucleares Aplicadas à Saúde, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Andrade
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Susana Mouga
- Coimbra Institute for Biomedical Imaging and Translational Research, Instituto de Ciências Nucleares Aplicadas à Saúde, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Neurodevelopmental and Autism Unit from Child Developmental Center, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Felipe França
- PESC-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guiomar Oliveira
- Coimbra Institute for Biomedical Imaging and Translational Research, Instituto de Ciências Nucleares Aplicadas à Saúde, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Neurodevelopmental and Autism Unit from Child Developmental Center, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University Clinic of Pediatrics, Faculty of Medicine of the University of Coimbra, Coimbra, Portugal.,Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Paulo Carvalho
- Center for Informatics and Systems, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research, Instituto de Ciências Nucleares Aplicadas à Saúde, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Mameli F, Scarpazza C, Tomasini E, Ferrucci R, Ruggiero F, Sartori G, Priori A. The guilty brain: the utility of neuroimaging and neurostimulation studies in forensic field. Rev Neurosci 2018; 28:161-172. [PMID: 28030362 DOI: 10.1515/revneuro-2016-0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/17/2016] [Indexed: 11/15/2022]
Abstract
Several studies have aimed to address the natural inability of humankind to detect deception and accurately discriminate lying from truth in the legal context. To date, it has been well established that telling a lie is a complex mental activity. During deception, many functions of higher cognition are involved: the decision to lie, withholding the truth, fabricating the lie, monitoring whether the receiver believes the lie, and, if necessary, adjusting the fabricated story and maintaining a consistent lie. In the previous 15 years, increasing interest in the neuroscience of deception has resulted in new possibilities to investigate and interfere with the ability to lie directly from the brain. Cognitive psychology, as well as neuroimaging and neurostimulation studies, are increasing the possibility that neuroscience will be useful for lie detection. This paper discusses the scientific validity of the literature on neuroimaging and neurostimulation regarding lie detection to understand whether scientific findings in this field have a role in the forensic setting. We considered how lie detection technology may contribute to addressing the detection of deception in the courtroom and discussed the conditions and limits in which these techniques reliably distinguish whether an individual is lying.
Collapse
|
10
|
Pereira-Pedro AS, Rilling JK, Chen X, Preuss TM, Bruner E. Midsagittal Brain Variation among Non-Human Primates: Insights into Evolutionary Expansion of the Human Precuneus. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:255-263. [PMID: 29065406 PMCID: PMC5687995 DOI: 10.1159/000481085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/29/2017] [Indexed: 11/19/2022]
Abstract
The precuneus is a major element of the superior parietal lobule, positioned on the medial side of the hemisphere and reaching the dorsal surface of the brain. It is a crucial functional region for visuospatial integration, visual imagery, and body coordination. Previously, we argued that the precuneus expanded in recent human evolution, based on a combination of paleontological, comparative, and intraspecific evidence from fossil and modern human endocasts as well as from human and chimpanzee brains. The longitudinal proportions of this region are a major source of anatomical variation among adult humans and, being much larger in Homo sapiens, is the main characteristic differentiating human midsagittal brain morphology from that of our closest living primate relative, the chimpanzee. In the current shape analysis, we examine precuneus variation in non-human primates through landmark-based models, to evaluate the general pattern of variability in non-human primates, and to test whether precuneus proportions are influenced by allometric effects of brain size. Results show that precuneus proportions do not covary with brain size, and that the main difference between monkeys and apes involves a vertical expansion of the frontal and occipital regions in apes. Such differences might reflect differences in brain proportions or differences in cranial architecture. In this sample, precuneus variation is apparently not influenced by phylogenetic or allometric factors, but does vary consistently within species, at least in chimpanzees and macaques. This result further supports the hypothesis that precuneus expansion in modern humans is not merely a consequence of increasing brain size or of allometric scaling, but rather represents a species-specific morphological change in our lineage.
