1
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Padula L, Fisher E, Strbo N. "All for One and One for All": The Secreted Heat Shock Protein gp96-Ig Based Vaccines. Cells 2023; 13:72. [PMID: 38201276 PMCID: PMC10778431 DOI: 10.3390/cells13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
It has been 50 years since Peter Charles Doherty and Rolf M Zinkernagel proposed the principle of "simultaneous dual recognition", according to which adaptive immune cells recognized "self" and "non-self" simultaneously to establish immunological efficacy. These two scientists shared the 1996 Nobel Prize in Physiology or Medicine for this discovery. Their basic immunological principle became the foundation for the development of numerous vaccine approaches against infectious diseases and tumors, including promising strategies grounded on the use of recombinant gp96-Ig developed by our lab over the last two decades. In this review, we will highlight three major principles of the gp96-Ig vaccine strategy: (1) presentation of pathogenic antigens to T cells (specificity); (2) activation of innate immune responses (adjuvanticity); (3) priming of T cells to home to the epithelial compartments (mucosal immunity). In summary, we provide a paradigm for a vaccine approach that can be rapidly engineered and customized for any future pathogens that require induction of effective tissue-resident memory responses in epithelial tissues.
Collapse
Affiliation(s)
| | | | - Natasa Strbo
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.P.); (E.F.)
| |
Collapse
|
3
|
Qin L, Wang J, Cheng F, Cheng J, Zhang H, Zheng H, Liu Y, Liang Z, Wang B, Li C, Wang H, Ju Y, Tian H, Meng S. GPC3 and PEG10 peptides associated with placental gp96 elicit specific T cell immunity against hepatocellular carcinoma. Cancer Immunol Immunother 2023; 72:4337-4354. [PMID: 37932427 PMCID: PMC10700408 DOI: 10.1007/s00262-023-03569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
The placenta and tumors can exhibit a shared expression profile of proto-oncogenes. The basis of placenta-derived heat shock protein gp96, which induces prophylactic and therapeutic T cell responses against cancer including hepatocellular carcinoma (HCC), remains unknown. Here, we identified the associated long peptides from human placental gp96 using matrix-assisted laser desorption/ionization-time-of-flight and mass spectrometry and analyzed the achieved proteins through disease enrichment analysis. We found that placental gp96 binds to numerous peptides derived from 73 proteins that could be enriched in multiple cancer types. Epitope-harboring peptides from glypican 3 (GPC3) and paternally expressed gene 10 (PEG10) were the major antigens mediating anti-HCC T cell immunity. Molecular docking analysis showed that the GPC3- and PEG10-derived peptides, mainly obtained from the cytotrophoblast layer of the mature placenta, bind to the lumenal channel and client-bound domain of the gp96 dimer. Immunization with bone marrow-derived dendritic cells pulsed with recombinant gp96-GPC3 or recombinant gp96-PEG10 peptide complex induced specific T cell responses, and T cell transfusion led to pronounced growth inhibition of HCC tumors in nude mice. We demonstrated that the chaperone gp96 can capture antigenic peptides as an efficient approach for defining tumor rejection oncoantigens in the placenta and provide a basis for developing GPC3 and PEG10 peptide-based vaccines against HCC. This study provides insight into the underlying mechanism of the antitumor response mediated by embryonic antigens from fetal tissues, and this will incite more studies to identify potential tumor rejection antigens from placenta.
