1
|
Liu Y, Li J, Ding C, Tong H, Yan Y, Li S, Li S, Cao Y. Leu promotes C2C12 cell differentiation by regulating the GSK3β/β-catenin signaling pathway through facilitating the interaction between SESN2 and RPN2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6696-6705. [PMID: 38551359 DOI: 10.1002/jsfa.13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 03/02/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Leucine (Leu) is an essential amino acid that facilitates skeletal muscle satellite cell differentiation, yet its mechanism remains underexplored. Sestrin2 (SESN2) serves as a Leu sensor, binding directly to Leu, while ribophorin II (RPN2) acts as a signaling factor in multiple pathways. This study aimed to elucidate Leu's impact on mouse C2C12 cell differentiation and skeletal muscle injury repair by modulating RPN2 expression through SESN2, offering a theoretical foundation for clinical skeletal muscle injury prevention and treatment. RESULTS Leu addition promoted C2C12 cell differentiation compared to the control, enhancing early differentiation via myogenic determinant (MYOD) up-regulation. Sequencing revealed SESN2 binding to and interacting with RPN2. RPN2 overexpression up-regulated MYOD, myogenin and myosin heavy chain 2, concurrently decreased p-GSK3β and increased nuclear β-catenin. Conversely, RPN2 knockdown yielded opposite results. Combining RPN2 knockdown with Leu rescued increased p-GSK3β and decreased nuclear β-catenin compared to Leu absence. Hematoxylin and eosin staining results showed that Leu addition accelerated mouse muscle damage repair, up-regulating Pax7, MYOD and RPN2 in the cytoplasm, and nuclear β-catenin, confirming that the role of Leu in muscle injury repair was consistent with the results for C2C12 cells. CONCLUSION Leu, bound with SESN2, up-regulated RPN2 expression, activated the GSK3β/β-catenin pathway, enhanced C2C12 differentiation and expedited skeletal muscle damage repair. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifan Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Jinping Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Cong Ding
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Huili Tong
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Yunqin Yan
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Shuang Li
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Shufeng Li
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| | - Yunkao Cao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Cell and Development, Department of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Shen WJ, Zhang Y. RPN1 promotes the proliferation and invasion of breast cancer cells by activating the PI3K/AKT/mTOR signaling pathway. Discov Oncol 2024; 15:25. [PMID: 38302629 PMCID: PMC10834897 DOI: 10.1007/s12672-024-00875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
Ribophorin I (RPN1), a part of an N-oligosaccharyl-transferase complex, plays a vital role in the development of multiple cancers. However, its biological role in breast cancer has not been completely clarified. The RPN1 expression level was measured in breast cancer tissues and breast cancer cell lines (MCF7) using RT-qPCR. After down-regulating RPN1 expression by shRNA, the effects of RPN1 on the proliferation, migration and invasion of MCF7 cells were examined. Mechanistically, we assessed the effect of RPN1 on the PI3K/ AKT/mTOR signaling pathway. We found that RPN1 level was up-regulated in breast cancer tissues and cells compared with adjacent non-tumor tissues or MCF10A cells. RPN1 knockdown induced apoptosis and attenuated the proliferation, migration, and invasion of MCF7 cells. Moreover, RPN1 knockdown lowered the levels of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR, which were rescued by 740Y-P, a PI3K activator. 740Y-P also reversed the effects of RPN1 knockdown on apoptosis, proliferation, migration, and invasion in MCF7 cells. Taken together, RPN1 promotes the proliferation, migration, and invasion of breast cancer cells via the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Wei-Juan Shen
- Department of Breast surgery, Changzhou Wujin People's Hospital (Wujin Hospital Affiliated with Jiangsu University), Changzhou, 213004, Jiangsu, China
- Department of Breast surgery, The Wujin Clincal college of Xuzhou Medical University, Changzhou, 213004, Jiangsu, China
| | - Yi Zhang
- Department of Breast surgery, Changzhou Wujin People's Hospital (Wujin Hospital Affiliated with Jiangsu University), Changzhou, 213004, Jiangsu, China.
- Department of Breast surgery, The Wujin Clincal college of Xuzhou Medical University, Changzhou, 213004, Jiangsu, China.
| |
Collapse
|
3
|
Rochín-Hernández LJ, Jiménez-Acosta MA, Ramírez-Reyes L, Figueroa-Corona MDP, Sánchez-González VJ, Orozco-Barajas M, Meraz-Ríos MA. The Proteome Profile of Olfactory Ecto-Mesenchymal Stem Cells-Derived from Patients with Familial Alzheimer's Disease Reveals New Insights for AD Study. Int J Mol Sci 2023; 24:12606. [PMID: 37628788 PMCID: PMC10454072 DOI: 10.3390/ijms241612606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease and the first cause of dementia worldwide, has no effective treatment, and its pathological mechanisms are not yet fully understood. We conducted this study to explore the proteomic differences associated with Familial Alzheimer's Disease (FAD) in olfactory ecto-mesenchymal stem cells (MSCs) derived from PSEN1 (A431E) mutation carriers compared with healthy donors paired by age and gender through two label-free liquid chromatography-mass spectrometry approaches. The first analysis compared carrier 1 (patient with symptoms, P1) and its control (healthy donor, C1), and the second compared carrier 2 (patient with pre-symptoms, P2) with its respective control cells (C2) to evaluate whether the protein alterations presented in the symptomatic carrier were also present in the pre-symptom stages. Finally, we analyzed the differentially expressed proteins (DEPs) for biological and functional enrichment. These proteins showed impaired expression in a stage-dependent manner and are involved in energy metabolism, vesicle transport, actin cytoskeleton, cell proliferation, and proteostasis pathways, in line with previous AD reports. Our study is the first to conduct a proteomic analysis of MSCs from the Jalisco FAD patients in two stages of the disease (symptomatic and presymptomatic), showing these cells as a new and excellent in vitro model for future AD studies.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Lorena Ramírez-Reyes
- Unidad de Genómica, Proteómica y Metabolómica, Laboratorio Nacional de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados, Ciudad de México 07360, Mexico;
| | - María del Pilar Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| | - Víctor J. Sánchez-González
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Maribel Orozco-Barajas
- Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (V.J.S.-G.); (M.O.-B.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.A.J.-A.); (M.d.P.F.-C.)
| |
Collapse
|
4
|
Han Z, Wang Y, Han L, Yang C. RPN2 in cancer: An overview. Gene 2023; 857:147168. [PMID: 36621657 DOI: 10.1016/j.gene.2023.147168] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Oncogenes together with tumor suppresser genes are confirmed to regulate tumor phenotype in human cancers. RPN2, widely verified as an oncogene, encodes a protein that is part of an N-oligosaccharyl transferase, and is observed to be aberrantly expressed in human malignancies. Accumulating evidence unveils the vital functions of RPN2, contributing to tumorigenicity, metastasis, progression, and multi-drug resistance. Furthermore, previous studies partly indicated that RPN2 was involved in tumor progression via contributing to N-glycosylation and regulating multiple signaling pathways. In addition, RPN2 was also confirmed as a downstream target involved in tumor progression. Moreover, with demonstrated prognosis value and therapeutic target, RPN2 was also determined as a promising biomarker for forecasting patients' prognostic and therapy efficacy. In the present review, we aimed to summarize the present studies of RPN2 in cancer, and enhance the understanding of RPN2's extensive functions and clinical significances.
