1
|
Pearman WS, Arranz V, Carvajal JI, Whibley A, Liau Y, Johnson K, Gray R, Treece JM, Gemmell NJ, Liggins L, Fraser CI, Jensen EL, Green NJ. A cry for kelp: Evidence for polyphenolic inhibition of Oxford Nanopore sequencing of brown algae. JOURNAL OF PHYCOLOGY 2024. [PMID: 39435595 DOI: 10.1111/jpy.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024]
Abstract
Genomic resources have yielded unprecedented insights into ecological and evolutionary processes, not to mention their importance in economic and conservation management of specific organisms. However, the field of macroalgal genomics is hampered by difficulties in the isolation of suitable DNA. Even when DNA that appears high quality by standard metrics has been isolated, such samples may not perform well during the sequencing process. We here have compared Oxford Nanopore long-read sequencing results for three species of macroalgae to those of nonmacroalgal species and determined that when using macroalgal samples, sequencing activity declined rapidly, resulting in reduced sequencing yield. Chemical analysis of macroalgal DNA that would be considered suitable for sequencing revealed that DNA derived from dried macroalgae was enriched for polyphenol-DNA adducts (DNA with large polyphenols chemically attached to it), which may have led to sequencing inhibition. Of note, we observed the strongest evidence of sequencing inhibition and reduced sequence output when using samples dried using silica gel-suggesting that such storage approaches may not be appropriate for samples destined for Oxford Nanopore sequencing. Our findings have wide-ranging implications for the generation of genomic resources from macroalgae and suggest a need to develop new storage methods that are more amenable to Oxford Nanopore sequencing or to use fresh flash-frozen tissue wherever possible for genome sequencing.
Collapse
Affiliation(s)
- William S Pearman
- Department of Marine Science, University of Otago, Dunedin, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Vanessa Arranz
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Jose I Carvajal
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Annabel Whibley
- Grapevine Improvement, Bragato Research Institute, Lincoln, New Zealand
- School of Biological Sciences, University of Auckland - City Campus, Auckland, New Zealand
| | - Yusmiati Liau
- Grapevine Improvement, Bragato Research Institute, Lincoln, New Zealand
| | - Katherine Johnson
- Genomics Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jackson M Treece
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Libby Liggins
- School of Biological Sciences, University of Auckland - City Campus, Auckland, New Zealand
| | - Ceridwen I Fraser
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Evelyn L Jensen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nicholas J Green
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Papageorgiou AC, Pospisilova M, Cibulka J, Ashraf R, Waudby CA, Kadeřávek P, Maroz V, Kubicek K, Prokop Z, Krejci L, Tripsianes K. Recognition and coacervation of G-quadruplexes by a multifunctional disordered region in RECQ4 helicase. Nat Commun 2023; 14:6751. [PMID: 37875529 PMCID: PMC10598209 DOI: 10.1038/s41467-023-42503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Biomolecular polyelectrolyte complexes can be formed between oppositely charged intrinsically disordered regions (IDRs) of proteins or between IDRs and nucleic acids. Highly charged IDRs are abundant in the nucleus, yet few have been functionally characterized. Here, we show that a positively charged IDR within the human ATP-dependent DNA helicase Q4 (RECQ4) forms coacervates with G-quadruplexes (G4s). We describe a three-step model of charge-driven coacervation by integrating equilibrium and kinetic binding data in a global numerical model. The oppositely charged IDR and G4 molecules form a complex in the solution that follows a rapid nucleation-growth mechanism leading to a dynamic equilibrium between dilute and condensed phases. We also discover a physical interaction with Replication Protein A (RPA) and demonstrate that the IDR can switch between the two extremes of the structural continuum of complexes. The structural, kinetic, and thermodynamic profile of its interactions revealed a dynamic disordered complex with nucleic acids and a static ordered complex with RPA protein. The two mutually exclusive binding modes suggest a regulatory role for the IDR in RECQ4 function by enabling molecular handoffs. Our study extends the functional repertoire of IDRs and demonstrates a role of polyelectrolyte complexes involved in G4 binding.
Collapse
Affiliation(s)
- Anna C Papageorgiou
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michaela Pospisilova
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jakub Cibulka
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Raghib Ashraf
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Pavel Kadeřávek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Volha Maroz
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Kubicek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic.
| | | |
Collapse
|
3
|
Deva Sahayam AN, Muruganantham A, Soundarapandian S, Alexander A, Sumohan Pillai A, Enoch IVMV. Interaction of the platinum complex of tyrosine-β-cyclodextrin with G-quadruplex DNA. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:767-781. [PMID: 36973917 DOI: 10.1080/15257770.2023.2194338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
The telomeric quadruplex structures formed by the guanine-rich sequences of DNA have emerged as targets for small molecules designed and synthesized to stabilize the G-quadruplexes. This report presents a newly synthesized tyrosine-tethered cyclodextrin derivative and its platinum complex. Their structures are characterized using IR, NMR, and mass spectral techniques. The binding interactions of the platinum complex with CT-DNA and the kit22, myc22, and telo24 G-quadruplexes are investigated employing absorption and fluorescence spectral titrations. The binding constant or KSV values of the interaction with the G-quadruplexes are more significant than those with the duplex DNA by order of 10. It presents the compound as a G-quadruplex-selective binder. Further, the well-known G-quadruplex binding molecule Berberine is encapsulated in the Tyr- β-CD through a host: guest association. The structure of the host: guest complex is investigated employing 2D ROESY spectroscopy. In addition, the study on the binding interaction of the complex to the DNA targets is also carried out. The mode and strength of interaction of the free and the Berberine-loaded Tyr-β-CD to the duplex and the quadruplexes are reported.
Collapse
Affiliation(s)
- Arokya Nithya Deva Sahayam
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Aishwarya Muruganantham
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Suganthi Soundarapandian
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu, India
| | - Aleyamma Alexander
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
Pandya N, Singh M, Rani R, Kumar V, Kumar A. G-quadruplex-mediated specific recognition, stabilization and transcriptional repression of bcl-2 by small molecule. Arch Biochem Biophys 2023; 734:109483. [PMID: 36513132 DOI: 10.1016/j.abb.2022.109483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
The presence of the G-quadruplex (G4) structure in the promoter region of the human bcl-2 oncogenes makes it a promising target for developing anti-cancer therapeutics. Bcl-2 inhibits apoptosis, and its frequent overexpression in cancer cells contributes to tumor initiation, progression, and resistance to therapy. Small molecules that can specifically bind to bcl-2 G4 with high affinity and selectivity are remaining elusive. Here, we report that small molecule 1,3-bis-) furane-2yl-methylidene-amino) guanidine (BiGh) binds to bcl-2 G4 DNA structure with very high affinity and selectivity over other genomic G4 DNA structures and duplex DNA. BiGh stabilizes folded parallel conformation of bcl-2 G4 via non-covalent and electrostatic interactions and increases the thermal stabilization up to 15 °C. The ligand significantly suppresses the bcl-2 transcription in HeLa cells by a G4-dependent mechanism and induces cell cycle arrest which promotes apoptosis. The in silico ADME profiling confirms the potential 'drug-likeness' of BiGh. Our results showed that BiGh stabilizes the bcl-2 G-quadruplex motif, downregulates the bcl-2 gene transcription as well as translation process in cervical cancer cells, and exhibits potential anti-cancer activity. This work provides a potential platform for the development of lead compound(s) as G4 stabilizers with drug-like properties of BiGh for cancer therapeutics.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Mamta Singh
- Amity Institute of Biotechnology, Amity University Noida, Uttar Pradesh, 201303, India
| | - Reshma Rani
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Noida, Uttar Pradesh, 201303, India
| | - Vinit Kumar
- Amity Institute of Biotechnology, Amity University Noida, Uttar Pradesh, 201303, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
5
|
Monteiro AR, Ramos CIV, Lourenço LMO, Fateixa S, Rodrigues J, Neves MGPMS, Trindade T. Interfacial assembly of zinc(II) phthalocyanines on graphene oxide (GO): Stable "turn-off-on" nanoplatforms to detect G-quadruplexes (G4). J Colloid Interface Sci 2022; 627:900-912. [PMID: 35901569 DOI: 10.1016/j.jcis.2022.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
HYPOTHESIS The aggregation of phthalocyanines (Pcs) enfeebles their suitability as G-quadruplex (G4) ligands over time. It is hypothesized that the interfacial assembly of Pcs on graphene oxide (GO) influences intermolecular interactions, thereby affecting their physicochemical properties and inducing stabilization of Pcs in solution. Hence, the stacking of Pcs on GO could be tuned to create nanosystems with the ability to detect G4 for longer periods through a slow release of Pcs. EXPERIMENTS Four cationic structurally-related zinc(II) phthalocyanines (ZnPc) were non-covalently assembled on GO by ultrasonic exfoliation. A comprehensive characterization of ZnPcs@GO was carried out by spectroscopic techniques and electron microscopy to understand the organization of ZnPcs on GO. The fluorescence of ZnPcs@GO was studied in the presence of G4 (T2G5T)4 and duplex ds26 through spectrofluorimetric titrations and monitored along time. FINDINGS GO induced a re-organization of the ZnPcs mostly to J-aggregates and quenched their original fluorescence up to 98 % ("turn-off"). In general, ZnPcs@GO recovered their fluorescence ("turn-on") after the titrations and showed affinity to G4 (KD up to 1.92 μM). This is the first report that highlights the contribution of GO interfaces to assemble ZnPcs and allow their slow and controlled release to detect G4 over longer periods.