Collapse
Affiliation(s)
- Lijuan Qin
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiuru Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Cheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiamin Cheng
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Han Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huaguo Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongai Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Liang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baifeng Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changfei Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Haoyu Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Ju
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
| | | | - Songdong Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Cancer Is Associated with the Emergence of Placenta-Reactive Autoantibodies. Biomedicines 2023; 11:biomedicines11020316. [PMID: 36830854 PMCID: PMC9953527 DOI: 10.3390/biomedicines11020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Placenta-specific antigens are minimally expressed or unexpressed in normal adult tissues, while they are widely expressed in cancer. In the course of carcinogenesis, a vast array of autoantibodies (AAbs) is produced. Here, we used a quantitative approach to determine the reactivity of AAbs in the sera of patients with breast (BrC: N = 100, 100% female, median age: 51 years), gastric (GC: N = 30, 46.6% female, median age: 57 years), bladder (BC: N = 29, 34.4% female, median age: 57 years), and colorectal (CRC: N = 34, 41.1% female, median age: 51 years) cancers against first-trimester (FTP) and full-term placental proteome (TP) in comparison with age- and sex-matched non-cancer individuals. Human-on-human immunohistochemistry was used to determine reactive target cells in FTP. The effect of pregnancy on the emergence of placenta-reactive autoantibodies was tested using sera from pregnant women at different trimesters of pregnancy. Except for BC, patients with BrC (p < 0.0284), GC (p < 0.0002), and CRC (p < 0.0007) had significantly higher levels of placenta-reactive AAbs. BrC (p < 0.0001) and BC (p < 0.0409) in the early stages triggered higher autoantibody reactivity against FTP. The reactivities of BrC sera with FTP did not show an association with ER, PR, or HER2 expression. Pregnancy in the third trimester was associated with the induction of TP- and not FTP-reactive autoantibodies (=0.018). The reactivity of BrC sera with placental proteins was found to be independent of gravidity or abortion. BrC sera showed a very strong and specific pattern of reactivity with scattered cells beneath the syncytiotrophoblast layer. Our results reinforce the concept of the coevolution of placentation and cancer and shed light on the future clinical application of the placental proteome for the non-invasive early detection and treatment of cancer.
Collapse
|
5
|
Pugh KW, Alnaed M, Brackett CM, Blagg BSJ. The biology and inhibition of glucose-regulated protein 94/gp96. Med Res Rev 2022; 42:2007-2024. [PMID: 35861260 PMCID: PMC10003671 DOI: 10.1002/med.21915] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
The 94 kDa molecular chaperone, glucose-regulated protein 94 (Grp94), has garnered interest during the last decade due to its direct association with endoplasmic reticulum (ER) stress and disease. Grp94 belongs to the Hsp90 family of molecular chaperones and is a master regulator of ER homeostasis due to its ability to fold and stabilize proteins/receptors, and to chaperone misfolded proteins for degradation. Multiple studies have demonstrated that Grp94 knockdown or inhibition leads to the degradation of client protein substrates, which leads to disruption of disease-dependent signaling pathways. As a result, small molecule inhibitors of Grp94 have become a promising therapeutic approach to target a variety of disease states. Specifically, Grp94 has proven to be a promising target for cancer, glaucoma, immune-mediated inflammation, and viral infection. Moreover, Grp94-peptide complexes have been utilized effectively as adjuvants for vaccines against a variety of disease states. This work highlights the significance of Grp94 biology and the development of therapeutics that target this molecular chaperone in multiple disease states.