Collapse
Affiliation(s)
- Zhengxuan Han
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
| | - You Wang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Han
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China.
| |
Collapse
|
5
|
Wei P, Dong M, Bi Y, Chen S, Huang W, Li T, Liu B, Fu X, Yang Y. Identification and validation of a signature based on macrophage cell marker genes to predict recurrent miscarriage by integrated analysis of single-cell and bulk RNA-sequencing. Front Immunol 2022; 13:1053819. [PMID: 36439123 PMCID: PMC9692009 DOI: 10.3389/fimmu.2022.1053819] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 09/12/2023] Open
Abstract
Recurrent miscarriage (RM) is a chronic, heterogeneous autoimmune disease that has serious social and personal consequences. No valid and reliable diagnostic markers or therapeutic targets for RM have been identified. Macrophages impact the innate immune system and can be used as diagnostic and prognostic markers for many diseases. We first collected 16 decidua and villi tissue samples from 5 normal patients and 3 RM patients for single-cell RNA sequencing data analysis and identified 1293 macrophage marker genes. We then screened a recurrent miscarriage cohort (GSE165004) for 186 macrophage-associated marker genes that were significantly differentially expressed between RM patients and the normal pregnancy endometrial tissues, and performed a functional enrichment analysis of differentially expressed genes. We then identified seven core genes (ACTR2, CD2AP, MBNL2, NCSTN, PUM1, RPN2, and TBC1D12) from the above differentially expressed gene group that are closely related to RM using the LASSO, Random Forest and SVM-RFE algorithms. We also used GSE26787 and our own collection of clinical specimens to further evaluate the diagnostic value of the target genes. A nomogram was constructed of the expression levels of these seven target genes to predict RM, and the ROC and calibration curves showed that our nomogram had a high diagnostic value for RM. These results suggest that ACTR2 and NCSTN may be potential targets for preventative RM treatments.
Collapse
Affiliation(s)
- Peiru Wei
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Mingyou Dong
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Key Laboratory of Molecular Pathology (For Hepatobiliary Diseases) of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yin Bi
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Saiqiong Chen
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Weiyu Huang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Ting Li
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Bo Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoqian Fu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yihua Yang
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
- The Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| |
Collapse
|
6
|
Zhou J, Zhang J, Zhang W, Ke Z, Lv Y, Zhang B, Liao Z. Ribophorin II promotes the epithelial-mesenchymal transition and aerobic glycolysis of laryngeal squamous cell carcinoma via regulating reactive oxygen species-mediated Phosphatidylinositol-3-Kinase/Protein Kinase B activation. Bioengineered 2022; 13:5141-5151. [PMID: 35156537 PMCID: PMC8974210 DOI: 10.1080/21655979.2022.2036914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ribophorin II (RPN2), a part of an N-oligosaccharyl transferase complex, plays vital roles in the development of multiple cancers. Nevertheless, its biological role in laryngeal squamous cell carcinoma (LSCC) remains unclear. The RPN2 expression levels in LSCC tissues and cell lines (AMC-HN-8 and TU212) were measured using real-time PCR, immunohistochemistry, or Western blot. The influences of RPN2 on the proliferation, migration, epithelial–mesenchymal transition, and aerobic glycolysis of LSCC cells were investigated after upregulation or downregulation of RPN2 in vitro and in vivo. Mechanically, we assessed the impact of RPN2 on the reactive oxygen species (ROS)/Phosphatidylinositol-3-Kinase (PI3K)/Protein Kinase B (Akt) signaling pathway. We found that compared with the control, RPN2 was highly expressed in LSCC tissues and cells. Overexpression of RPN2 elevated the proliferation, migration, glucose uptake, lactate production release, and levels of Vimentin, hexokinase-2 (HK-2), pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDHA), and ROS, but inhibited E-cadherin expression in AMC-HN-8 cells. Knockdown of RPN2 in TU212 cells showed opposite effects on the above indexes. Meanwhile, RPN2 upregulation increased the levels of p-PI3K/PI3K and p-Akt/Akt, which were attenuated by N-acetyl-L-cysteine (NAC), an ROS inhibitor. Both NAC and PI3K inhibitor LY294002 could reverse the effects of RPN2 overexpression on the malignant phenotypes of LSCC cells. In xenografted mice, silencing RPN2 expression reduced tumor growth, ROS production, and levels of Ki-67, Vimentin, LDHA, and p-Akt/Akt, but enhanced E-cadherin expression. In conclusion, our data suggested that RPN2 promoted the proliferation, migration, EMT, and glycolysis of LSCC via modulating ROS-mediated PI3K/Akt activation.