Collapse
Affiliation(s)
- Ana R Monteiro
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Catarina I V Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sara Fateixa
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Joana Rodrigues
- I3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria G P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tito Trindade
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Keller JG, Hymøller KM, Thorsager ME, Hansen NY, Erlandsen JU, Tesauro C, Simonsen AKW, Andersen AB, VandsøPetersen K, Holm LL, Stougaard M, Andresen BS, Kristensen P, Frøhlich R, Knudsen BR. Topoisomerase 1 inhibits MYC promoter activity by inducing G-quadruplex formation. Nucleic Acids Res 2022; 50:6332-6342. [PMID: 35687110 PMCID: PMC9226537 DOI: 10.1093/nar/gkac482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
We have investigated the function of human topoisomerase 1 (TOP1) in regulation of G-quadruplex (G4) formation in the Pu27 region of the MYC P1 promoter. Pu27 is among the best characterized G4 forming sequences in the human genome and it is well known that promoter activity is inhibited upon G4 formation in this region. We found that TOP1 downregulation stimulated transcription from a promoter with wildtype Pu27 but not if the G4 motif in Pu27 was interrupted by mutation(s). The effect was not specific to the MYC promoter and similar results were obtained for the G4 forming promoter element WT21. The other major DNA topoisomerases with relaxation activity, topoisomerases 2α and β, on the other hand, did not affect G4 dependent promoter activity. The cellular studies were supported by in vitro investigations demonstrating a high affinity of TOP1 for wildtype Pu27 but not for mutant sequences unable to form G4. Moreover, TOP1 was able to induce G4 formation in Pu27 inserted in double stranded plasmid DNA in vitro. This is the first time TOP1 has been demonstrated capable of inducing G4 formation in double stranded DNA and of influencing G4 formation in cells.
Collapse
Affiliation(s)
- Josephine Geertsen Keller
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | - Noriko Y Hansen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jens Uldum Erlandsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Cinzia Tesauro
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Anne Bech Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Lise Lolle Holm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.,Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Magnus Stougaard
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark.,Department of Pathology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.,Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Peter Kristensen
- Faculty of Engineering and Science, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Rikke Frøhlich
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Birgitta R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Miclot T, Hognon C, Bignon E, Terenzi A, Grandemange S, Barone G, Monari A. Never Cared for What They Do: High Structural Stability of Guanine-Quadruplexes in the Presence of Strand-Break Damage. Molecules 2022; 27:3256. [PMID: 35630732 PMCID: PMC9146567 DOI: 10.3390/molecules27103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
DNA integrity is an important factor that assures genome stability and, more generally, the viability of cells and organisms. In the presence of DNA damage, the normal cell cycle is perturbed when cells activate their repair processes. Although efficient, the repair system is not always able to ensure complete restoration of gene integrity. In these cases, mutations not only may occur, but the accumulation of lesions can either lead to carcinogenesis or reach a threshold that induces apoptosis and programmed cell death. Among the different types of DNA lesions, strand breaks produced by ionizing radiation are the most toxic due to the inherent difficultly of repair, which may lead to genomic instability. In this article we show, by using classical molecular simulation techniques, that compared to canonical double-helical B-DNA, guanine-quadruplex (G4) arrangements show remarkable structural stability, even in the presence of two strand breaks. Since G4-DNA is recognized for its regulatory roles in cell senescence and gene expression, including oncogenes, this stability may be related to an evolutionary cellular response aimed at minimizing the effects of ionizing radiation.
Collapse
Affiliation(s)
- Tom Miclot
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (T.M.); (A.T.)
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France; (C.H.); (E.B.)
| | - Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France; (C.H.); (E.B.)
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France; (C.H.); (E.B.)
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (T.M.); (A.T.)
| | | | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (T.M.); (A.T.)
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France
| |
Collapse
|
8
|
Promoter G-quadruplex favours epigenetic reprogramming-induced atypical expression of ZEB1 in cancer cells. Biochim Biophys Acta Gen Subj 2021; 1865:129899. [PMID: 33930476 DOI: 10.1016/j.bbagen.2021.129899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Aberrant expression of Zinc-finger E-box binding homeobox 1 (ZEB1), which remains repressed in normal cells, is frequently associated with cancer aggressiveness. However, transcriptional mechanism underlying such atypical ZEB1 expression in cancer is not yet well-understood. METHODS ZEB1 promoter G-quadruplexes were studied and modeled extensively using circular dichroism, fluorescence spectroscopy, ITC and DMS protection assay. Luciferase assay, qPCR, FAIRE, ChIP, western blotting, confocal microscopy was used to access the regulation of ZEB1 transcription. RESULTS Our study unravels the occupancy of nucleolin to ZEB1 promoter as a crucial determinant which facilitates the binding of SP1 transcription factor to chromatin, by locally remodelling the region. SP1, subsequently, recruits P300 acetyl transferase leading to enriched acetyl-histone H3 at promoter and activates ZEB1 transcription. ZEB1 promoter analysis identifies presence of four putative G-quadruplex (G4) forming motifs within 700 bp of TSS; each quadruplex is characterized structurally in details with an array of biophysical techniques. Surprisingly, stabilization of G4 with cationic porphyrin TMPyP4 represses its transcription and eventually impedes cell invasiveness. CONCLUSIONS TMPyP4 binding to a selected G4 motif (5' -534/-511-3' from TSS), where nucleolin/SP1/P300 co-occupies, prevents the association of nucleolin which consequently hinders SP1 binding, leading to chromatin compactness and transcriptional repression. GENERAL SIGNIFICANCE Our findings demonstrate an epigenetic mechanism of ZEB1 reactivation where dynamic occupancy of transcription regulators encompassing a G4 motif is crucial and thus, small molecule induced G-quadruplex stabilization may act as a potential molecular switch to turn-off gene expression.
Collapse
|
9
|
Soundarapandian S, Alexander A, Pillai AS, Enoch IVMV, Yousuf S. G-Quadruplex binding of cavity-containing anthraquinonesulfonyl-β-cyclodextrin conjugate. Effect of encapsulation of ethidium bromide and berberine. J Biomol Struct Dyn 2021; 40:8301-8311. [PMID: 33856290 DOI: 10.1080/07391102.2021.1911849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An anthraquinonesulfonyl derivative of β-cyclodextrin is prepared and characterized employing spectroscopic techniques. The binding interactions of the compound with ethidium bromide, berberine, calf-thymus DNA, quadruplex DNAs viz., kit22, telo24, and myc22 are investigated by ultraviolet-visible, and fluorescence spectroscopic methods. Anthraquinonesulfonyl-β-cyclodextrin conjugate acts as a host molecule and enhances ethidium bromide and berberine fluorescence due to their encapsulation in cyclodextrin's cavity. The binding constant values are 9.0 × 105 mol-1 dm3 and 5.7 × 104 mol-1 dm3 for the formation of host: guest complexes of the β-CD derivative with ethidium bromide and berberine respectively. The proximity of the protons of ethidium bromide and berberine protons with those of the internal cavity of β-CD in the anthraquinonesulfonyl-β-CD conjugate is confirmed by two-dimensional rotating-frame Overhauser effect spectroscopy. The conjugate displays a quenching of fluorescence selectively to the quadruplexes kit22 and telo24 that is contrast to the spectral behavior with duplex DNA. ctDNA and myc22 exhibit different absorption and emission profiles with ethidium bromide on encapsulation by β-CD. The encapsulation of berberine leads to a fluorescence enhancement on binding to ctDNA, telo24, and myc22 with binding constants of 5.6 × 105, 3.3 × 105 mol-1 dm3, and 1.5 × 105 mol-1 dm3 respectively. In contrast, kit22 leads to fluorescence quenching on berberine encapsulated-anthraquinonesulfonyl-β-cyclodextrin conjugate with a Stern-Volmer constant of 3.3 × 105 mol-1 dm3.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suganthi Soundarapandian
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Aleyamma Alexander
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Sameena Yousuf
- Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
10
|
Soundarapandian S, Alexander A, Sumohan Pillai A, Enoch IVMV, Yousuf S. Molecular encapsulation of berberine and ethidium bromide in anthraquinonecarboxamido-β-cyclodextrin conjugate: supramolecular association with DNA duplex and G-quadruplexes. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:542-558. [PMID: 33823737 DOI: 10.1080/15257770.2021.1907591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/22/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
G-quadruplex DNA in recognized as a potential target for anti-cancer drugs. In this work, an anthraquinonecarboxamido derivative of β-cyclodextrin (AQCC) is synthesized as a novel DNA binder that further can deliver an additional molecule at the target, carrying it in the cavity of modified cyclodextrin. The binding of AQCC with ethidium bromide (EtBr), berberine (Ber), duplex calf-thymus DNA (CT-DNA), quadruplexes (G4) viz., kit22, myc22, and telo24 are studied. The compound acts as a host molecule for the encapsulation of DNA binders viz., EtBr, Ber and enhances their fluorescence due to the encapsulation in its AQCC's cyclodextrin cavity. The binding constant of the host: guest complex of EtBr and Ber with AQCC's cavity are 6.4 × 105 and 3.3 × 106 mol-1 dm3, respectively. The proximity of the protons of the guest and host molecules is confirmed by two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY). The conjugate displays a quenching of fluorescence selectively on the association with CT-DNA and quadruplex kit22 that is contrast to the spectral behavior with quadruplex myc22 and telo24. CT-DNA exhibits dissimilar fluorescence spectra in free- and EtBr-bound forms. In addition, kit22 exhibit dissimilar emission profile when AQCC encapsulates Ber. Therefore, the Ber-loaded complexes and the AQCC molecule bind to different G-quadruplexes with different binding strengths. In addition, the effect of Ber in binding to the target DNAs is pronounces since the Ber molecule has more affinity to bind to quadruplexes than the duplex.