Collapse
Affiliation(s)
- Kyler W. Pugh
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Marim Alnaed
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Christopher M. Brackett
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
6
|
Bolouri MR, Ghods R, Zarnani K, Vafaei S, Falak R, Zarnani AH. Human amniotic epithelial cells exert anti-cancer effects through secretion of immunomodulatory small extracellular vesicles (sEV). Cancer Cell Int 2022; 22:329. [PMID: 36307848 PMCID: PMC9616706 DOI: 10.1186/s12935-022-02755-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022] Open
Abstract
We identified here mechanism by which hAECs exert their anti-cancer effects. We showed that vaccination with live hAEC conferred effective protection against murine colon cancer and melanoma but not against breast cancer in an orthotopic cancer cell inoculation model. hAEC induced strong cross-reactive antibody response to CT26 cells, but not against B16F10 and 4T1 cells. Neither heterotopic injection of tumor cells in AEC-vaccinated mice nor vaccination with hAEC lysate conferred protection against melanoma or colon cancer. Nano-sized AEC-derived small-extracellular vesicles (sEV) (AD-sEV) induced apoptosis in CT26 cells and inhibited their proliferation. Co-administration of AD-sEV with tumor cells substantially inhibited tumor development and increased CTL responses in vaccinated mice. AD-sEV triggered the Warburg’s effect leading to Arginine consumption and cancer cell apoptosis. Our results clearly showed that it is AD-sEV but not the cross-reactive immune responses against tumor cells that mediate inhibitory effects of hAEC on cancer development. Our results highlight the potential anti-cancer effects of extracellular vesicles derived from hAEC. Anti-cancer effects of hAEC depend on cancer type. Cross-reactive humoral responses do not mediate anti-cancer effects of hAEC. Anti-cancer effects of hAECs are mainly mediated by small-extracellular vesicles (sEV). hAEC-derived sEV (AD-sEV) trigger the Warburg’s effect leading to Arginine consumption and cancer cell apoptosis. AD-sEV substantially inhibits tumor development and increases survival and CTL responses.
Collapse
|
7
|
Wei R, Zhou B, Li S, Zhong D, Li B, Qin J, Zhao L, Qin L, Hu J, Wang J, Yang S, Zhao J, Meng S. Plasma gp96 is a Novel Predictive Biomarker for Severe COVID-19. Microbiol Spectr 2021; 9:e0059721. [PMID: 34817280 PMCID: PMC8612155 DOI: 10.1128/spectrum.00597-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022] Open
Abstract
Early and effective identification of severe coronavirus disease 2019 (COVID-19) may allow us to improve the outcomes of associated severe acute respiratory illness with fever and respiratory symptoms. This study analyzed plasma concentrations of heat shock protein gp96 in nonsevere (including mild and typical) and severe (including severe and critical) patients with COVID-19 to evaluate its potential as a predictive and prognostic biomarker for disease severity. Plasma gp96 levels that were positively correlated with interleukin-6 (IL-6) levels were significantly elevated in COVID-19 patients admitted to the hospital but not in non-COVID-19 patients with less severe respiratory impairment. Meanwhile, significantly higher gp96 levels were observed in severe than nonsevere patients. Moreover, the continuous decline of plasma gp96 levels predicted disease remission and recovery, whereas its persistently high levels indicated poor prognosis in COVID-19 patients during hospitalization. Finally, monocytes were identified as the major IL-6 producers under exogenous gp96 stimulation. Our results demonstrate that plasma gp96 may be a useful predictive and prognostic biomarker for disease severity and outcome of COVID-19. IMPORTANCE Early and effective identification of severe COVID-19 may allow us to improve the outcomes of associated severe acute respiratory illness with fever and respiratory symptoms. Some heat shock proteins (Hsps) are released during oxidative stress, cytotoxic injury, and viral infection and behave as danger-associated molecular patterns (DAMPs). This study analyzed plasma concentrations of Hsp gp96 in nonsevere and severe patients with COVID-19. Significantly higher plasma gp96 levels were observed in severe than those in nonsevere patients, and its persistently high levels indicated poor prognosis in COVID-19 patients. The results demonstrate that plasma gp96 may be a useful predictive and prognostic biomarker for disease severity and outcome of COVID-19.