Collapse
Affiliation(s)
- Jingchun Zhou
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jingjing Zhang
- Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Zhang
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhaoyang Ke
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yanlu Lv
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Bo Zhang
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhifang Liao
- Department of Otorhinolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Ding J, Xu J, Deng Q, Ma W, Zhang R, He X, Liu S, Zhang L. Knockdown of Oligosaccharyltransferase Subunit Ribophorin 1 Induces Endoplasmic-Reticulum-Stress-Dependent Cell Apoptosis in Breast Cancer. Front Oncol 2021; 11:722624. [PMID: 34778038 PMCID: PMC8578895 DOI: 10.3389/fonc.2021.722624] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Ribophorin 1 (RPN1) is a major part of Oligosaccharyltransferase (OST) complex, which is vital for the N-linked glycosylation. Though it has been verified that the abnormal glycosylation is closely related to the development of breast cancer, the detail role of RPN1 in breast cancer remains unknown. In this study, we explored the public databases to investigate the relationship between the expression levels of OST subunits and the prognosis of breast cancer. Then, we focused on the function of RPN1 in breast cancer and its potential mechanisms. Our study showed that the expression of several OST subunits including RPN1, RPN2, STT3A STT3B, and DDOST were upregulated in breast cancer samples. The protein expression level of RPN1 was also upregulated in breast cancer. Higher expression of RPN1 was correlated with worse clinical features and poorer prognosis. Furthermore, knockdown of RPN1 suppressed the proliferation and invasion of breast cancer cells in vitro and induced cell apoptosis triggered by endoplasmic reticulum stress. Our results identified the oncogenic function of RPN1 in breast cancer, implying that RPN1 might be a potential biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jiajun Ding
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China.,Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiahui Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Ma
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
9
|
Huang YC, Yuan TM, Liu BH, Liu KL, Wung CH, Chuang SM. Capsaicin Potentiates Anticancer Drug Efficacy Through Autophagy-Mediated Ribophorin II Downregulation and Necroptosis in Oral Squamous Cell Carcinoma Cells. Front Pharmacol 2021; 12:676813. [PMID: 34512323 PMCID: PMC8429935 DOI: 10.3389/fphar.2021.676813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
The ability of capsaicin co-treatment to sensitize cancer cells to anticancer drugs has been widely documented, but the detailed underlying mechanisms remain unknown. In addition, the role of ribophorin II turnover on chemosensitization is still uncertain. Here, we investigated capsaicin-induced sensitization to chemotherapeutic agents in the human oral squamous carcinoma cell lines, HSC-3 and SAS. We found that capsaicin (200 μM) did not induce remarkable apoptotic cell death in these cell lines; instead, it significantly enhanced autophagy with a concomitant decrease of ribophorin II protein. This capsaicin-induced decrease in ribophorin II was intensified by the autophagy inducer, rapamycin, but attenuated by the autophagy inhibitors, ULK1 inhibitor and chloroquine, indicating that the autophagic process was responsible for the capsaicin-induced down-regulation of ribophorin II. Co-administration of capsaicin with conventional anticancer agents did, indeed, sensitize the cancer cells to these agents. In co-treated cells, the induction of apoptosis was significantly reduced and the levels of the necroptosis markers, phospho-MLKL and phospho-RIP3, were increased relative to the levels seen in capsaicin treatment alone. The levels of DNA damage response markers were also diminished by co-treatment. Collectively, our results reveal a novel mechanism by which capsaicin sensitizes oral cancer cells to anticancer drugs through the up-regulation of autophagy and down-regulation of ribophorin II, and further indicate that the induction of necroptosis is a critical factor in the capsaicin-mediated chemosensitization of oral squamous carcinoma cells to conventional anticancer drugs.
Collapse
Affiliation(s)
- Yi-Ching Huang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tien-Ming Yuan
- Department of Surgery, Feng Yuan Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Bang-Hung Liu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiung-Hua Wung
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Han C, Chen S, Ma H, Wen X, Wang Z, Xu Y, Jin X, Yu X, Wang M. RPN2 Predicts Poor Prognosis and Promotes Bladder Cancer Growth and Metastasis via the PI3K-Akt Pathway. Onco Targets Ther 2021; 14:1643-1657. [PMID: 33727825 PMCID: PMC7953128 DOI: 10.2147/ott.s300480] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/20/2021] [Indexed: 12/29/2022] Open
Abstract
Background Ribophorin II (RPN2) is a highly conserved glycoprotein involved in the N-linked glycosylation of multiple proteins. RPN2 was reported to be associated with malignant phenotype in several tumors. However, the function of RPN2 in bladder cancer (BCa) remains unclear. Methods Expression of RPN2 in BCa and adjacent tissues was compared by bioinformatics analysis, immunohistochemistry, and Western blotting. qRT-PCR was performed to explore the correlation between RPN2 expression and various clinical features in 38 patients. We assessed the effects of RPN2 on the biological activity of BCa both in vitro and in vivo, and explored its potential mechanisms based on gene set enrichment analysis (GSEA). Results We found that RPN2 was highly expressed in human BCa compared with normal adjacent tissues. There was a significant positive correlation between higher RPN2 mRNA levels and tumor T stage, lymph node (LN) metastasis and the degree of pathological differentiation in 38 patients with BCa. We further demonstrated that RPN2 silencing inhibited the growth and metastasis of BCa both in vitro and in vivo. Western blotting revealed that RPN2 knockdown suppressed epithelial-mesenchymal transition (EMT) and inhibited the PI3K-Akt pathway. Conclusion These data suggest that RPN2 functions as an oncogene to promote tumor development and is a promising prognostic factor and therapeutic target in BCa.
Collapse
Affiliation(s)
- Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Shuxiao Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Haiyang Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiangchuan Wen
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xunbo Jin
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Xiao Yu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Muwen Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
11
|
Zhang W, Wu G, Sun P, Zhu Y, Zhang H. circ_SMAD2 regulate colorectal cancer cells proliferation through targeting miR-1258/RPN2 signaling pathway. J Cancer 2021; 12:1678-1686. [PMID: 33613755 PMCID: PMC7890329 DOI: 10.7150/jca.50888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are associated with various diseases, including cancers. However, their roles in colorectal cancer (CRC) have not been established. Hsa_circ_0000847 (circ_SMAD2) is a novel circRNA that was found to be elevated in CRC cell lines and tissues. High circ_SMAD2 levels were positively correlated with CRC clinicopathological features. Functional assays revealed that circ_SMAD2 enhanced CRC cell invasion, proliferation, and tumor growth. Mechanistically, circ_SMAD2 elevated Ribophorin II (RPN2) levels by inhibiting miR-1258. Therefore, circ_SMAD2 is a potential indicator for CRC progression.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Yuanzeng Zhu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Han Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| |
Collapse
|
12
|
Vazquez Rodriguez G, Abrahamsson A, Turkina MV, Dabrosin C. Lysine in Combination With Estradiol Promote Dissemination of Estrogen Receptor Positive Breast Cancer via Upregulation of U2AF1 and RPN2 Proteins. Front Oncol 2020; 10:598684. [PMID: 33330095 PMCID: PMC7734348 DOI: 10.3389/fonc.2020.598684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/29/2020] [Indexed: 01/01/2023] Open
Abstract
The majority of estrogen receptor positive (ER+) breast cancer (BC) maintain the ER at metastatic sites. Despite anti-estrogen therapy, almost 30% of ER+ BC patients relapse. Thus, new therapeutic targets for ER+ BC are needed. Amino acids (AAs) may affect the metastatic capacity by affecting inflammatory cells. Essential AAs (EAAs) cannot be produced by human cells and might therefore be targetable as therapeutics. Here we sampled extracellular EAAs in vivo by microdialysis in human BC. Mass spectrometry-based proteomics was used to identify proteins affected after EAA and estradiol (E2) exposure to BC cells. Proteins relevant for patient survival were identified, knocked down in BC cells, and metastatic capability was determined in vivo in the transgenic zebrafish model. We found that lysine was the most utilized EAA in human ER+BC in vivo. In zebrafish, lysine in presence of E2 increased neutrophil-dependent dissemination of ER+ BC cells via upregulation of U2AF1 and RPN2 proteins, which both correlated with poor prognosis of ER+ BC patients in clinical databases. Knockdown of U2AF1 and RPN2 decreased the expression of several cell-adhesion molecules resulting in diminished dissemination. Dietary lysine or its related metabolic pathways may be useful therapeutic targets in ER+ BC.