Collapse
Affiliation(s)
- Suganthi Soundarapandian
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Aleyamma Alexander
- Centre for Nanoscience & Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience & Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Israel V M V Enoch
- Centre for Nanoscience & Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Sameena Yousuf
- Department of Chemistry, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
11
|
Zhu XH, Sun BF, Luo M, Yu J, Zhang YD, Xu HQ, Luo H. Bloom helicase explicitly unwinds 3'-tailed G4DNA structure in prostate cancer cells. Int J Biol Macromol 2021; 180:578-589. [PMID: 33727188 DOI: 10.1016/j.ijbiomac.2021.03.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/22/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
G-quadruplex DNA (G4DNA) structure, which widely exists in the chromosomal telomeric regions and oncogenic promoter regions, plays a pivotal role in extending telomeric DNA with the help of telomerase in human cells. Bloom (BLM) helicase, a crucial member of the family of genome surveillance proteins, plays an essential role in DNA metabolic and repair pathways, including DNA replication, repair, transcription, recombination during chromosome segregation, and assuring telomere stability. The unwinding of G4DNA requires the participation of DNA helicase, which is crucial for maintaining chromosomal stability in cancer cells. Using fluorescence polarization and the electrophoretic mobility shift assay (EMSA), this study aimed to investigate the DNA-binding and unwinding properties of BLM helicase, cloned and purified from prostate cancer cells, toward G4DNA. The results revealed that BLM helicase derived from prostate cancer cells could bind and unwind G4DNA. The molecular affinity of bond between G4DNA and the helicase was dependent on the single-stranded DNA (ssDNA) terminals in G4DNA; the helicase was effectively bound to the G4DNA when the helicase monomer sufficiently covered approximately 10 nucleotides at the 3' or 5' ssDNA tail of G4DNA. For the unwinding of G4DNA, there was an apparent requirement of a 3' ssDNA tail and ATP; a G4DNA with only a 3' ssDNA tail was identified to be the most suitable substrate to be unwound by BLM helicase and required 3' ssDNA tails of at least 10 nt in length for efficient unwinding. Besides, BLM helicase was loosely bound and partly unwound the blunt-ended G4DNA. Although further mechanistic studies are warranted, the experimental results presented in this study are beneficial to further our understanding of the functional implication of BLM helicase in prostate cancer cells.
Collapse
Affiliation(s)
- Xu-Hui Zhu
- State Key Laboratory of Functions And Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; Beijing ChaoYang Hospital, Capital Medical University, Beijing 100016, PR China
| | - Bao-Fei Sun
- State Key Laboratory of Functions And Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
| | - Mei Luo
- State Key Laboratory of Functions And Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, PR China
| | - Jia Yu
- State Key Laboratory of Functions And Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, PR China
| | | | - Hou-Qiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, PR China.
| | - Heng Luo
- State Key Laboratory of Functions And Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
12
|
Kosiol N, Juranek S, Brossart P, Heine A, Paeschke K. G-quadruplexes: a promising target for cancer therapy. Mol Cancer 2021; 20:40. [PMID: 33632214 PMCID: PMC7905668 DOI: 10.1186/s12943-021-01328-4] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
DNA and RNA can fold into a variety of alternative conformations. In recent years, a particular nucleic acid structure was discussed to play a role in malignant transformation and cancer development. This structure is called a G-quadruplex (G4). G4 structure formation can drive genome instability by creating mutations, deletions and stimulating recombination events. The importance of G4 structures in the characterization of malignant cells was currently demonstrated in breast cancer samples. In this analysis a correlation between G4 structure formation and an increased intratumor heterogeneity was identified. This suggests that G4 structures might allow breast cancer stratification and supports the identification of new personalized treatment options. Because of the stability of G4 structures and their presence within most human oncogenic promoters and at telomeres, G4 structures are currently tested as a therapeutic target to downregulate transcription or to block telomere elongation in cancer cells. To date, different chemical molecules (G4 ligands) have been developed that aim to target G4 structures. In this review we discuss and compare G4 function and relevance for therapeutic approaches and their impact on cancer development for three cancer entities, which differ significantly in their amount and type of mutations: pancreatic cancer, leukemia and malignant melanoma. G4 structures might present a promising new strategy to individually target tumor cells and could support personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Nils Kosiol
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefan Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
13
|
Guiblet WM, Cremona MA, Harris RS, Chen D, Eckert KA, Chiaromonte F, Huang YF, Makova KD. Non-B DNA: a major contributor to small- and large-scale variation in nucleotide substitution frequencies across the genome. Nucleic Acids Res 2021; 49:1497-1516. [PMID: 33450015 PMCID: PMC7897504 DOI: 10.1093/nar/gkaa1269] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Approximately 13% of the human genome can fold into non-canonical (non-B) DNA structures (e.g. G-quadruplexes, Z-DNA, etc.), which have been implicated in vital cellular processes. Non-B DNA also hinders replication, increasing errors and facilitating mutagenesis, yet its contribution to genome-wide variation in mutation rates remains unexplored. Here, we conducted a comprehensive analysis of nucleotide substitution frequencies at non-B DNA loci within noncoding, non-repetitive genome regions, their ±2 kb flanking regions, and 1-Megabase windows, using human-orangutan divergence and human single-nucleotide polymorphisms. Functional data analysis at single-base resolution demonstrated that substitution frequencies are usually elevated at non-B DNA, with patterns specific to each non-B DNA type. Mirror, direct and inverted repeats have higher substitution frequencies in spacers than in repeat arms, whereas G-quadruplexes, particularly stable ones, have higher substitution frequencies in loops than in stems. Several non-B DNA types also affect substitution frequencies in their flanking regions. Finally, non-B DNA explains more variation than any other predictor in multiple regression models for diversity or divergence at 1-Megabase scale. Thus, non-B DNA substantially contributes to variation in substitution frequencies at small and large scales. Our results highlight the role of non-B DNA in germline mutagenesis with implications to evolution and genetic diseases.
Collapse
Affiliation(s)
- Wilfried M Guiblet
- Bioinformatics and Genomics Graduate Program, Penn State University, UniversityPark, PA 16802, USA
| | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Operations and Decision Systems, Université Laval, Canada
- CHU de Québec – Université Laval Research Center, Canada
| | - Robert S Harris
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Di Chen
- Intercollege Graduate Degree Program in Genetics, Huck Institutes of the Life Sciences, Penn State University, UniversityPark, PA 16802, USA
| | - Kristin A Eckert
- Department of Pathology, Penn State University, College of Medicine, Hershey, PA 17033, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
- EMbeDS, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Yi-Fei Huang
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park and Hershey, PA, USA
| |
Collapse
|
14
|
Genome-Wide Discovery of G-Quadruplexes in Wheat: Distribution and Putative Functional Roles. G3-GENES GENOMES GENETICS 2020; 10:2021-2032. [PMID: 32295768 PMCID: PMC7263691 DOI: 10.1534/g3.120.401288] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
G-quadruplexes are nucleic acid secondary structures formed by a stack of square planar G-quartets. G-quadruplexes were implicated in many biological functions including telomere maintenance, replication, transcription, and translation, in many species including humans and plants. For wheat, however, though it is one of the world's most important staple food, no G-quadruplex studies have been reported to date. Here, we computationally identify putative G4 structures (G4s) in wheat genome for the first time and compare its distribution across the genome against five other genomes (human, maize, Arabidopsis, rice, and sorghum). We identified close to 1 million G4 motifs with a density of 76 G4s/Mb across the whole genome and 93 G4s/Mb over genic regions. Remarkably, G4s were enriched around three regions, two located on the antisense and one on the sense strand at the following positions: 1) the transcription start site (TSS) (antisense), 2) the first coding domain sequence (CDS) (antisense), and 3) the start codon (sense). Functional enrichment analysis revealed that the gene models containing G4 motifs within these peaks were associated with specific gene ontology (GO) terms, such as developmental process, localization, and cellular component organization or biogenesis. We investigated genes encoding MADS-box transcription factors and showed examples of G4 motifs within critical regulatory regions in the VRN-1 genes in wheat. Furthermore, comparison with other plants showed that monocots share a similar distribution of G4s, but Arabidopsis shows a unique G4 distribution. Our study shows for the first time the prevalence and possible functional roles of G4s in wheat.
Collapse
|
15
|
Singh A, Joshi S, Kukreti S. Cationic porphyrins as destabilizer of a G-quadruplex located at the promoter of human MYH7 β gene. J Biomol Struct Dyn 2019; 38:4801-4816. [PMID: 31809672 DOI: 10.1080/07391102.2019.1689850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
G-quadruplex (GQ) architecture is adopted by guanine rich sequences, present throughout the eukaryotic genome including promoter locations and telomeric ends. The in vivo presence indicates their involvement and role in various biological processes. Various small ligands have been developed to interact and stabilize/destabilize G-quadruplex structures. Cationic porphyrins are among the most studied ligands, reported to bind and stabilize G-quadruplexes. Herein, we report the recognition and destabilization of a parallel G-quadruplex by porphyrins (TMPyP3 and TMPyP4). This G-quadruplex forming 23-nt G-rich sequence is in the promoter region of Human Myosin Heavy Chain β gene (MYH7β). Presence of various putative regulatory sequence elements (TATA Box, CCAAT, SP-1) located in the vicinity of this quadruplex motif, highlight its regulatory implications. Biophysical methods as Circular Dichroism Spectroscopy, UV-Absorption Spectroscopy, UV-Thermal Denaturation and Fluorescence Spectroscopy (steady as well as Time Resolved) have been used for studying the interaction and binding parameters. It is proposed that porphyrins have a destabilizing effect on the G-quadruplexes with parallel topology and a stronger binding specifically via intercalation mode is needed to cause destabilization. The study deals with better understanding and insights of DNA-Drug interactions in biological systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anju Singh
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| | - Savita Joshi
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi, India
| |
Collapse
|
16
|
Del Mundo IMA, Vasquez KM, Wang G. Modulation of DNA structure formation using small molecules. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:118539. [PMID: 31491448 PMCID: PMC6851491 DOI: 10.1016/j.bbamcr.2019.118539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Genome integrity is essential for proper cell function such that genetic instability can result in cellular dysfunction and disease. Mutations in the human genome are not random, and occur more frequently at "hotspot" regions that often co-localize with sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures. Non-B DNA-forming sequences are mutagenic, can stimulate the formation of DNA double-strand breaks, and are highly enriched at mutation hotspots in human cancer genomes. Thus, small molecules that can modulate the conformations of these structure-forming sequences may prove beneficial in the prevention and/or treatment of genetic diseases. Further, the development of molecular probes to interrogate the roles of non-B DNA structures in modulating DNA function, such as genetic instability in cancer etiology are warranted. Here, we discuss reported non-B DNA stabilizers, destabilizers, and probes, recent assays to identify ligands, and the potential biological applications of these DNA structure-modulating molecules.