Collapse
Affiliation(s)
- Rongguo Wei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Biyan Zhou
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaohua Li
- Department of Pathology and Hepatology, The 5th Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Debin Zhong
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Boan Li
- Department of Clinical Laboratory, The 5th Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jianqiu Qin
- Nanning Municipal Center for Disease Control and Prevention, Nanning, China
| | - Liping Zhao
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lixian Qin
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiuru Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shixiong Yang
- Nanning Municipal Center for Disease Control and Prevention, Nanning, China
| | - Jingming Zhao
- Department of Pathology and Hepatology, The 5th Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Duan X, Iwanowycz S, Ngoi S, Hill M, Zhao Q, Liu B. Molecular Chaperone GRP94/GP96 in Cancers: Oncogenesis and Therapeutic Target. Front Oncol 2021; 11:629846. [PMID: 33898309 PMCID: PMC8062746 DOI: 10.3389/fonc.2021.629846] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
During tumor development and progression, intrinsic and extrinsic factors trigger endoplasmic reticulum (ER) stress and the unfolded protein response, resulting in the increased expression of molecular chaperones to cope with the stress and maintain tumor cell survival. Heat shock protein (HSP) GRP94, also known as GP96, is an ER paralog of HSP90 and has been shown to promote survival signaling during tumor-induced stress and modulate the immune response through its multiple clients, including TLRs, integrins, LRP6, GARP, IGF, and HER2. Clinically, elevated expression of GRP94 correlates with an aggressive phenotype and poor clinical outcome in a variety of cancers. Thus, GRP94 is a potential molecular marker and therapeutic target in malignancies. In this review, we will undergo deep molecular profiling of GRP94 in tumor development and summarize the individual roles of GRP94 in common cancers, including breast cancer, colon cancer, lung cancer, liver cancer, multiple myeloma, and others. Finally, we will briefly review the therapeutic potential of selectively targeting GRP94 for the treatment of cancers.
Collapse
Affiliation(s)
- Xiaofeng Duan
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Iwanowycz
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Soo Ngoi
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Megan Hill
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Bei Liu
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
9
|
Zheng H, Liu L, Zhang H, Kan F, Wang S, Li Y, Tian H, Meng S. Dendritic cells pulsed with placental gp96 promote tumor-reactive immune responses. PLoS One 2019; 14:e0211490. [PMID: 30703157 PMCID: PMC6354997 DOI: 10.1371/journal.pone.0211490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Defining and loading of immunogenic and safe cancer antigens remain a major challenge for designing dendritic cell (DC)-based cancer vaccines. In this study, we defined a prototype strategy of using DC-based vaccines pulsed with placenta-derived heat shock protein gp96 to induces anti-tumor T cell responses. Placental gp96 was efficiently taken up by CD11c+ bone marrow-derived DCs (BMDCs) and resulted in moderate BMDC maturation. Splenocytes and cytotoxic T cells (CTLs) generated with mouse BMDCs pulsed with placental gp96 specifically lysed B16 melanoma and LLC lung carcinoma cells. In both transplantable melanoma and lung carcinoma mice models, immunization with placental gp96-stimulated BMDCs led to a significant decrease in tumor growth and mouse mortality with respect to mice treated with liver gp96-pulsed BMDCs or placental gp96 alone. This vaccine induced strong cross-reactive tumor-specific T cell responses. Our results revealed that DCs pulsed with placenta-derived gp96 represent an effective immunotherapy to induce tumor-reactive immune responses, possibly via loading DCs with its associated carcinoembryonic antigens.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/therapy
- Cells, Cultured
- Cytokines/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/transplantation
- Female
- Immunotherapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/therapy
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Placenta/metabolism
- Pregnancy
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Huaguo Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lanlan Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Han Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Fangming Kan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yang Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Tabatabaei M, Mosaffa N, Ghods R, Nikoo S, Kazemnejad S, Khanmohammadi M, Mirzadegan E, Mahmoudi AR, Bolouri MR, Falak R, Keshavarzi B, Ramezani M, Zarnani AH. Vaccination with human amniotic epithelial cells confer effective protection in a murine model of Colon adenocarcinoma. Int J Cancer 2017; 142:1453-1466. [PMID: 29139122 DOI: 10.1002/ijc.31159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/21/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022]
Abstract
As a prophylactic cancer vaccine, human amniotic membrane epithelial cells (hAECs) conferred effective protection in a murine model of colon cancer. The immunized mice mounted strong cross-protective CTL and antibody responses. Tumor burden was significantly reduced in tumor-bearing mice after immunization with hAECs. Placental cancer immunotherapy could be a promising approach for primary prevention of cancer. In spite of being the star of therapeutic strategies for cancer treatment, the results of immunotherapeutic approaches are still far from expectations. In this regard, primary prevention of cancer using prophylactic cancer vaccines has gained considerable attention. The immunologic similarities between cancer development and placentation have helped researchers to unravel molecular mechanisms responsible for carcinogenesis and to take advantage of stem cells from reproductive organs to elicit robust anti-cancer immune responses. Here, we showed that vaccination of mice with human amniotic membrane epithelial cells (hAECs) conferred effective protection against colon cancer and led to expansion of systemic and splenic cytotoxic T cell population and induction of cross-protective cytotoxic responses against tumor cells. Vaccinated mice mounted tumor-specific Th1 responses and produced cross-reactive antibodies against cell surface markers of cancer cells. Tumor burden was also significantly reduced in tumor-bearing mice immunized with hAECs. Our findings pave the way for potential future application of hAECs as an effective prophylactic cancer vaccine.