Collapse
Affiliation(s)
- Gabriela Vazquez Rodriguez
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Annelie Abrahamsson
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria V Turkina
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
RPN2 is targeted by miR-181c and mediates glioma progression and temozolomide sensitivity via the wnt/β-catenin signaling pathway. Cell Death Dis 2020; 11:890. [PMID: 33087705 PMCID: PMC7578010 DOI: 10.1038/s41419-020-03113-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that the dysregulation of the miRNAs/mRNA-mediated carcinogenic signaling pathway network is intimately involved in glioma initiation and progression. In the present study, by performing experiments and bioinformatics analysis, we found that RPN2 was markedly elevated in glioma specimens compared with normal controls, and its upregulation was significantly linked to WHO grade and poor prognosis. Knockdown of RPN2 inhibited tumor proliferation and invasion, promoted apoptosis, and enhanced temozolomide (TMZ) sensitivity in vitro and in vivo. Mechanistic investigation revealed that RPN2 deletion repressed β-catenin/Tcf-4 transcription activity partly through functional activation of glycogen synthase kinase-3β (GSK-3β). Furthermore, we showed that RPN2 is a direct functional target of miR-181c. Ectopic miR-181c expression suppressed β-catenin/Tcf-4 activity, while restoration of RPN2 partly reversed this inhibitory effect mediated by miR-181c, implying a molecular mechanism in which TMZ sensitivity is mediated by miR-181c. Taken together, our data revealed a new miR-181c/RPN2/wnt/β-catenin signaling axis that plays significant roles in glioma tumorigenesis and TMZ resistance, and it represents a potential therapeutic target, especially in GBM.
Collapse
|
14
|
Cai W, Zhou W, Han Z, Lei J, Zhuang J, Zhu P, Wu X, Yuan W. Master regulator genes and their impact on major diseases. PeerJ 2020; 8:e9952. [PMID: 33083114 PMCID: PMC7546222 DOI: 10.7717/peerj.9952] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Master regulator genes (MRGs) have become a hot topic in recent decades. They not only affect the development of tissue and organ systems but also play a role in other signal pathways by regulating additional MRGs. Because a MRG can regulate the concurrent expression of several genes, its mutation often leads to major diseases. Moreover, the occurrence of many tumors and cardiovascular and nervous system diseases are closely related to MRG changes. With the development in omics technology, an increasing amount of investigations will be directed toward MRGs because their regulation involves all aspects of an organism’s development. This review focuses on the definition and classification of MRGs as well as their influence on disease regulation.
Collapse
Affiliation(s)
- Wanwan Cai
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wanbang Zhou
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Zhe Han
- University of Maryland School of Medicine, Center for Precision Disease Modeling, Baltimore, MD, USA
| | - Junrong Lei
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
15
|
Sun J, Chen Z, Xiong J, Wang Q, Tang F, Zhang X, Mo L, Wang C, Fan W, Wang J. MicroRNA‑422a functions as a tumor suppressor in glioma by regulating the Wnt/β‑catenin signaling pathway via RPN2. Oncol Rep 2020; 44:2108-2120. [PMID: 33000268 PMCID: PMC7550978 DOI: 10.3892/or.2020.7741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs), which act as crucial regulators of oncogenes and tumor suppressors, have been confirmed to play a significant role in the initiation and progression of various malignancies, including glioma. The present study analyzed the expression and roles of miR‑422a in glioma, and reverse transcription‑quantitative PCR confirmed that miR‑422a expression was significantly lower in glioblastoma multiforme (GBM) samples and cell lines compared with the low‑grade glioma samples and the H4 cell line, respectively. miR‑422a overexpression suppressed proliferation and invasion, and induced apoptosis in LN229 and U87 cell lines. Luciferase reporter assay, western blotting and RNA immunoprecipitation analysis revealed that ribophorin II (RPN2) is a direct functional target of miR‑422a. Additionally, the overexpression of RPN2 partially reversed the miR‑422a‑mediated inhibitory effect on the malignant phenotype. Mechanistic investigation demonstrated that the upregulation of miR‑422a inhibited β‑catenin/transcription factor 4 transcriptional activity, at least partially through RPN2, as indicated by in vitro and in vivo experiments. Furthermore, RPN2 expression was inversely correlated with miR‑422a expression in GBM specimens and predicted patient survival in the Chinese Glioma Genome Atlas, UALCAN, Gene Expression Profiling Interactive Analysis databases. In conclusion, the present data reveal a new miR‑422a/RPN2/Wnt/β‑catenin signaling axis that plays critical roles in glioma tumorigenesis, and it represents a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Jikui Sun
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Zhijuan Chen
- Clinical Medicine School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jinbiao Xiong
- Clinical Medicine School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Qiong Wang
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin 300350, P.R. China
| | - Fan Tang
- Pathology Department, Tianjin Huan Hu Hospital, Tianjin 300350, P.R. China
| | - Xuebin Zhang
- Pathology Department, Tianjin Huan Hu Hospital, Tianjin 300350, P.R. China
| | - Lidong Mo
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin 300350, P.R. China
| | - Chen Wang
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin 300350, P.R. China
| | - Weijia Fan
- Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin 300350, P.R. China
| | - Jinhuan Wang
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
16
|
Ankney JA, Xie L, Wrobel JA, Wang L, Chen X. Novel secretome-to-transcriptome integrated or secreto-transcriptomic approach to reveal liquid biopsy biomarkers for predicting individualized prognosis of breast cancer patients. BMC Med Genomics 2019; 12:78. [PMID: 31146747 PMCID: PMC6543675 DOI: 10.1186/s12920-019-0530-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/13/2019] [Indexed: 02/08/2023] Open
Abstract
Background Presently, a 50-gene expression model (PAM50) serves as a breast cancer (BC) subtype classifier that is insufficient to distinguish, within each single PAM50-classified subtype, patient subpopulations having different prognosis. There is a pressing need for inexpensive and minimally invasive biomarker tests to easily and accurately predict individuals’ clinical outcomes and response to treatments. Although quantitative proteomic approaches have been developed to identify/profile proteins secreted (secretome) from various cancer cell lines in vitro, missing are the clinicopathological relevance and the associated prognostic value of these secretomic identifications. Methods To discover biomarkers to predict individualized prognosis we introduce a new multi-omics (secreto-transcriptomics) method that identifies, in their oncogenically secreted states, candidate markers of BC subtypes whose genes bear patient-specific mRNA expression alterations of prognostic significance. First, we used label-free quantitative (LFQ) proteomics to identify the proteins showing BC-subtypic secretion from a series of BC cell lines representing major BC-subtypes. To determine and externally