Collapse
Affiliation(s)
- Imee M A Del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| |
Collapse
|
17
|
Catalano R, Moraca F, Amato J, Cristofari C, Rigo R, Via LD, Rocca R, Lupia A, Maruca A, Costa G, Catalanotti B, Artese A, Pagano B, Randazzo A, Sissi C, Novellino E, Alcaro S. Targeting multiple G-quadruplex–forming DNA sequences: Design, biophysical and biological evaluations of indolo-naphthyridine scaffold derivatives. Eur J Med Chem 2019; 182:111627. [DOI: 10.1016/j.ejmech.2019.111627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 11/25/2022]
|
18
|
Jara-Espejo M, Line SR. DNA G-quadruplex stability, position and chromatin accessibility are associated with CpG island methylation. FEBS J 2019; 287:483-495. [PMID: 31532882 DOI: 10.1111/febs.15065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/22/2019] [Accepted: 09/16/2019] [Indexed: 01/06/2023]
Abstract
CpG islands (CGI) are genomic regions associated with gene promoters and involved in gene expression regulation. Despite their high CpG content and unlike bulk genomic DNA methylation pattern, these regions are usually hypomethylated. So far, the mechanisms controlling the CGI methylation patterning remain unclear. G-quadruplex (G4) structures can inhibit DNA methyltransferases 1 enzymatic activity, leading to CGI hypomethylation. Our aim was to analyse the association of G4 forming sequences (G4FS) and CGI methylation as well as to determine the intrinsic and extrinsic characteristics of G4FS that may modulate this phenomenon. Using methylation data from human embryonic stem cells (hESCs) and three hESC-derived populations, we showed that hypomethylated CpGs located inside CGI (CGI/CpG) tend to be associated with highly stable G4FS (Minimum free energy ≤ -30 kcal·mol-1 ). The association of highly stable G4FS and hypomethylation tend to be stronger when these structures are located at shorter distances (~ < 150 bp) from GCI/CpGs, when G4FS and CpGs are located within open chromatin and G4FS are inside CGI. Moreover, this association is not strongly influenced by the CpG content of CGI. Conversely, highly methylated CGI/CpG tend to be associated with low stability G4FS. Although CpGs inside CGIs without a G4FS tend to be more methylated, high stability G4FS within CGI neighbourhood were associated with decreased methylation. In summary, our data indicate that G4FS may act as protective cis elements against CGI methylation, and this effect seems to be influenced by the G4FS folding potential, its presence within CGI, CpG distance from G4FS and chromatin accessibility.
Collapse
Affiliation(s)
- Manuel Jara-Espejo
- Department of Morphology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Sérgio Roberto Line
- Department of Morphology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| |
Collapse
|
19
|
Oxidative Stress: Role and Response of Short Guanine Tracts at Genomic Locations. Int J Mol Sci 2019; 20:ijms20174258. [PMID: 31480304 PMCID: PMC6747389 DOI: 10.3390/ijms20174258] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Over the decades, oxidative stress has emerged as a major concern to biological researchers. It is involved in the pathogenesis of various lifestyle-related diseases such as hypertension, diabetes, atherosclerosis, and neurodegenerative diseases. The connection between oxidative stress and telomere shortening via oxidative guanine lesion is well documented. Telomeres are confined to guanine rich ends of chromosomes. Owing to its self-association properties, it adopts G-quadruplex structures and hampers the overexpression of telomerase in the cancer cells. Guanine, being the most oxidation prone nucleobase, when structured in G-quadruplex entity, is found to respond peculiarly towards oxidative stress. Interestingly, this non-Watson-Crick structural feature exists abundantly in promoters of various oncogenes, exons and other genomic locations. The involvement of G-quadruplex architecture in oncogene promoters is well recognized in gene regulation processes. Development of small molecules aimed to target G-quadruplex structures, have found to alter the overexpression of oncogenes. The interaction may lead to the obstruction of diseased cell having elevated level of reactive oxygen species (ROS). Thus, presence of short guanine tracts (Gn) forming G-quadruplexes suggests its critical role in oxidative genome damage. Present review is a modest attempt to gain insight on the association of oxidative stress and G-quadruplexes, in various biological processes.
Collapse
|
20
|
Porter JE, Chapagain P, Fernandez-Lima F. Single-stranded DNA structural diversity: TAGGGT from monomers to dimers to tetramer formation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 2:60-65. [PMID: 30506977 DOI: 10.1002/rcm.8367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE DNA quadruplex structures have emerged as novel drug targets due to their role in preventing abnormal gene transcription and maintaining telomere stability. Trapped Ion Mobility Spectrometry-Mass Spectrometry (TIMS-MS), combined with theoretical modeling, is a powerful tool for studying the kinetic intermediates of DNA complexes formed in solution and interrogated in the gas phase after desolvation. METHODS A TAGGGT ssDNA sequence was purchased and studied in 10 mM ammonium acetate using nanospray electrospray ionization (nESI)-TIMS-MS in positive and negative ion mode. Collisional cross section (CCS) profiles were measured using internal calibration (Tune Mix). Theoretical structures were proposed based on molecular dynamics, charge location and geometry optimization for the most intense IMS bands based on the number of TAGGGT units, adduct form and charge states. RESULTS A distribution of monomeric, dimeric and tetrameric TAGGGT structures were formed in solution and separated in the gas phase based on their mobility and m/z value (e.g., [M + 2H]+2 , [2M + 3H]+3 , [M - 2H]-2 , [2M - 3H]-3 , [4M + 4H]+4 , [4M + 3H + NH4 ]+4 , [4M + 2H + 2NH4 ]+4 and [4M + H + 3NH4 ]+4 ). The high mobility resolution of the TIMS-MS analyzer permitted the observation of multiple CCS bands per molecular ion form. Comparison with theoretical candidate structures suggests that monomeric TAGGGT species are stabilized by A-T and G+ -G interactions, with the size of the conformer influenced by the proton location. In the case of the TAGGGT quadruplex, the protonated species displayed a broad CCS distribution, while six discrete conformers were stabilized by the presence of ammonium ions (n = 1-3). CONCLUSIONS This is the first observation of multiple conformations of TAGGGT complexes (n = 1, 2 and 4) in 10 mM ammonium acetate. Candidate structures with intramolecular interactions of the form of G+ -G and traditional A-T base pairing agreed with the experimental trends. Our results demonstrate the structural diversity of TAGGGT monomers, dimers and tetramers in the gas phase beyond the previously reported solution structure, using 10 mM ammonium acetate to replicate biological conditions.
Collapse
Affiliation(s)
- Jacob E Porter
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
21
|
Litovchick A, Tian X, Monteiro MI, Kennedy KM, Guié MA, Centrella P, Zhang Y, Clark MA, Keefe AD. Novel Nucleic Acid Binding Small Molecules Discovered Using DNA-Encoded Chemistry. Molecules 2019; 24:molecules24102026. [PMID: 31137911 PMCID: PMC6572338 DOI: 10.3390/molecules24102026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022] Open
Abstract
Inspired by the many reported successful applications of DNA-encoded chemical libraries in drug discovery projects with protein targets, we decided to apply this platform to nucleic acid targets. We used a 120-billion-compound set of 33 distinct DNA-encoded chemical libraries and affinity-mediated selection to discover binders to a panel of DNA targets. Here, we report the successful discovery of small molecules that specifically interacted with DNA G-quartets, which are stable structural motifs found in G-rich regions of genomic DNA, including in the promoter regions of oncogenes. For this study, we chose the G-quartet sequence found in the c-myc promoter as a primary target. Compounds enriched using affinity-mediated selection against this target demonstrated high-affinity binding and high specificity over DNA sequences not containing G-quartet motifs. These compounds demonstrated a moderate ability to discriminate between different G-quartet motifs and also demonstrated activity in a cell-based assay, suggesting direct target engagement in the cell. DNA-encoded chemical libraries and affinity-mediated selection are uniquely suited to discover binders to targets that have no inherent activity outside of a cellular context, and they may also be of utility in other nucleic acid structural motifs.