Collapse
Affiliation(s)
- Ana Sofia Pereira-Pedro
- Grupo de Paleoneurología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos (Spain)
| | - James K. Rilling
- Department of Anthropology, Emory University, Atlanta (USA)
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (USA)
- Center for Translational Social Neuroscience, Atlanta (USA)
- Center for Behavioral Neuroscience, Emory University, Atlanta (USA)
- Yerkes National Primate Research Center, Emory University, Atlanta, (USA)
| | - Xu Chen
- Department of Anthropology, Emory University, Atlanta (USA)
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta (USA)
| | - Todd M. Preuss
- Center for Translational Social Neuroscience, Atlanta (USA)
- Center for Behavioral Neuroscience, Emory University, Atlanta (USA)
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta (USA)
| | - Emiliano Bruner
- Grupo de Paleoneurología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos (Spain)
| |
Collapse
|
11
|
Fu H, Qiu W, Ma H, Ma Q. Neurocognitive mechanisms underlying deceptive hazard evaluation: An event-related potentials investigation. PLoS One 2017; 12:e0182892. [PMID: 28793344 PMCID: PMC5549904 DOI: 10.1371/journal.pone.0182892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Deceptive behavior is common in human social interactions. Researchers have been trying to uncover the cognitive process and neural basis underlying deception due to its theoretical and practical significance. We used Event-related potentials (ERPs) to investigate the neural correlates of deception when the participants completed a hazard judgment task. Pictures conveying or not conveying hazard information were presented to the participants who were then requested to discriminate the hazard content (safe or hazardous) and make a response corresponding to the cues (truthful or deceptive). Behavioral and electrophysiological data were recorded during the entire experiment. Results showed that deceptive responses, compared to truthful responses, were associated with longer reaction time (RT), lower accuracy, increased N2 and reduced late positive potential (LPP), suggesting a cognitively more demanding process to respond deceptively. The decrement in LPP correlated negatively with the increment in RT for deceptive relative to truthful responses, regardless of hazard content. In addition, hazardous information evoked larger N1 and P300 than safe information, reflecting an early processing bias and a later evaluative categorization process based on motivational significance, respectively. Finally, the interaction between honesty (truthful/deceptive) and safety (safe/hazardous) on accuracy and LPP indicated that deceptive responses towards safe information required more effort than deceptive responses towards hazardous information. Overall, these results demonstrate the neurocognitive substrates underlying deception about hazard information.
Collapse
Affiliation(s)
- Huijian Fu
- School of Management, Guangdong University of Technology, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Managerial Psychology and Behavior, Guangdong University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Wenwei Qiu
- School of Management, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Haiying Ma
- School of Management, Guangdong University of Technology, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Managerial Psychology and Behavior, Guangdong University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Qingguo Ma
- Institute of Neural Management Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Neuromanagement Laboratory, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail:
| |
Collapse
|
12
|
Are individuals with higher psychopathic traits better learners at lying? Behavioural and neural evidence. Transl Psychiatry 2017; 7:e1175. [PMID: 28742075 PMCID: PMC5538125 DOI: 10.1038/tp.2017.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 11/09/2022] Open
Abstract
High psychopathy is characterized by untruthfulness and manipulativeness. However, existing evidence on higher propensity or capacity to lie among non-incarcerated high-psychopathic individuals is equivocal. Of particular importance, no research has investigated whether greater psychopathic tendency is associated with better 'trainability' of lying. An understanding of whether the neurobehavioral processes of lying are modifiable through practice offers significant theoretical and practical implications. By employing a longitudinal design involving university students with varying degrees of psychopathic traits, we successfully demonstrate that the performance speed of lying about face familiarity significantly improved following two sessions of practice, which occurred only among those with higher, but not lower, levels of psychopathic traits. Furthermore, this behavioural improvement associated with higher psychopathic tendency was predicted by a reduction in lying-related neural signals and by functional connectivity changes in the frontoparietal and cerebellum networks. Our findings provide novel and pivotal evidence suggesting that psychopathic traits are the key modulating factors of the plasticity of both behavioural and neural processes underpinning lying. These findings broadly support conceptualization of high-functioning individuals with higher psychopathic traits as having preserved, or arguably superior, functioning in neural networks implicated in cognitive executive processing, but deficiencies in affective neural processes, from a neuroplasticity perspective.