validate the prognostic value of these secreted proteins, we developed a secreto-transcriptomic approach that discovered a PAM50-subtypic Secretion-Correlated mRNA Expression Pattern (SeCEP) wherein the PAM50-subtypic secretion of select proteins statistically correlated with cis-mRNA expression of their encoding genes in patients of the corresponding PAM50-subtypes. Kaplan-Meier analysis of SeCEP genes was used to identify new liquid biopsy biomarkers for predicting individualized prognosis. Results The mRNA expression-to-secretion correlation (SeCEP) pinpointed multiple genes that are fully translated into the oncogenically active secretome in a PAM50-subtypic manner. Further, multiple SeCEP genes in distinct combinations or panels of multiple SeCEP genes were identified as ‘systems prognostic markers’ that showed mRNA co-overexpression patterns in the distinct subpopulations of PAM50-subtypic patients with poor prognosis or high-risk of relapse. Thus, our secreto-transcriptomic approach statistically linked BC subtypic secretome genes with patient-specific information about their mRNA expression alterations and significantly improved the sensitivity and specificity in patient stratification in the context of clinical outcomes or prognosis. Conclusions By combining LFQ secretome screening with proteo-transcriptomic retrospective analysis of patient data our integrated multi-omics approach bypasses costly, tedious, genome-wide fishing and predictive modeling that are commonly required to distinguish a few prognostically altered genes from thousands of other non-BC related genes in a genome. Electronic supplementary material The online version of this article (10.1186/s12920-019-0530-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Astor Ankney
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ling Xie
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John A Wrobel
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Li Wang
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xian Chen
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
17
|
Zhou T, Wu L, Wang Q, Jiang Z, Li Y, Ma N, Chen W, Hou Z, Gan W, Chen S. MicroRNA-128 targeting RPN2 inhibits cell proliferation and migration through the Akt-p53-cyclin pathway in colorectal cancer cells. Oncol Lett 2018; 16:6940-6949. [PMID: 30546426 PMCID: PMC6256417 DOI: 10.3892/ol.2018.9506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is a malignancy with high metastatic rates. The mechanism of miR-128 on the regulation of Ribophorin-II (RPN2) in CRC cells was explored in the present study. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) or western blot analyses were conducted to detect miR-128 and RPN2 levels in tissues and cell lines. AmiR-128 overexpression model was constructed using miR-128 mimic transfection in HT29 CRC cells. Then, cell proliferation was detected using a Cell Counting Kit-8 assay, and the migratory and invasive abilities were measured by Transwell assay. RT-qPCR and western blot analysis were used to detect expression levels of protein kinase-B (Akt)-tumor protein 53 (p53)-cyclin pathway and metastasis-associated factors. In the present study, it was identified that aberrant decreased miR-128 was negatively correlated with RPN2 in CRC tissues. The increased RPN2 levels were significantly associated with poorly-differentiated histology, advanced stages and lymph nodes metastasis in patients with CRC. The survival rate of patients with CRC was also closely associated with RPN2 levels. In HT29 cells, miR-128 upregulation downregulated mRNA and protein levels of RPN2, and significantly inhibited cell proliferative, migratory and invasive abilities. Markedly decreased Akt phosphorylation and cyclin D1 levels and increased p53 levels were detected when cells were transfected with miR-128 mimics. Concurrently, decreased levels of matrix metalloproteinase (MMP)-2, MMP-9 and metastasis-associated protein 1, and increased levels of epithelial-cadherin and tissue inhibitor of metalloproteinases 2, were revealed in miR-128 mimic-transfected cells. Subsequent to screening with miRNA target prediction databases, the specificity of miR-128-targeted RPN2 was validated by a luciferase reporter assay. In conclusion, the results suggested that miR-128 was a specific negative regulator of RPN2, which regulated colorectal cancer cell proliferation and migration by affecting the Akt-p53-cyclin pathway. These data may provide novel evidence for the therapeutic potential of miR-128-based treatments for colorectal cancer.
Collapse
Affiliation(s)
- Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Lili Wu
- Department of Ultrasonography, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Qirui Wang
- College of Traditional Chinese Medicine, Southern Medial University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhipeng Jiang
- Department of Gastroenterological Surgery and Hernia Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yingru Li
- Department of Gastroenterological Surgery and Hernia Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ning Ma
- Department of Gastroenterological Surgery and Hernia Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wenhao Chen
- Department of Gastroenterological Surgery and Hernia Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Zehui Hou
- Department of Gastroenterological Surgery and Hernia Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wenchang Gan
- Department of Gastroenterological Surgery and Hernia Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Shuang Chen
- Department of Gastroenterological Surgery and Hernia Center, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
18
|
Ternette N, Olde Nordkamp MJM, Müller J, Anderson AP, Nicastri A, Hill AVS, Kessler BM, Li D. Immunopeptidomic Profiling of HLA-A2-Positive Triple Negative Breast Cancer Identifies Potential Immunotherapy Target Antigens. Proteomics 2018; 18:e1700465. [PMID: 29786170 PMCID: PMC6032843 DOI: 10.1002/pmic.201700465] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/26/2018] [Indexed: 11/06/2022]
Abstract
The recent development in immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cells in the treatment of cancer has not only demonstrated the potency of utilizing T-cell reactivity for cancer therapy, but has also highlighted the need for developing new approaches to discover targets suitable for such novel therapeutics. Here we analyzed the immunopeptidomes of six HLA-A2-positive triple negative breast cancer (TNBC) samples by nano-ultra performance liquid chromatography tandem mass spectrometry (nUPLC-MS2 ). Immunopeptidomic profiling identified a total of 19 675 peptides from tumor and adjacent normal tissue and 130 of the peptides were found to have higher abundance in tumor than in normal tissues. To determine potential therapeutic target proteins, we calculated the average tumor-associated cohort coverage (aTaCC) that represents the percentage coverage of each protein in this cohort by peptides that had higher tumoral abundance. Cofilin-1 (CFL-1), interleukin-32 (IL-32), proliferating cell nuclear antigen (PCNA), syntenin-1 (SDCBP), and ribophorin-2 (RPN-2) were found to have the highest aTaCC scores. We propose that these antigens could be evaluated further for their potential as targets in breast cancer immunotherapy and the small cohort immunopeptidomics analysis technique could be used in a wide spectrum of target discovery. Data are available via ProteomeXchange with identifier PXD009738.