Collapse
Affiliation(s)
| | - Xia Tian
- Arrakis Therapeutics, Waltham, MA 02451, USA.
| | | | | | | | | | - Ying Zhang
- X-Chem Pharmaceuticals, Waltham, MA 02435, USA.
| | | | | |
Collapse
|
22
|
Iida K, Tsushima Y, Ma Y, Sedghi Masoud S, Sakuma M, Yokoyama T, Yoshida W, Ikebukuro K, Nagasawa K. Model studies for isolation of G-quadruplex-forming DNA sequences through a pull-down strategy with macrocyclic polyoxazole. Bioorg Med Chem 2019; 27:1742-1746. [PMID: 30842030 DOI: 10.1016/j.bmc.2019.02.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
G-quadruplexes (G4s) are non-B DNA structures present in guanine-rich regions of gene regulatory areas, promoters and CpG islands, but their occurrence and functions remain incompletely understood. Thus, methodology to identify G4 sequences is needed. Here, we describe the synthesis of a novel cyclic hepta-oxazole compound, L1Bio-7OTD (1), bearing a biotin affinity-tag as a tool to pull down G4 structures from mixtures of G4-forming and non G4-forming DNA sequences. We confirmed that it could pull down G4s associated with telomeres, bcl-2 gene, and c-kit gene.
Collapse
Affiliation(s)
- Keisuke Iida
- Department of Chemistry, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.
| | - Yamato Tsushima
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yue Ma
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shadi Sedghi Masoud
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mai Sakuma
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tomomi Yokoyama
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Wataru Yoshida
- School of Bioscience and Biotechnology, Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji 192-0982, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
23
|
Chilakamarthi U, Koteshwar D, Jinka S, Vamsi Krishna N, Sridharan K, Nagesh N, Giribabu L. Novel Amphiphilic G-Quadruplex Binding Synthetic Derivative of TMPyP4 and Its Effect on Cancer Cell Proliferation and Apoptosis Induction. Biochemistry 2018; 57:6514-6527. [PMID: 30369235 DOI: 10.1021/acs.biochem.8b00843] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porphyrins are well-known anticancer agents because of their high binding affinity for G-quadruplex DNA and excellent photophysical properties. Several studies carried out using TMPyP4 established it as an efficient chemotherapeutic and a photodynamic therapeutic (PDT) agent, but its use as a lead molecule has been restricted because of its high level of binding to double-stranded DNA (dsDNA), which may have side effects on normal cells and tissues. To minimize its interaction with dsDNA and to enhance internalization into cells, an analogue of TMPyP4 (5Me) was synthesized. Its selectivity for G-quadruplex DNA over dsDNA was evaluated by spectroscopic methods, and its role in stabilizing G-quadruplex DNA was assessed by fluorescence lifetime and thermal melting experiments. Biophysical studies indicated that 5Me interacts well with G-quadruplex DNA. In vitro cytotoxicity experiments with tumor cell lines (PANC-1, B16F10, and MDA MB 231) have revealed that 5Me can inhibit the growth of cancer cells comparable to TMPyP4. MTT and apoptotic assays demonstrated the ability of 5Me to specifically affect cancer cells over normal cells. Cell cycle analysis showed that 5Me, like TMPyP4, induces G2/M phase cell cycle arrest. In addition, 5Me is more effectively taken up by both cancer and normal cells than TMPyP4. In addition, we have noticed that 5Me is more efficient than TMPyP4 in inhibiting the growth of the cancer cells after irradiation with light (600-720 nm, 20 J/cm2, 50 mW/cm2). By and large, these experimental results indicate that 5Me can be an efficient chemotherapeutic as well as a PDT agent.
Collapse
Affiliation(s)
- Ushasri Chilakamarthi
- Polymers and Functional Materials Division , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Devulapally Koteshwar
- Polymers and Functional Materials Division , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Sudhakar Jinka
- Applied Biology Division , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Narra Vamsi Krishna
- Polymers and Functional Materials Division , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Kathyayani Sridharan
- Applied Biology Division , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology , Hyderabad 500007 , India
| | - Lingamallu Giribabu
- Polymers and Functional Materials Division , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| |
Collapse
|
24
|
The estimation of H-bond and metal ion-ligand interaction energies in the G-Quadruplex ⋯ Mn+ complexes. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Griffin BD, Bass HW. Review: Plant G-quadruplex (G4) motifs in DNA and RNA; abundant, intriguing sequences of unknown function. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:143-147. [PMID: 29606212 DOI: 10.1016/j.plantsci.2018.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/12/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
DNA sequences capable of forming G-quadruplex (G4) structures can be predicted and mapped in plant genomes using computerized pattern search programs. Non-telomeric G4 motifs have recently been found to number in the thousands across many plant species and enriched around gene promoters, prompting speculation that they may represent a newly uncovered and ubiquitous family of cis-acting elements. Comparative analysis shows that monocots exhibit five to ten times higher G4 motif density than eudicots, but the significance of this difference has not been determined. The vast scale and complexity of G4 functions, actual or theoretical, are reviewed in relation to the multiple modes of action and myriad genetic functions for which G4s have been implicated in DNA and RNA. Future experimental strategies and opportunities include identifying plant G4-interactomes, resolving the structures of G4s with and without their binding partners, and defining molecular mechanisms through reporter gene, genetic, or genome editing approaches. Given the global importance of plants for food, clothing, medicine, and energy, together with the potential role of G4 motifs as a widely conserved set of DNA sequences that could coordinate gene regulation, future plant G4 research holds great potential for use in plant improvement strategies.
Collapse
Affiliation(s)
- Brianna D Griffin
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, FL, 32306-4295, USA.
| | - Hank W Bass
- Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, FL, 32306-4295, USA.
| |
Collapse
|
26
|
Qin QP, Meng T, Tan MX, Liu YC, Wang SL, Zou BQ, Liang H. Synthesis, characterization and biological evaluation of six highly cytotoxic ruthenium(ii) complexes with 4'-substituted-2,2':6',2''-terpyridine. MEDCHEMCOMM 2018; 9:525-533. [PMID: 30108943 PMCID: PMC6072480 DOI: 10.1039/c7md00532f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022]
Abstract
Herein, six ruthenium(ii) terpyridine complexes, i.e. [RuCl2(4-EtN-Phtpy)(DMSO)] (Ru1), [RuCl2(4-MeO-Phtpy)(DMSO)] (Ru2), [RuCl2(2-MeO-Phtpy)(DMSO)] (Ru3), [RuCl2(3-MeO-Phtpy)(DMSO)] (Ru4), [RuCl2(1-Bip-Phtpy)(DMSO)] (Ru5), and [RuCl2(1-Pyr-Phtpy)(DMSO)] (Ru6) with 4'-(4-diethylaminophenyl)-2,2':6',2''-terpyridine (4-EtN-Phtpy), 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (4-MeO-Phtpy), 4'-(2-methoxyphenyl)-2,2':6',2''-terpyridine (2-MeO-Phtpy), 4'-(3-methoxyphenyl)-2,2':6',2''-terpyridine (3-MeO-Phtpy), 4'-(1-biphenylene)-2,2':6',2''-terpyridine (1-Bip-Phtpy), and 4'-(1-pyrene)-2,2':6',2''-terpyridine (1-Pyr-Phtpy), respectively, were synthesized and fully characterized. The MTT assay demonstrates that the in vitro anticancer activity of Ru1 is higher than that of Ru2-Ru6 and more selective for Hep-G2 cells than for normal HL-7702 cells. In addition, various biological assays show that Ru1 and Ru6, especially the Ru1 complex, are telomerase inhibitors targeting c-myc G4 DNA and also cause apoptosis of Hep-G2 cells. With the same Ru center, the in vitro antitumor activity and cellular uptake ability of the 4-EtN-Phtpy and 1-Bip-Phtpy ligands follow the order 4-EtN-Phtpy > 1-Bip-Phtpy.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ting Meng
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ming-Xiong Tan
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Yan-Cheng Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Shu-Long Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology , College of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Bi-Qun Zou
- Department of Chemistry , Guilin Normal College , 21 Xinyi Road , Gulin 541001 , PR China .
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| |
Collapse
|
27
|
Cheng R, Rose VE, Power B, Fridgen TD. Self-assembled uracil complexes containing tautomeric uracils: an IRMPD spectroscopic and computation study of the structures of gaseous uracilnCa2+ (n = 4, 5, or 6) complexes. Phys Chem Chem Phys 2018; 20:572-580. [DOI: 10.1039/c7cp07128k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The structures of doubly-charged uracil (U) complexes with Ca2+, UnCa2+ (n = 4, 5, 6), were studied by infrared multiphoton dissociation (IRMPD) spectroscopy and computational methods.
Collapse
Affiliation(s)
- Ruodi Cheng
- Department of Chemistry
- Memorial University
- St. John's
- Canada
| | | | - Barry Power
- Department of Chemistry
- Memorial University
- St. John's
- Canada
| | | |
Collapse
|
28
|
McRae EKS, Booy EP, Padilla-Meier GP, McKenna SA. On Characterizing the Interactions between Proteins and Guanine Quadruplex Structures of Nucleic Acids. J Nucleic Acids 2017; 2017:9675348. [PMID: 29250441 PMCID: PMC5700478 DOI: 10.1155/2017/9675348] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/08/2017] [Indexed: 01/07/2023] Open
Abstract
Guanine quadruplexes (G4s) are four-stranded secondary structures of nucleic acids which are stabilized by noncanonical hydrogen bonding systems between the nitrogenous bases as well as extensive base stacking, or pi-pi, interactions. Formation of these structures in either genomic DNA or cellular RNA has the potential to affect cell biology in many facets including telomere maintenance, transcription, alternate splicing, and translation. Consequently, G4s have become therapeutic targets and several small molecule compounds have been developed which can bind such structures, yet little is known about how G4s interact with their native protein binding partners. This review focuses on the recognition of G4s by proteins and small peptides, comparing the modes of recognition that have thus far been observed. Emphasis will be placed on the information that has been gained through high-resolution crystallographic and NMR structures of G4/peptide complexes as well as biochemical investigations of binding specificity. By understanding the molecular features that lead to specificity of G4 binding by native proteins, we will be better equipped to target protein/G4 interactions for therapeutic purposes.