Collapse
Affiliation(s)
- M Tabatabaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - N Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - R Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Nikoo
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - S Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - M Khanmohammadi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - E Mirzadegan
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - A R Mahmoudi
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - M R Bolouri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - R Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - B Keshavarzi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Ramezani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - A H Zarnani
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
11
|
Silini AR, Cancelli S, Signoroni PB, Cargnoni A, Magatti M, Parolini O. The dichotomy of placenta-derived cells in cancer growth. Placenta 2017; 59:154-162. [DOI: 10.1016/j.placenta.2017.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023]
|
12
|
Ding Y, Zheng H, Feng C, Wang B, Liu C, Mi K, Cao H, Meng S. Heat-Shock Protein gp96 Enhances T Cell Responses and Protective Potential to Bacillus Calmette-Guérin Vaccine. Scand J Immunol 2017; 84:222-8. [PMID: 27417661 DOI: 10.1111/sji.12463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/12/2016] [Indexed: 01/28/2023]
Abstract
The commonly used Bacillus Calmette-Guérin (BCG) vaccine only induces moderate T cell responses and is less effective in protecting against pulmonary tuberculosis (TB) in adults and ageing populations. Thus, developing new TB vaccine candidates is an important strategy against the spread of Mycobacterium tuberculosis. Here, we demonstrated that immunization with heat-shock protein gp96 as an adjuvant led to a significantly increased CD4(+) and CD8(+) T cell response to a BCG vaccine. Secretion of the Th1-type cytokines was increased by splenocytes from gp96-immunized mice. In addition, adding gp96 as an adjuvant effectively improved the protection against intravenous challenge with Mycobacterium bovis BCG in mice. Our study reveals the novel property of gp96 in boosting the vaccine-specific T cell response and its potential use as an adjuvant for BCG vaccines against mycobacterial infection.
Collapse
Affiliation(s)
- Y Ding
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - H Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - C Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - B Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - C Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - K Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - H Cao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - S Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
| |
Collapse
|
13
|
Hou J, Deng M, Li X, Liu W, Chu X, Wang J, Chen F, Meng S. Chaperone gp96 mediates ER-α36 cell membrane expression. Oncotarget 2016; 6:31857-67. [PMID: 26396174 PMCID: PMC4741645 DOI: 10.18632/oncotarget.5273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/28/2015] [Indexed: 12/31/2022] Open
Abstract
ER (estrogen receptor)-α36, a variant of human ERα, activates non-genomic cell signaling pathways. ER-α36 on the cell membrane plays a role in breast cancer growth and development, and contributes to tamoxifen resistance. However, it is not understood how cell membrane expression of ER-α36 is regulated. In this study, we investigated the role of cell membrane glycoprotein 96 (mgp96) in the regulation of ER-α36 expression and signaling. We found that the C-terminal domain of mgp96 directly interacts with ER-α36 on the cell membrane of breast tumor cells. This interaction stabilizes the ER-α36 protein, thereby increasing its signaling, which, in turn, increases tumor cell growth and invasion. Moreover, targeting mgp96 with siRNA or monoclonal antibody (mAb) blocks the mgp96-ER-α36 interaction and inhibits breast cancer growth and invasion both in vitro and in vivo. These results provide insights into the modulation of cell membrane ER-α36 expression and suggest that mgp96 could be a potential therapeutic target for ER-α36-overexpressing breast cancer.