Collapse
Affiliation(s)
- Nicola Ternette
- The Jenner InstituteUniversity of OxfordOxfordOX3 7FZUK
- Target Discovery InstituteNuffield Department of MedicineOxfordOX3 7FZUK
| | - Marloes J. M. Olde Nordkamp
- Nuffield Division of Clinical Laboratory SciencesRadcliffe Department of MedicineUniversity of OxfordOxfordOX3 9DUUK
| | - Julius Müller
- The Jenner InstituteUniversity of OxfordOxfordOX3 7FZUK
| | - Amanda P. Anderson
- Nuffield Division of Clinical Laboratory SciencesRadcliffe Department of MedicineUniversity of OxfordOxfordOX3 9DUUK
| | - Annalisa Nicastri
- Target Discovery InstituteNuffield Department of MedicineOxfordOX3 7FZUK
| | | | | | - Demin Li
- Nuffield Division of Clinical Laboratory SciencesRadcliffe Department of MedicineUniversity of OxfordOxfordOX3 9DUUK
| |
Collapse
|
19
|
Kim Y, Kim H, Park D, Lee H, Lee YS, Choe J, Kim YM, Jeon D, Jeoung D. The pentapeptide Gly-Thr-Gly-Lys-Thr confers sensitivity to anti-cancer drugs by inhibition of CAGE binding to GSK3β and decreasing the expression of cyclinD1. Oncotarget 2017; 8:13632-13651. [PMID: 28099142 PMCID: PMC5355126 DOI: 10.18632/oncotarget.14621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 01/03/2017] [Indexed: 12/27/2022] Open
Abstract
We previously reported the role of cancer/testis antigen CAGE in the response to anti-cancer drugs. CAGE increased the expression of cyclinD1, and pGSK3βSer9, an inactive GSK3β, while decreasing the expression of phospho-cyclinD1Thr286. CAGE showed binding to GSK3β and the domain of CAGE (amino acids 231-300) necessary for binding to GSK3β and for the expression regulation of cyclinD1 was determined. 269GTGKT273 peptide, corresponding to the DEAD box helicase domain of CAGE, decreased the expression of cyclinD1 and pGSK3βSer9 while increasing the expression of phospho-cyclinD1Thr286. GTGKT peptide showed the binding to CAGE and prevented CAGE from binding to GSK3β. GTGKT peptide changed the localization of CAGE and inhibited the binding of CAGE to the promoter sequences of cyclin D1. GTGKT peptide enhanced the apoptotic effects of anti-cancer drugs and decreased the migration, invasion, angiogenic, tumorigenic and metastatic potential of anti-cancer drug-resistant cancer cells. We found that Lys272 of GTGKT peptide was necessary for conferring anti-cancer activity. Peptides corresponding to the DEAD box helicase domain of CAGE, such as AQTGTGKT, QTGTGKT and TGTGKT, also showed anti-cancer activity by preventing CAGE from binding to GSK3β. GTGKT peptide showed ex vivo tumor homing potential. Thus, peptides corresponding to the DEAD box helicase domain of CAGE can be developed as anti-cancer drugs in cancer patients expressing CAGE.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Hyuna Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Deokbum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Hansoo Lee
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Yun Sil Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Jongseon Choe
- Graduate School of Medicine, Kangwon National University, Chunchon 24341, Korea
| | - Young Myeong Kim
- Graduate School of Medicine, Kangwon National University, Chunchon 24341, Korea
| | | | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| |
Collapse
|
20
|
Li H, Al-Japairai K, Tao Y, Xiang Z. RPN2 promotes colorectal cancer cell proliferation through modulating the glycosylation status of EGFR. Oncotarget 2017; 8:72633-72651. [PMID: 29069815 PMCID: PMC5641158 DOI: 10.18632/oncotarget.20005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
Various studies have found that silencing ribophorin II (RPN2) inhibits cell growth in several cancers. However, the underlying mechanism by which RPN2 regulates cancer cell proliferation remains unclear. Herein, we reveal that downregulation of RPN2, which may be a crucial regulator of N-linked glycosylation in cancer cells and drug-resistant cancer cells, promoted the progression of colorectal cancer (CRC) cell cycle and proliferation in vitro and in vivo. We found that RPN2 silencing reduced glycosylation of EGFR, a highly N-link glycosylated cell surface glycoprotein that plays a critical role in majority of human cancers correlating with increased cell growth, proliferation, and differentiation. In addition, RPN2 knockdown decreased EGFR expression and cell surface transport by EGFR deglycosylation. In summary, our findings suggest that RPN2 regulates CRC cell proliferation through mediating the glycosylation of EGFR which affecting the EGFR/ERK signaling pathways. Clinicopathological analysis showed that the overexpression of RPN2 and EGFR was positively correlated with colorectal tumor size. Therefore, RPN2 may be a new therapeutic target and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Haiping Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - K Al-Japairai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Tao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Fujimoto D, Goi T, Hirono Y. Expression of ribophorine II is a promising prognostic factor in human gastric adenocarcinoma. Int J Oncol 2016; 50:448-456. [PMID: 28035352 DOI: 10.3892/ijo.2016.3822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/19/2016] [Indexed: 11/06/2022] Open
Abstract
The increased invasiveness of gastric adenocarcinoma is important for progression and metastasis. In recent molecular biological studies, ribophorine II (RPN2) induced epithelial-mesenchymal transition and metastatic activity. However, no studies have evaluated the relationship between RPN2 expression, ability of cancer to invade/metastasis, and patient prognosis in gastric adenocarcinoma. Therefore, we have examined these factors. Immunohistochemical staining was performed to detect RPN2 and p53 in the primary lesion and adjacent normal gastric mucosa of 242 gastric adenocarcinoma patients who underwent resection surgery. We conducted clinicopathologic examinations and analyzed patient prognoses with the Kaplan-Meier method. Further, multivariate analysis was conducted using a Cox hazard model. Also, we analyzed the ability of invasion under inhibited RPN2 expression in vitro. RPN2 expression was observed in 119 of 242 cases of gastric adenocarcinoma patients. RPN2 expression was associated with a higher incidence of depth of wall invasion, lymph node metastasis, lymphatic invasion, venous invasion, peritoneal dissemination, histopathological stage, and p53 expression. In stage II and III curative resection cases, where recurrence is the most serious problem, cases that expressed RPN2 had a significantly lower 5-year survival rate and higher recurrence rate compared to the cases with no RPN2 expression. In the multivariate analysis for prognosis, RPN2 expression was found to be an independent factor. Also, gastric adenocarcinoma cell, had mutant-type p53, reduced the ability of invasion by knockout of RPN2 expression in vitro. RPN2 expression correlates with gastric adenocarcinoma cell invasion and shows promise as a new prognostic factor in human gastric adenocarcinoma.