Collapse
Affiliation(s)
- Ewan K. S. McRae
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Evan P. Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | | | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Institute for Materials, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
29
|
Rivera-Sánchez MC, García-Arriaga M, Hobley G, Morales-de-Echegaray AV, Rivera JM. Small-Molecule-Based Self-Assembled Ligands for G-Quadruplex DNA Surface Recognition. ACS OMEGA 2017; 2:6619-6627. [PMID: 29104952 PMCID: PMC5664172 DOI: 10.1021/acsomega.7b01255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/27/2017] [Indexed: 05/08/2023]
Abstract
Most drugs are small molecules because of their attractive pharmacokinetics, manageable development and manufacturing, and effective binding into the concave crevices of bio-macromolecules. Despite these features, they often fall short when it comes to effectively recognizing the surfaces of bio-macromolecules. One way to overcome the challenge of biomolecular surface recognition is to develop small molecules that become self-assembled ligands (SALs) prior to binding. Herein, we report SALs made from 8-aryl-2'-deoxyguanosine derivatives forming precise hydrophilic supramolecular G-quadruplexes (SGQs) with excellent size, shape, and charge complementarity to G-quadruplex DNA (QDNA). We show that only those compounds forming SGQs act as SALs, which in turn differentially stabilize QDNAs from selected oncogene promoters and the human telomeric regions. Fluorescence resonance energy-transfer melting assays are consistent with spectroscopic, calorimetric, and light scattering studies, showing the formation of a "sandwichlike" complex QDNA·SGQ·QDNA. These results open the door for the advent of SALs that recognize QDNAs and potentially the surfaces of other bio-macromolecules such as proteins.
Collapse
Affiliation(s)
- María
del C. Rivera-Sánchez
- Department of Chemistry and
Molecular Sciences Research Center, University
of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - Marilyn García-Arriaga
- Department of Chemistry and
Molecular Sciences Research Center, University
of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - Gerard Hobley
- Department of Chemistry and
Molecular Sciences Research Center, University
of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - Ana V. Morales-de-Echegaray
- Department of Chemistry and
Molecular Sciences Research Center, University
of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - José M. Rivera
- Department of Chemistry and
Molecular Sciences Research Center, University
of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
30
|
Zheng KW, He YD, Liu HH, Li XM, Hao YH, Tan Z. Superhelicity Constrains a Localized and R-Loop-Dependent Formation of G-Quadruplexes at the Upstream Region of Transcription. ACS Chem Biol 2017; 12:2609-2618. [PMID: 28846373 DOI: 10.1021/acschembio.7b00435] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription induces formation of intramolecular G-quadruplex structures at the upstream region of a DNA duplex by an upward transmission of negative supercoiling through the DNA. Currently the regulation of such G-quadruplex formation remains unclear. Using plasmid as a model, we demonstrate that while it is the dynamic negative supercoiling generated by a moving RNA polymerase that triggers a formation of a G-quadruplex, the constitutional superhelicity determines the potential and range of the formation of a G-quadruplex by constraining the propagation of the negative supercoiling. G-quadruplex formation is maximal in negatively supercoiled and nearly abolished in relaxed plasmids while being moderate in nicked and linear ones. The formation of a G-quadruplex strongly correlates with the presence of an R-loop. Preventing R-loop formation virtually abolished G-quadruplex formation even in the negatively supercoiled plasmid. Enzymatic action and protein binding that manipulate supercoiling or its propagation all impact the formation of G-quadruplexes. Because chromosomes and plasmids in cells in their natural form are maintained in a supercoiled state, our findings reveal a physical basis that justifies the formation and regulation of G-quadruplexes in vivo. The structural features involved in G-quadruplex formation may all serve as potential targets in clinical and therapeutic applications.
Collapse
Affiliation(s)
- Ke-wei Zheng
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yi-de He
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Hong-he Liu
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xin-min Li
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yu-hua Hao
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Zheng Tan
- State
Key Laboratory of Membrane Biology, Institute of Zoology, ‡University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
31
|
Singh A, Kukreti S. A triple stranded G-quadruplex formation in the promoter region of human myosin β(Myh7) gene. J Biomol Struct Dyn 2017; 36:2773-2786. [PMID: 28927343 DOI: 10.1080/07391102.2017.1374211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulatory regions in human genome, enriched in guanine-rich DNA sequences have the propensity to fold into G-quadruplex structures. On exploring the genome for search of G-tracts, it was interesting to find that promoter of Human Myosin Gene (MYH7) contains a conserved 23-mer G-rich sequence (HM-23). Mutations in this gene are associated with familial cardiomyopathy. Enrichment of MYH7 gene in G-rich sequences could possibly play a critical role in its regulation. We used polyacrylamide gel electrophoresis (PAGE), UV-Thermal denaturation (UV-Tm) and Circular Dichroism (CD), to demonstrate the formation of a G-quadruplex by 23-mer G-rich sequence HM23 in promoter location of MYH7 gene. We observed that the wild G-rich sequence HM23 containing consecutive G5 stretch in two stacks adopt G-quadruplexes of diverse molecularity by involvement of four-strand, three-strand and two-strands with same parallel topology. Interestingly, the mutated sequence in the absence of continuous G5 stretch obstructs the formation of three-stranded G-quadruplex. We demonstrated that continuous G5 stretch is mandatory for the formation of a unique three-stranded G-quadruplex. Presence of various transcription factors (TF) in vicinity of the sequence HM23 leave fair possibility of recognition by TF binding sites, and so modulate gene expression. These findings may add on our understanding about the effect of base change in the formation of varied structural species in similar solution condition. This study may give insight about structural polymorphism arising due to recognition of non-Watson-Crick G-quadruplex structures by cellular proteins and designing structure specific molecules.
Collapse
Affiliation(s)
- Anju Singh
- a Nucleic Acids Research Laboratory, Department of Chemistry , University of Delhi , North Campus, Delhi 110007 , India
| | - Shrikant Kukreti
- a Nucleic Acids Research Laboratory, Department of Chemistry , University of Delhi , North Campus, Delhi 110007 , India
| |
Collapse
|
32
|
Piraux G, Bar L, Abraham M, Lavergne T, Jamet H, Dejeu J, Marcélis L, Defrancq E, Elias B. New Ruthenium-Based Probes for Selective G-Quadruplex Targeting. Chemistry 2017; 23:11872-11880. [PMID: 28609545 DOI: 10.1002/chem.201702076] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 01/13/2023]
Abstract
Telomeric regions containing G-quadruplex (G4) structures play a pivotal role in the development of cancers. The development of specific binders for G4s is thus of great interest in order to gain a deeper understanding of the role of these structures, and to ultimately develop new anticancer drug candidates. For several years, RuII complexes have been studied as efficient probes for DNA. Interest in these complexes stems mainly from the tunability of their structures and properties, and the possibility of using light excitation as a tool to probe their environment or to selectively trigger their reaction with a biological target. Herein, we report on the synthesis and thorough study of new RuII complexes based on a novel dipyrazino[2,3-a:2',3'-h]phenazine ligand (dph), obtained through a Chichibabin-like reaction. Luminescence experiments, surface plasmon resonance (SPR), and computational studies have demonstrated that these complexes behave as selective probes for G-quadruplex structures.
Collapse
Affiliation(s)
- Guillaume Piraux
- Institut de la Matière Condensée et des Nanosciences (IMCN)-Molécules, Solides et Réactivité (MOST), Université catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Laure Bar
- Université Grenoble-Alpes, UMR CNRS 5250, 38000, Grenoble, France
| | - Michaël Abraham
- Institut de la Matière Condensée et des Nanosciences (IMCN)-Molécules, Solides et Réactivité (MOST), Université catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Thomas Lavergne
- Université Grenoble-Alpes, UMR CNRS 5250, 38000, Grenoble, France
| | - Hélène Jamet
- Université Grenoble-Alpes, UMR CNRS 5250, 38000, Grenoble, France
| | - Jérôme Dejeu
- Université Grenoble-Alpes, UMR CNRS 5250, 38000, Grenoble, France
| | - Lionel Marcélis
- Institut de la Matière Condensée et des Nanosciences (IMCN)-Molécules, Solides et Réactivité (MOST), Université catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Eric Defrancq
- Université Grenoble-Alpes, UMR CNRS 5250, 38000, Grenoble, France
| | - Benjamin Elias
- Institut de la Matière Condensée et des Nanosciences (IMCN)-Molécules, Solides et Réactivité (MOST), Université catholique de Louvain, Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
33
|
Qin QP, Qin JL, Chen M, Li YL, Meng T, Zhou J, Liang H, Chen ZF. Chiral platinum (II)-4-(2,3-dihydroxypropyl)- formamide oxo-aporphine (FOA) complexes promote tumor cells apoptosis by directly targeting G-quadruplex DNA in vitro and in vivo. Oncotarget 2017; 8:61982-61997. [PMID: 28977920 PMCID: PMC5617480 DOI: 10.18632/oncotarget.18778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/06/2017] [Indexed: 11/25/2022] Open
Abstract
Three platinum(II) complexes, 4 (LC-004), 5 (LC-005), and 6 (LC-006), with the chiral FOA ligands R/S-(±)-FOA (1), R-(+)-FOA (2) and S-(–)-FOA (3), respectively, were synthesized and characterized. As potential anti-tumor agents, these complexes show higher cytotoxicity to BEL-7404 cells than the HL-7702 normal cells. They are potential telomerase inhibitors that target c-myc and human telomeric G-quadruplex DNA. Compared to complexes 4 and 5, 6 exhibited higher binding affinities towards telomeric, c-myc G-quadruplex DNA and caspase-3/9, thereby inducing senescence and apoptosis to a greater extent in tumor cells. Moreover, our in vivo studies showed that complex 6 can effectively inhibit tumor growth in the BEL-7404 and BEL-7402 xenograft mouse models and is less toxic than 5-fluorouracil and cisplatin. The effective inhibition of tumor growth is attributed to its interactions with 53BP1, TRF1, c-myc, TRF2, and hTERT. Thus, complex 6 can serve as a novel lead compound and a potential drug candidate for anticancer chemotherapy.