Collapse
Affiliation(s)
- Junwei Hou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Mengmeng Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Xin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Weiwei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Xiaoyu Chu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Jing Wang
- Shenogen Pharma Group, Changping District, Beijing 102206, P.R. China
| | - Feng Chen
- Shenogen Pharma Group, Changping District, Beijing 102206, P.R. China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| |
Collapse
|
14
|
|
15
|
THE CULTIVATION OF RAT COLON TUMOR WITH PLACENTAL MULTIPOTENT STEM CELLS. BIOTECHNOLOGIA ACTA 2016. [DOI: 10.15407/biotech9.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Liu W, Chen M, Li X, Zhao B, Hou J, Zheng H, Qiu L, Li Z, Meng S. Interaction of Toll-Like Receptors with the Molecular Chaperone Gp96 Is Essential for Its Activation of Cytotoxic T Lymphocyte Response. PLoS One 2016; 11:e0155202. [PMID: 27183126 PMCID: PMC4868323 DOI: 10.1371/journal.pone.0155202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/25/2016] [Indexed: 01/09/2023] Open
Abstract
The heat shock protein gp96 elicits specific T cell responses to its chaperoned peptides against cancer and infectious diseases in both rodent models and clinical trials. Although gp96-induced innate immunity, via a subset of Toll like receptors (TLRs), and adaptive immunity, through antigen presentation, are both believed to be important for priming potent T cell responses, direct evidence for the role of gp96-mediated TLR activation related to its functional T cell activation is lacking. Here, we report that gp96 containing mutations in its TLR-binding domain failed to activate macrophages, but peptide presentation was unaffected. Moreover, we found that peptide-specific T cell responses, as well as antitumor T cell immunity induced by gp96, are severely impaired when the TLR-binding domain is mutated. These data demonstrate the essential role of the gp96-TLR interaction in priming T cell immunity and provide further molecular basis for the coupling of gp96-mediated innate with adaptive immunity.
Collapse
Affiliation(s)
- Weiwei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, P.R. China
| | - Mi Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, P.R. China
| | - Xinghui Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, P.R. China
| | - Bao Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, P.R. China
| | - Junwei Hou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, P.R. China
| | - Huaguo Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, P.R. China
| | - Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, P.R. China
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, P.R. China
- * E-mail:
| |
Collapse
|
17
|
Han M, Yao Y, Zeng W, Wang Y, Feng L, Zhao J. Complexes of trophoblastic peptides and heat shock protein 70 as a novel contraceptive vaccine in a mouse model. Reprod Biomed Online 2016; 32:457-65. [PMID: 26847794 DOI: 10.1016/j.rbmo.2015.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Abstract
The concept of contraceptive vaccines has interested reproductive biologists and immunologists for nearly 2 decades, but no approach has been approved. In this study, a new immunocontraceptive vaccine that targets placental trophoblasts was expored. We demonstrated that after in-vitro binding with heat shock protein 70, trophoblast-derived peptides can activate T cells both in vitro and in vivo. The activated T cells have a Th1 bias and specifically cause cytolysis of trophoblasts, leading to the termination of pregnancy. Such activated T cells seem to have an effect on early gestation, rather than influencing preimplantation. We did not observe side-effects of this vaccine in mice. In conclusion, a novel contraceptive strategy is described that uses heat shock protein 70-trophoblastic peptide complexes to generate a specific T-cell immune response against placental trophoblasts. This type of vaccine targeting the post-implantation phase does not generate a permanent effect but possibly raises an ethical issue.