Collapse
Affiliation(s)
- Daisuke Fujimoto
- Department of Surgery 1, Faculty of Medicine, University of Fukui, Fukui 910-1193, Japan
| | - Takanori Goi
- Department of Surgery 1, Faculty of Medicine, University of Fukui, Fukui 910-1193, Japan
| | - Yasuo Hirono
- Department of Surgery 1, Faculty of Medicine, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
22
|
Qin Y, Roszik J, Chattopadhyay C, Hashimoto Y, Liu C, Cooper ZA, Wargo JA, Hwu P, Ekmekcioglu S, Grimm EA. Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma. Mol Cancer Ther 2016; 15:2442-2454. [PMID: 27458138 DOI: 10.1158/1535-7163.mct-15-0963] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 07/01/2016] [Indexed: 01/01/2023]
Abstract
Melanoma is molecularly and structurally heterogeneous, with some tumor cells existing under hypoxic conditions. Our cell growth assays showed that under controlled hypoxic conditions, BRAF(V600E) melanoma cells rapidly became resistant to vemurafenib. By employing both a three-dimensional (3D) spheroid model and a two-dimensional (2D) hypoxic culture system to model hypoxia in vivo, we identified upregulation of HGF/MET signaling as a major mechanism associated with vemurafenib resistance as compared with 2D standard tissue culture in ambient air. We further confirmed that the upregulation of HGF/MET signaling was evident in drug-resistant melanoma patient tissues and mouse xenografts. Pharmacologic inhibition of the c-Met/Akt pathway restored the sensitivity of melanoma spheroids or 2D hypoxic cultures to vemurafenib. Mol Cancer Ther; 15(10); 2442-54. ©2016 AACR.
Collapse
Affiliation(s)
- Yong Qin
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chandrani Chattopadhyay
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuuri Hashimoto
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chengwen Liu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zachary A Cooper
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A Wargo
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
23
|
Zhang X, Zhong S, Xu Y, Yu D, Ma T, Chen L, Zhao Y, Chen X, Yang S, Wu Y, Tang J, Zhao J. MicroRNA-3646 Contributes to Docetaxel Resistance in Human Breast Cancer Cells by GSK-3β/β-Catenin Signaling Pathway. PLoS One 2016; 11:e0153194. [PMID: 27045586 PMCID: PMC4821636 DOI: 10.1371/journal.pone.0153194] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/24/2016] [Indexed: 01/28/2023] Open
Abstract
Acquisition of resistance to docetaxel (Doc) is one of the most important problems in treatment of breast cancer patients, but the underlying mechanisms are still not fully understood. In present study, Doc-resistant MDA-MB-231 and MCF-7 breast cancer cell lines (MDA-MB-231/Doc and MCF-7/Doc) were successfully established in vitro by gradually increasing Doc concentration on the basis of parental MDA-MB-231 and MCF-7 cell lines (MDA-MB-231/S and MCF-7/S). The potential miRNAs relevant to the Doc resistance were screened by miRNA microarray. We selected 5 upregulated miRNAs (has-miR-3646, has-miR-3658, has-miR-4438, has-miR-1246, and has-miR-574-3p) from the results of microarray for RT-qPCR validation. The results showed that expression level of miR-3646 in MDA-MB-231/Doc cells was significantly higher than in MDA-MB-231/S cells. Compared to MCF-7/S cells, miR-3646 expression was up-regulated in MCF-7/Doc cells. Further studies revealed that transfection of miR-3646 mimics into MDA-MB-231/S or MCF-7/S cells remarkably increased their drug resistance, in contrast, transfection of miR-3646 inhibitors into MDA-MB-231/Doc or MCF-7/Doc cells resulted in significant reduction of the drug resistance. By the pathway enrichment analyses for miR-3646, we found that GSK-3β/β-catenin signaling pathway was a significant pathway, in which GSK-3β was an essential member. RT-qPCR and Western blot results demonstrated that miR-3646 could regulate GSK-3β mRNA and protein expressions. Furthermore, a marked increase of both nuclear and cytoplasmic β-catenin expressions (with phosphorylated-β-catenin decrease) was observed in MDA-MB-231/Doc cells compared with MDA-MB-231/S cells, and their expression were positively related to miR-3646 and negatively correlated with GSK-3β. Taken together, our results suggest that miR-3646-mediated Doc resistance of breast cancer cells maybe, at least in part, through suppressing expression of GSK-3β and resultantly activating GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Yong Xu
- Department of Oncology, Nanjing First Hospital, Nanjing 210006, China
| | - Dandan Yu
- Department of General Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Tengfei Ma
- Department of Clinical Laboratory, Wuxi Second Hospital, Wuxi 214002, China
| | - Lin Chen
- Department of General Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Yang Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Xiu Chen
- Department of General Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Sujin Yang
- Department of General Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Yueqin Wu
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Jinhai Tang
- Department of General Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
- * E-mail:
| |
Collapse
|
24
|
Prognostic and therapeutic impact of RPN2-mediated tumor malignancy in non-small-cell lung cancer. Oncotarget 2016; 6:3335-45. [PMID: 25595901 PMCID: PMC4413657 DOI: 10.18632/oncotarget.2793] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/20/2014] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) is a powerful gene-silencing platform for cancer treatment. Previously, we demonstrated that ribophorin II (RPN2), which is part of the N-oligosaccharyl transferase complex, regulates docetaxel sensitivity and tumor lethal phenotypes in breast cancer. However, the molecular functions and clinical relevance of RPN2 in non-small-cell lung cancer (NSCLC) remain unknown. Here, we examined RPN2 expression in tumor specimens from recurrent NSCLC patients after resection (n = 32 and = 177) and assessed the correlation between RPN2 expression and various clinical features. We also investigated whether RPN2 affects cancer malignancy in vitro and tumor growth and drug resistance in vivo. Our data show that RPN2 expression confers early and distant recurrence as well as poor survival in NSCLC patients. Furthermore, RPN2 silencing suppressed cell proliferation and invasiveness, and increased the sensitivity to chemotherapeutic drugs in vitro. Remarkably, we found that intrinsic apoptosis signaling is the mechanism of cell death involved with RPN2 knockdown. Strikingly, RPN2 silencing repressed tumorigenicity and sensitized the tumors to cisplatin treatment, which led to the longer survival of NSCLC-bearing mice. In conclusion, these data suggest that RPN2 is involved in the regulation of lethal cancer phenotypes and represents a promising new target for RNAi-based medicine against NSCLC.