Collapse
Affiliation(s)
- Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jiao-Lan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ming Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yu-Lan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ting Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jie Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
34
|
Patro LPP, Kumar A, Kolimi N, Rathinavelan T. 3D-NuS: A Web Server for Automated Modeling and Visualization of Non-Canonical 3-Dimensional Nucleic Acid Structures. J Mol Biol 2017; 429:2438-2448. [PMID: 28652006 DOI: 10.1016/j.jmb.2017.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
Abstract
The inherent conformational flexibility of nucleic acids facilitates the formation of a range of conformations such as duplex, triplex, quadruplex, etc. that play crucial roles in biological processes. Elucidation of the influence of non-canonical base pair mismatches on DNA/RNA structures at different sequence contexts to understand the mismatch repair, misregulation of alternative splicing mechanisms and the sequence-dependent effect of RNA-DNA hybrid in relevance to antisense strategy demand their three-dimensional structural information. Furthermore, structural insights about nucleic acid triplexes, which are generally not tractable to structure determination by X-ray crystallography or NMR techniques, are essential to establish their biological function(s). A web server, namely 3D-NuS (http://iith.ac.in/3dnus/), has been developed to generate energy-minimized models of 80 different types of triplexes, 64 types of G-quadruplexes, left-handed Z-DNA/RNA duplexes, and RNA-DNA hybrid duplex along with inter- and intramolecular DNA or RNA duplexes comprising a variety of mismatches and their chimeric forms for any user-defined sequence and length. It also generates an ensemble of conformations corresponding to the modeled structure. These structures may serve as good starting models for docking proteins and small molecules with nucleic acids, NMR structure determination, cryo-electron microscope modeling, DNA/RNA nanotechnology applications and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- L Ponoop Prasad Patro
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502285, India
| | - Abhishek Kumar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502285, India
| | - Narendar Kolimi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502285, India
| | | |
Collapse
|
35
|
Das A, Chatterjee S, Suresh Kumar G. Targeting human telomeric G-quadruplex DNA with antitumour natural alkaloid aristololactam-β-D-glucoside and its comparison with daunomycin. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 11/05/2022]
Affiliation(s)
| | - Sabyasachi Chatterjee
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| |
Collapse
|
36
|
Zhao Y, Zhang JY, Zhang ZY, Tong TJ, Hao YH, Tan Z. Real-Time Detection Reveals Responsive Cotranscriptional Formation of Persistent Intramolecular DNA and Intermolecular DNA:RNA Hybrid G-Quadruplexes Stabilized by R-Loop. Anal Chem 2017; 89:6036-6042. [DOI: 10.1021/acs.analchem.7b00625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yang Zhao
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing 100083, P.R. China
| | - Jia-yu Zhang
- State
Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zong-yu Zhang
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing 100083, P.R. China
| | - Tan-jun Tong
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University Research Center on Aging, Beijing 100083, P.R. China
| | - Yu-hua Hao
- State
Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zheng Tan
- State
Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
37
|
Jiang G, Chen X, Xu L, Cao Y, Hong S, Liu M, Cao W, Pei R. Design and Synthesis of a Dimethylindole Red Trimer: A New Light-Up Red-Emitting Fluorescent Probe for G-Quadruplexes. ChemistrySelect 2017. [DOI: 10.1002/slct.201601889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guimei Jiang
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
- Department of Chemistry, College of Sciences; Shanghai University; Shanghai 200444 China
| | - Xing Chen
- Public Health of Guangxi Medical University; Nanning 530021 China
| | - Lijun Xu
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| | - Shanni Hong
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| | - Min Liu
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| | - Weiguo Cao
- Department of Chemistry, College of Sciences; Shanghai University; Shanghai 200444 China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences; Suzhou 215123 China
| |
Collapse
|
38
|
Kanti Si M, Sen A, Ganguly B. Exploiting hydrogen bonding interactions to probe smaller linear and cyclic diamines binding to G-quadruplexes: a DFT and molecular dynamics study. Phys Chem Chem Phys 2017; 19:11474-11484. [DOI: 10.1039/c7cp00472a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This report reveals that hydrogen bonding interactions between the ligand and G-quadruplex can initiate an alternative binding motif to typical π-stacking interactions.
Collapse
Affiliation(s)
- Mrinal Kanti Si
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR-Central Salt & Marine Chemicals Research Institute
- Bhavnagar
- India
- Academy of Scientific and Innovative Research
| | - Anik Sen
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR-Central Salt & Marine Chemicals Research Institute
- Bhavnagar
- India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility)
- CSIR-Central Salt & Marine Chemicals Research Institute
- Bhavnagar
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
39
|
Qin QP, Qin JL, Meng T, Yang GA, Wei ZZ, Liu YC, Liang H, Chen ZF. Preparation of 6/8/11-Amino/Chloro-Oxoisoaporphine and Group-10 Metal Complexes and Evaluation of Their in Vitro and in Vivo Antitumor Activity. Sci Rep 2016; 6:37644. [PMID: 27898051 PMCID: PMC5127189 DOI: 10.1038/srep37644] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022] Open
Abstract
A series of group-10 metal complexes 1–14 of oxoisoaporphine derivatives were designed and synthesized. 1–14 were more selectively cytotoxic to Hep-G2 cells comparing with normal liver cells. In vitro cytotoxicity results showed that complexes 1–6, 7, 8, 10 and 11, especially 3, were telomerase inhibitors targeting c-myc, telomeric, and bcl-2 G4s and triggered cell senescence and apoptosis; they also caused telomere/DNA damage and S phase arrest. In addition, 1–6 also caused mitochondrial dysfunction. Notably, 3 with 6-amino substituted ligand La exhibited less side effects than 6 with 8-amino substituted ligand Lb and cisplatin, but similar tumor growth inhibition efficacy in BEL-7402 xenograft model. Complex 3 has the potential to be developed as an effective anticancer agent.
Collapse
Affiliation(s)
- Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Jiao-Lan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Ting Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Gui-Ai Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Zu-Zhuang Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Yan-Cheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P.R. China
| |
Collapse
|
40
|
Qin QP, Qin JL, Meng T, Lin WH, Zhang CH, Wei ZZ, Chen JN, Liu YC, Liang H, Chen ZF. High in vivo antitumor activity of cobalt oxoisoaporphine complexes by targeting G-quadruplex DNA, telomerase and disrupting mitochondrial functions. Eur J Med Chem 2016; 124:380-392. [DOI: 10.1016/j.ejmech.2016.08.063] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/27/2022]
|
41
|
Yang L, Qing Z, Liu C, Tang Q, Li J, Yang S, Zheng J, Yang R, Tan W. Direct Fluorescent Detection of Blood Potassium by Ion-Selective Formation of Intermolecular G-Quadruplex and Ligand Binding. Anal Chem 2016; 88:9285-92. [PMID: 27558922 DOI: 10.1021/acs.analchem.6b02667] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
G-quadruplex analogues have been widely used as molecular tools for detection of potassium ion (K(+)). However, interference from a higher concentration of sodium ion (Na(+)), enzymatic degradation of the oligonucleotide, and background absorption and fluorescence of blood samples have all limited the use of G-quadruplex for direct detection of K(+) in blood samples. Here, we reported, for the first time, an intermolecular G-quadruplex-based assay capable of direct fluorescent detection of blood K(+). Increased stringency of intermolecular G-quadruplex formation based on our screened G-rich oligonucleotide (5'-TGAGGGA GGGG-3') provided the necessary selectivity for K(+) against Na(+) at physiological ion level. To increase long-term stability of oligonucleotide in blood, the screened oligonucleotide was modified with an inverted thymine nucleotide whose 3'-terminus was connected to the 3'-terminus of the upstream nucleotide, acting as a blocking group to greatly improve antinuclease stability. Lastly, to avoid interference from background absorption and autofluorescence of blood, a G-quadruplex-binding, two-photon-excited ligand, EBMVC-B, was synthesized and chosen as the fluorescence reporter. Thus, based on selective K(+) ion-induced formation of intermolecular G-quadruplex and EBMVC-B binding, this approach could linearly respond to K(+) from 0.5 to 10 mM, which matches quite well with the physiologically relevant concentration of blood K(+). Moreover, the system was highly selective for K(+) against other metal ions, including Na(+), Ca(2+), Mg(2+), Zn(2+) common in blood. The practical application was demonstrated by direct detection of K(+) from real blood samples by two-photon fluorescence technology. To the best of our knowledge, this is the first attempt to exploit molecular G-quadruplex-based fluorescent sensing for direct assay of blood target. As such, we expect that it will promote the design and practical application of similar DNA-based sensors in complex real systems.