Collapse
Affiliation(s)
- Mei Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Yao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wangjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanfang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Zhao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
A whole-cell tumor vaccine modified to express fibroblast activation protein induces antitumor immunity against both tumor cells and cancer-associated fibroblasts. Sci Rep 2015; 5:14421. [PMID: 26394925 PMCID: PMC4585784 DOI: 10.1038/srep14421] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 08/19/2015] [Indexed: 02/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are common components of the tumor-suppressive microenvironment, and are a major determinant of the poor outcome of therapeutic vaccination. In this study, we modified tumor cells to express the fibroblast activation protein (FAP), which is highly expressed by CAFs, to potentially improve whole-cell tumor vaccines by targeting both tumor cells and CAFs. Tumor cells were transfected with murine FAP plasmids bearing the cationic lipid DOTAP. Its antitumor effects were investigated in three established tumor models. Vaccination with tumor cells expressing FAP eliminated solid tumors and tumors resulting from hematogenous dissemination. This antitumor immune response was mediated by CD8+ T cells. Additionally, we found that CAFs were significantly reduced within the tumors. Furthermore, this vaccine enhanced the infiltration of CD8+ T lymphocytes, and suppressed the accumulation of immunosuppressive cells in the tumor microenvironment. Our results indicated that the FAP-modified whole-cell tumor vaccine induced strong antitumor immunity against both tumor cells and CAFs and reversed the immunosuppressive effects of tumors by decreasing the recruitment of immunosuppressive cells and enhancing the recruitment of effector T cells. This conclusion may have important implications for the clinical use of genetically modified tumor cells as cancer vaccines.
Collapse
|
19
|
Chen Y, Chen C, Ma C, Sun S, Zhang J, Sun Y. Expression of heat-shock protein gp96 in gallbladder cancer and its prognostic clinical significance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1946-53. [PMID: 25973087 PMCID: PMC4396202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
PURPOSE To detect the expression and prognostic clinical significance of heat-shock protein gp96 (HSP gp96) in gallbladder cancer. METHODS Immunohistochemistry was used to detect and compare the rate of HSP gp96 expression in 107 samples of gallbladder cancer, 70 of gallbladder adenoma and 67 of chronic cholecystitis. The association of clinicopathological factors and patients' survival were calculated by univariate and multivariate (Cox proportional hazard regression method) analysis. RESULTS The expression positive rate of HSP gp96 was 90.7% (97/107) in gallbladder cancer, 71.4% (50/70) in gallbladder adenoma and 47.76% (32/67) in chronic cholecystitis respectively. The positive rate of HSP gp96 in gallbladder cancer tissues was significantly higher than that in gallbladder adenoma and chronic cholecystitis tissues (P < 0.01). Multivariate and Cox regression analysis showed that positive of HSP gp96 (P = 0.026) expression was an independent poor prognostic predictor in gallbladder cancer. CONCLUSIONS HSP gp96-positive expression is closely correlated with poor survival in gallbladder cancer.