Collapse
|
13
|
Chen XQ, Bai Y, Li Z, Wang LZ, Dou SX. Ambient Synthesis of One‐/Two‐Dimensional CuAgSe Ternary Nanotubes as Counter Electrodes of Quantum‐Dot‐Sensitized Solar Cells. Chempluschem 2015; 81:414-420. [DOI: 10.1002/cplu.201500466] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Qi Chen
- Institute for Superconducting and Electronic Materials, Squires Way, Innovation Campus of theUniversity of Wollongong Wollongong 2500 New South Wales Australia
- Institute of Nanoscience and NanotechnologyDepartment of PhysicsCentral China Normal University Wuhan 430079 P.R. China
| | - Yang Bai
- Nanomaterials Centre, School of Chemical Engineering and Australian, Institute for Bioengineering and Nanotechnology (AIBN)University of Queensland QLD 4072 Australia
| | - Zhen Li
- Institute for Superconducting and Electronic Materials, Squires Way, Innovation Campus of theUniversity of Wollongong Wollongong 2500 New South Wales Australia
- School of Radiation Medicine and Radiation ProtectionCollaborative Innovation Center of Radiation Medicineof Jiangsu Higher Education InstitutionsSoochow University 199 Ren Ai Road, Suzhou Industrial Park Suzhou 215123 P.R. China
| | - Lian Zhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian, Institute for Bioengineering and Nanotechnology (AIBN)University of Queensland QLD 4072 Australia
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Squires Way, Innovation Campus of theUniversity of Wollongong Wollongong 2500 New South Wales Australia
| |
Collapse
|
14
|
Chen ZX, Xue L, Liang CY, Wang LL, Mei W, Zhang Q, Zhao H. Specific marker of feigned memory impairment: The activation of left superior frontal gyrus. J Forensic Leg Med 2015; 36:164-71. [PMID: 26479324 DOI: 10.1016/j.jflm.2015.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/03/2015] [Accepted: 09/04/2015] [Indexed: 02/05/2023]
Abstract
Faking memory impairment means normal people complain lots of memory problems without organic damage in forensic assessments. Using alternative forced-choice paradigm, containing digital or autobiographical information, previous neuroimaging studies have indicated that faking memory impairment could cause the activation in the prefrontal and parietal regions, and might involve a fronto-parietal-subcortical circuit. However, it is still unclear whether different memory types have influence on faking or not. Since different memory types, such as long-term memory (LTM) and short-term memory (STM), were found supported by different brain areas, we hypothesized that feigned STM or LTM impairment had distinct neural activation mapping. Besides that, some common neural correlates may act as the general characteristic of feigned memory impairment. To verify this hypothesis, the functional magnetic resonance imaging (fMRI) combined with an alternative word forced-choice paradigm were used in this study. A total of 10 right-handed participants, in this study, had to perform both STW and LTM tasks respectively under answering correctly, answering randomly and feigned memory impairment conditions. Our results indicated that the activation of the left superior frontal gyrus and the left medial frontal gyrus was associated with feigned LTM impairment, whereas the left superior frontal gyrus, the left precuneus and the right anterior cingulate cortex (ACC) were highly activated while feigning STM impairment. Furthermore, an overlapping was found in the left superior frontal gyrus, and it suggested that the activity of the left superior frontal gyrus might be acting as a specific marker of feigned memory impairment.
Collapse
Affiliation(s)
- Zi-Xiang Chen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Li Xue
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chun-Yu Liang
- Department of Radiology, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Li-Li Wang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Mei
- Department of Radiology, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Qiang Zhang
- Mental Health Center, Medical College, Shantou University, Shantou, Guangdong, China.
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Bradley MM, Costa VD, Ferrari V, Codispoti M, Fitzsimmons JR, Lang PJ. Imaging distributed and massed repetitions of natural scenes: spontaneous retrieval and maintenance. Hum Brain Mapp 2015; 36:1381-92. [PMID: 25504854 PMCID: PMC4374051 DOI: 10.1002/hbm.22708] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/10/2014] [Accepted: 11/24/2014] [Indexed: 11/07/2022] Open
Abstract
Repetitions that are distributed (spaced) across time prompt enhancement of a memory-related event-related potential, compared to when repetitions are massed (contiguous). Here, we used fMRI to investigate neural enhancement and suppression effects during free viewing of natural scenes that were either novel or repeated four times with massed or distributed repetitions. Distributed repetition was uniquely associated with a repetition enhancement effect in a bilateral posterior parietal cluster that included the precuneus and posterior cingulate and which has previously been implicated in episodic memory retrieval. Unique to massed repetition, conversely, was enhancement in a right dorsolateral prefrontal cluster that has been implicated in short-term maintenance. Repetition suppression effects for both types of spacing were widespread in regions activated during novel picture processing. Taken together, the data are consistent with a hypothesis that distributed repetition prompts spontaneous retrieval of prior occurrences, whereas massed repetition prompts short-term maintenance of the episodic representation, due to contiguous presentation. These processing differences may mediate the classic spacing effect in learning and memory.