Collapse
Affiliation(s)
- Le Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Zhihe Qing
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410004, P. R. China
| | - Changhui Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Qiao Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Sheng Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410004, P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China.,School of Chemistry and Biological Engineering, Changsha University of Science and Technology , Changsha 410004, P. R. China
| | - Weihong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University , Changsha 410082, P. R. China
| |
Collapse
|
42
|
Dhapola P, Chowdhury S. QuadBase2: web server for multiplexed guanine quadruplex mining and visualization. Nucleic Acids Res 2016; 44:W277-83. [PMID: 27185890 PMCID: PMC4987949 DOI: 10.1093/nar/gkw425] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/03/2016] [Indexed: 02/01/2023] Open
Abstract
DNA guanine quadruplexes or G4s are non-canonical DNA secondary structures which affect genomic processes like replication, transcription and recombination. G4s are computationally identified by specific nucleotide motifs which are also called putative G4 (PG4) motifs. Despite the general relevance of these structures, there is currently no tool available that can allow batch queries and genome-wide analysis of these motifs in a user-friendly interface. QuadBase2 (quadbase.igib.res.in) presents a completely reinvented web server version of previously published QuadBase database. QuadBase2 enables users to mine PG4 motifs in up to 178 eukaryotes through the EuQuad module. This module interfaces with Ensembl Compara database, to allow users mine PG4 motifs in the orthologues of genes of interest across eukaryotes. PG4 motifs can be mined across genes and their promoter sequences in 1719 prokaryotes through ProQuad module. This module includes a feature that allows genome-wide mining of PG4 motifs and their visualization as circular histograms. TetraplexFinder, the module for mining PG4 motifs in user-provided sequences is now capable of handling up to 20 MB of data. QuadBase2 is a comprehensive PG4 motif mining tool that further expands the configurations and algorithms for mining PG4 motifs in a user-friendly way.
Collapse
Affiliation(s)
- Parashar Dhapola
- GNR Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110 025, India
| | - Shantanu Chowdhury
- GNR Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110 025, India Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110 025, India
| |
Collapse
|
43
|
Lecarme L, Prado E, De Rache A, Nicolau-Travers ML, Gellon G, Dejeu J, Lavergne T, Jamet H, Gomez D, Mergny JL, Defrancq E, Jarjayes O, Thomas F. Efficient Inhibition of Telomerase by Nickel-Salophen Complexes. ChemMedChem 2016; 11:1133-6. [DOI: 10.1002/cmdc.201600171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Laureline Lecarme
- Université Grenoble Alpes; Département de Chimie Moléculaire; UMR-5250; 38041 Grenoble Cedex 9 France
| | - Enora Prado
- Université Grenoble Alpes; Département de Chimie Moléculaire; UMR-5250; 38041 Grenoble Cedex 9 France
| | - Aurore De Rache
- ARNA laboratory; Inserm U1212, CNRS UMR 5320; Institut Européen de Chimie et Biologie IECB - Université de Bordeaux; 2 rue Robert Escarpit 33607 Pessac France
| | | | - Gisèle Gellon
- Université Grenoble Alpes; Département de Chimie Moléculaire; UMR-5250; 38041 Grenoble Cedex 9 France
| | - Jérôme Dejeu
- Université Grenoble Alpes; Département de Chimie Moléculaire; UMR-5250; 38041 Grenoble Cedex 9 France
| | - Thomas Lavergne
- Université Grenoble Alpes; Département de Chimie Moléculaire; UMR-5250; 38041 Grenoble Cedex 9 France
| | - Hélène Jamet
- Université Grenoble Alpes; Département de Chimie Moléculaire; UMR-5250; 38041 Grenoble Cedex 9 France
| | - Dennis Gomez
- Institut de Pharmacologie et de Biologie Structurale; 205 Route de Narbonne 31077 Toulouse Cedex 4 France
| | - Jean-Louis Mergny
- ARNA laboratory; Inserm U1212, CNRS UMR 5320; Institut Européen de Chimie et Biologie IECB - Université de Bordeaux; 2 rue Robert Escarpit 33607 Pessac France
| | - Eric Defrancq
- Université Grenoble Alpes; Département de Chimie Moléculaire; UMR-5250; 38041 Grenoble Cedex 9 France
| | - Olivier Jarjayes
- Université Grenoble Alpes; Département de Chimie Moléculaire; UMR-5250; 38041 Grenoble Cedex 9 France
| | - Fabrice Thomas
- Université Grenoble Alpes; Département de Chimie Moléculaire; UMR-5250; 38041 Grenoble Cedex 9 France
| |
Collapse
|
44
|
|
45
|
Reyes-Gutiérrez PE, Kapal T, Klepetářová B, Šaman D, Pohl R, Zawada Z, Kužmová E, Hájek M, Teplý F. Structural revisions of small molecules reported to cross-link G-quadruplex DNA in vivo reveal a repetitive assignment error in the literature. Sci Rep 2016; 6:23499. [PMID: 27005677 PMCID: PMC4804300 DOI: 10.1038/srep23499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/02/2016] [Indexed: 11/09/2022] Open
Abstract
Two molecules of mistaken identity are addressed. Uncovering these assignment errors led us to formulate more general guidelines about additional misassignments in cases of published bis-imines derived from 1,2-phenylenediamine and hydroxybenzaldehydes having no substituent in ortho-positions. The main purpose of this article is to highlight this repetitive assignment error in the literature and thus increase the likelihood of correct assignments in future papers.
Collapse
Affiliation(s)
- Paul E Reyes-Gutiérrez
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Tomáš Kapal
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Zbigniew Zawada
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Erika Kužmová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Miroslav Hájek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Filip Teplý
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
46
|
Ferraroni M, Bazzicalupi C, Papi F, Fiorillo G, Guamán-Ortiz LM, Nocentini A, Scovassi AI, Lombardi P, Gratteri P. Solution and Solid-State Analysis of Binding of 13-Substituted Berberine Analogues to Human Telomeric G-quadruplexes. Chem Asian J 2016; 11:1107-15. [DOI: 10.1002/asia.201600116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Marta Ferraroni
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Carla Bazzicalupi
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Francesco Papi
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
- Department NEUROFARBA-Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics&QSAR; University of Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino, Firenze Italy
| | - Gaetano Fiorillo
- Naxospharma srl; via G. Di Vittorio, 70 20026 Novate Milanese Italy
| | - Luis Miguel Guamán-Ortiz
- Universidad Técnica Particular de Loja; Departamento de Ciencias de la Salud; San Cayetano Alto Calle Paris 1101608 Loja Ecuador
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207; 27100 Pavia Italy
| | - Alessio Nocentini
- Department NEUROFARBA-Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics&QSAR; University of Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino, Firenze Italy
| | - Anna Ivana Scovassi
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207; 27100 Pavia Italy
| | - Paolo Lombardi
- Naxospharma srl; via G. Di Vittorio, 70 20026 Novate Milanese Italy
| | - Paola Gratteri
- Department NEUROFARBA-Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics&QSAR; University of Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
47
|
Brčić J, Plavec J. G-quadruplex formation of oligonucleotides containing ALS and FTD related GGGGCC repeat. Front Chem Sci Eng 2016. [DOI: 10.1007/s11705-016-1556-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Kaushik M, Kaushik S, Roy K, Singh A, Mahendru S, Kumar M, Chaudhary S, Ahmed S, Kukreti S. A bouquet of DNA structures: Emerging diversity. Biochem Biophys Rep 2016; 5:388-395. [PMID: 28955846 PMCID: PMC5600441 DOI: 10.1016/j.bbrep.2016.01.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/28/2015] [Accepted: 01/22/2016] [Indexed: 11/29/2022] Open
Abstract
Structural polymorphism of DNA has constantly been evolving from the time of illustration of the double helical model of DNA by Watson and Crick. A variety of non-canonical DNA structures have constantly been documented across the globe. DNA attracted worldwide attention as a carrier of genetic information. In addition to the classical Watson–Crick duplex, DNA can actually adopt diverse structures during its active participation in cellular processes like replication, transcription, recombination and repair. Structures like hairpin, cruciform, triplex, G-triplex, quadruplex, i-motif and other alternative non-canonical DNA structures have been studied at length and have also shown their in vivo occurrence. This review mainly focuses on non-canonical structures adopted by DNA oligonucleotides which have certain prerequisites for their formation in terms of sequence, its length, number and orientation of strands along with varied solution conditions. This conformational polymorphism of DNA might be the basis of different functional properties of a specific set of DNA sequences, further giving some insights for various extremely complicated biological phenomena. Many of these structures have already shown their linkages with diseases like cancer and genetic disorders, hence making them an extremely striking target for structure-specific drug designing and therapeutic applications. DNA can adopt diverse range of structures other than classical Watson–Crick duplex. Discussion of alternate structures like hairpin, cruciform, triplex, quadruplex etc. This review gives some insights for the biological relevance of DNA structures.
Collapse
Affiliation(s)
- Mahima Kaushik
- Cluster Innovation Centre, University of Delhi, Delhi, India.,Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Kapil Roy
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Anju Singh
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Swati Mahendru
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mohan Kumar
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Swati Chaudhary
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Saami Ahmed
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
49
|
Wu Q, Zheng K, Liao S, Ding Y, Li Y, Mei W. Arene Ruthenium(II) Complexes as Low-Toxicity Inhibitor against the Proliferation, Migration, and Invasion of MDA-MB-231 Cells through Binding and Stabilizing c-myc G-Quadruplex DNA. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b00820] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qiong Wu
- Key
Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Kangdi Zheng
- School
of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Siyan Liao
- School
of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yang Ding
- School
of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yangqiu Li
- Key
Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Wenjie Mei
- School
of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
50
|
Mondal S, Bhat J, Jana J, Mukherjee M, Chatterjee S. Reverse Watson–Crick G–G base pair in G-quadruplex formation. MOLECULAR BIOSYSTEMS 2016; 12:18-22. [DOI: 10.1039/c5mb00611b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cisplatin binds to N7 of guanine in a reverse Watson–Crick G–G pair.
Collapse
Affiliation(s)
- Soma Mondal
- Bose Institute
- Centenary Campus
- Department of Biophysics
- Kolkata-54
- India
| | - Jyotsna Bhat
- Bose Institute
- Centenary Campus
- Department of Biophysics
- Kolkata-54
- India
| | - Jagannath Jana
- Bose Institute
- Centenary Campus
- Department of Biophysics
- Kolkata-54
- India
| | | | | |
Collapse
|