Collapse
Affiliation(s)
- Yongli Chen
- Department of General Surgery, Second Affiliated Hospital of Xingtai Medical CollegeHarbin, China
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Chuanqi Chen
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Chengzhi Ma
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Shibo Sun
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Jing Zhang
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Yan Sun
- Department of General Surgery, Second Affiliated Hospital of Harbin Medical UniversityHarbin, China
| |
Collapse
|
20
|
Tuohy VK. Retired self-proteins as vaccine targets for primary immunoprevention of adult-onset cancers. Expert Rev Vaccines 2014; 13:1447-62. [DOI: 10.1586/14760584.2014.953063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Vinnitsky V. The development of a malignant tumor is due to a desperate asexual self-cloning process in which cancer stem cells develop the ability to mimic the genetic program of germline cells. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e29997. [PMID: 28232878 PMCID: PMC5314931 DOI: 10.4161/idp.29997] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 02/08/2023]
Abstract
To date there is no explanation why the development of almost all types of solid tumors occurs sharing a similar scenario: (1) creation of a cancer stem cell (CSC), (2) CSC multiplication and formation of a multicellular tumor spheroid (TS), (3) vascularization of the TS and its transformation into a vascularized primary tumor, (4) metastatic spreading of CSCs, (5) formation of a metastatic TSs and its transformation into metastatic tumors, and (6) potentially endless repetition of this cycle of events. The above gaps in our knowledge are related to the biology of cancer and specifically to tumorigenesis, which covers the process from the creation of a CSC to the formation of a malignant tumor and the development of metastases. My Oncogerminative Theory of Tumorigenesis considers tumor formation as a dynamic self-organizing process that mimics a self-organizing process of early embryo development. In the initial step in that process, gene mutations combined with epigenetic dysregulation cause somatic cells to be reprogrammed into CSCs, which are immortal pseudo-germline cells. Mimicking the behavior of fertilized germline cells, the CSC achieves immortality by passing through the stages of its life-cycle and developing into a pseudo-blastula-stage embryo, which manifests in the body as a malignant tumor. In this view, the development of a malignant tumor from a CSC is a phenomenon of developmental biology, which we named a desperate asexual self-cloning event. The theory explains seven core characteristics of malignant tumors: (1) CSC immortality, (2) multistep development of a malignant tumor from a single CSC, (3) heterogeneity of malignant tumor cell populations, (4) metastatic spread of CSCs, (5) invasive growth, (6) malignant progression, and (7) selective immune tolerance toward cancer cells. The Oncogerminative Theory of Tumorigenesis suggests new avenues for discovery of revolutionary therapies to treat, prevent, and eradicate cancer.
Collapse
Affiliation(s)
- Vladimir Vinnitsky
- Department of Experimental Cancer Therapeutics; R.E. Kavetsky Institute for Experimental Pathology, Oncology, and Radiobiology; Kiev, Ukraine
- Sequent Development (CRO), LLC; Madison, VA USA
| |
Collapse
|
22
|
Prophylactic cancer vaccine, from concept to reality? CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Ju Y, Fan H, Liu J, Hu J, Li X, Li C, Chen L, Gao Q, Gao GF, Meng S. Heat shock protein gp96 adjuvant induces T cell responses and cross-protection to a split influenza vaccine. Vaccine 2014; 32:2703-11. [PMID: 24699472 DOI: 10.1016/j.vaccine.2014.03.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/06/2014] [Accepted: 03/13/2014] [Indexed: 01/09/2023]
Abstract
The commonly used inactivated or split influenza vaccines induce only induce minimal T cell responses and are less effective in preventing heterologous virus infection. Thus, developing cross-protective influenza vaccines against the spread of a new influenza virus is an important strategy against pandemic emergence. Here we demonstrated that immunization with heat shock protein gp96 as adjuvant led to a dramatic increased antigen-specific T cell response to a pandemic H1N1 split vaccine. Notably, gp96 elicited a cross-protective CD8(+) T cell response to the internal conserved viral protein NP. Although the split pH1N1vaccine alone has low cross-protective efficiency, adding gp96 as an adjuvant effectively improved the cross-protection against challenge with a heterologous virus in mice. Our study reveals the novel property of gp96 in boosting the T cell response against conserved epitopes of influenza virus and its potential use as an adjuvant for human pre-pandemic inactivated influenza vaccines against different viral subtypes.
Collapse
Affiliation(s)
- Ying Ju
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Hongxia Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Xinghui Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Lizhao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Qiang Gao
- Sinovac Biotech Co., Ltd, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 West Beichen Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|