Collapse
Affiliation(s)
- Margaret M. Bradley
- Center for the Study of Emotion and Attention, University of FloridaGainesvilleFlUSA
| | - Vincent D. Costa
- Laboratory of Neuropsychology, National Institutes of HealthBethesdaMDUSA
| | - Vera Ferrari
- Department of Neuroscience, University of ParamParmaItaly
| | | | | | - Peter J. Lang
- Center for the Study of Emotion and Attention, University of FloridaGainesvilleFlUSA
| |
Collapse
|
16
|
Abstract
Functional MRI (fMRI)-based lie detection has been marketed as a tool for enhancing personnel selection, strengthening national security and protecting personal reputations, and at least three US courts have been asked to admit the results of lie detection scans as evidence during trials. How well does fMRI-based lie detection perform, and how should the courts, and society more generally, respond? Here, we address various questions — some of which are based on a meta-analysis of published studies — concerning the scientific state of the art in fMRI-based lie detection and its legal status, and discuss broader ethical and societal implications. We close with three general policy recommendations.
Collapse
|
17
|
Teixeira S, Machado S, Velasques B, Sanfim A, Minc D, Peressutti C, Bittencourt J, Budde H, Cagy M, Anghinah R, Basile LF, Piedade R, Ribeiro P, Diniz C, Cartier C, Gongora M, Silva F, Manaia F, Silva JG. Integrative parietal cortex processes: Neurological and psychiatric aspects. J Neurol Sci 2014; 338:12-22. [DOI: 10.1016/j.jns.2013.12.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
|
18
|
Lee RJ, Coccaro EF, Cremers H, McCarron R, Lu SF, Brownstein MJ, Simon NG. A novel V1a receptor antagonist blocks vasopressin-induced changes in the CNS response to emotional stimuli: an fMRI study. Front Syst Neurosci 2013; 7:100. [PMID: 24376401 PMCID: PMC3859978 DOI: 10.3389/fnsys.2013.00100] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/14/2013] [Indexed: 01/19/2023] Open
Abstract
Background: We hypothesized that SRX246, a vasopressin V1a receptor antagonist, blocks the effect of intranasally administered vasopressin on brain processing of angry Ekman faces. An interaction of intranasal and oral drug was predicted in the amygdala. Methods: Twenty-nine healthy male subjects received a baseline fMRI scan while they viewed angry faces and then were randomized to receive oral SRX246 (120 mg PO twice a day) or placebo. After an average of 7 days of treatment, they were given an acute dose of intranasal vasopressin (40 IU) or placebo and underwent a second scan. The primary outcome was BOLD activity in the amygdala in response to angry faces. Secondary analyses were focused on ROIs in a brain regions previously linked to vasopressin signaling. Results: In subjects randomized to oral placebo-intranasal vasopressin, there was a significantly diminished amygdala BOLD response from the baseline to post-drug scan compared with oral placebo-intranasal placebo subjects. RM-ANOVA of the BOLD signal changes in the amygdala revealed a significant oral drug × intranasal drug × session interaction (F(1, 25) = 4.353, p < 0.05). Follow-up tests showed that antagonism of AVPR1a with SRX246 blocked the effect of intranasal vasopressin on the neural response to angry faces. Secondary analyses revealed that SRX246 treatment was associated with significantly attenuated BOLD responses to angry faces in the right temporoparietal junction, precuneus, anterior cingulate, and putamen. Exploratory analyses revealed that the interactive and main effects of intranasal vasopressin and SRX246 were not seen for happy or neutral faces, but were detected for aversive faces (fear + anger) and at a trend level for fear faces. Conclusion: We found confirmatory evidence that SRX246 has effects on the amygdala that counter the effects of intranasal vasopressin. These effects were strongest for angry faces, but may generalize to other emotions with an aversive quality.
Collapse
Affiliation(s)
- Royce J Lee
- Clinical Neurosciences and Psychopharmacology Research Unit, Department of Psychiatry and Behavioral Neurosciences, The University of Chicago Chicago IL, USA
| | - Emil F Coccaro
- Clinical Neurosciences and Psychopharmacology Research Unit, Department of Psychiatry and Behavioral Neurosciences, The University of Chicago Chicago IL, USA
| | - Henk Cremers
- Clinical Neurosciences and Psychopharmacology Research Unit, Department of Psychiatry and Behavioral Neurosciences, The University of Chicago Chicago IL, USA
| | - Rosemary McCarron
- Clinical Neurosciences and Psychopharmacology Research Unit, Department of Psychiatry and Behavioral Neurosciences, The University of Chicago Chicago IL, USA
| | - Shi-Fang Lu
- Azevan Pharmaceuticals, Inc. Bethlehem, PA, USA ; Department of Biological Sciences, Lehigh University Bethlehem, PA, USA
| | | | - Neal G Simon
- Azevan Pharmaceuticals, Inc. Bethlehem, PA, USA ; Department of Biological Sciences, Lehigh University Bethlehem, PA, USA
| |
Collapse
|