Collapse
|
25
|
Tsou SH, Hou MH, Hsu LC, Chen TM, Chen YH. Gain-of-function p53 mutant with 21-bp deletion confers susceptibility to multidrug resistance in MCF-7 cells. Int J Mol Med 2015; 37:233-42. [PMID: 26572087 DOI: 10.3892/ijmm.2015.2406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/30/2015] [Indexed: 11/06/2022] Open
Abstract
The majority of p53 mutations, which are responsible for gain of oncogenic function, are missense mutations in hotspot codons. However, in our previous study, we demonstrated that a deletion spanning codons 127-133 in the p53 gene (designated as del p53) was detected in doxorubicin-resistant MCF-7 cell lines following various induction processes. In the present study, we aimed to investigate the role of del p53 and its association with the proliferation, metastasis and drug resistance of MCF-7 cells. The MCF-7/del p53 cell line is a representative of the del p53 stably expressed clones which were constructed by transfection of the del p53-containing construct into MCF-7/wt cells. Markers of multidrug resistance (MDR), epithelial-mesenchymal transition (EMT) and stem cell-like properties were examined in the MCF-7/del p53 cells. The results revealed that the MCF-7/del p53 cells expressed full-length p53 and del p53 mRNA and protein, as well as P-glycoprotein (P-gp). The MCF-7/del p53 cells acquired resistance to doxorubicin with increased P-gp efflux function. Using a transient expression assay, the mdr1 promoter was found to be significantly activated by external or integrated del p53 (P<0.001). The inhibition of nuclear factor (NF)-κB by cyclosporine sensitized the MCF-7/del p53 cells to doxorubicin toxicity. In addition, the morphological characteristics of the MCF-7/del p53 and MCF-7/adr were similar. EMT was observed in the MCF-7/del p53 cells as demonstrated by the presence of the mesenchymal markers, Slug and vimentin, and the decrease in the epithelial marker, cadherin 1, type 1, E-cadherin (CDH1), as well as an enhanced migration ability (P<0.001). Furthermore, the number of cells expressing the cancer stem cell-like marker, CD44, increased, accompanied by mammosphere formation. Taken together, these findings indicate that the expression of del p53 in MCF-7/del p53 cells enables the cells to partially acquire doxorubicin resistance characteristics of the MCF-7/adr cells. Thus, del p53 may be an important factor in non-invasive MCF-7 cells, activating NF-κB signaling and the mdr1 promoter and partially attributing to EMT; the cells thus acquire stem cell‑like properties, which facilitates drug resistance. Therefore, the 21-bp deletion of p53 may prove to be a therapeutic strategy with which to prevent cancer cells from acquiring resistance to drugs.
Collapse
Affiliation(s)
- Shang-Hsun Tsou
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| | - Ming-Hung Hou
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| | - Lih-Ching Hsu
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| | - Tzer-Ming Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| | - Yen-Hui Chen
- Graduate Institute of Pharmaceutical Sciences, School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan, R.O.C
| |
Collapse
|
26
|
Abstract
HYPOTHESIS Investigation of differential protein expression will provide clues to pathophysiology in otosclerosis. BACKGROUND Otosclerosis is a bone remodeling disorder limited to the endochondral layer of the otic capsule within the temporal bone. Some authors have suggested an inflammatory etiology for otosclerosis resulting from persistent measles virus infection involving the otic capsule. Despite numerous genetic studies, implication of candidate genes in the otosclerotic process remains elusive. We employed liquid chromatography-mass spectrometry (LC-MS) analysis on formalin-fixed celloidin-embedded temporal bone tissues for postmortem investigation of otosclerosis. METHODS Proteomic analysis was performed using human temporal bones from a patient with severe otosclerosis and a control temporal bone. Sections were dissected under microscopy to remove otosclerotic lesions and normal otic capsule for proteomic analysis. Tandem 2D chromatography mass spectrometry was employed. Data analysis and peptide matching to FASTA human databases was done using SEQUEST and proteome discoverer software. RESULTS TGFβ1 was identified in otosclerosis but not in the normal control temporal bone specimen. Aside from TGFβ1, many proteins and predicted cDNA-encoded proteins were observed, with implications in cell death and/or proliferation pathways, suggesting a possible role in otosclerotic bone remodeling. Immunostaining using TGFβ1 monoclonal revealed marked staining of the spongiotic otosclerotic lesions. CONCLUSIONS Mechanisms involved in cochlear extension of otosclerosis are still unclear, but the implication of TGFβ1 is supported by the present proteomic data and immunostaining results. The established role of TGFβ1 in the chondrogenesis process supports the theory of a reaction targeting the globulae interossei within the otic capsule.
Collapse
|
27
|
Zhang J, Yan B, Späth SS, Qun H, Cornelius S, Guan D, Shao J, Hagiwara K, Van Waes C, Chen Z, Su X, Bi Y. Integrated transcriptional profiling and genomic analyses reveal RPN2 and HMGB1 as promising biomarkers in colorectal cancer. Cell Biosci 2015; 5:53. [PMID: 26388988 PMCID: PMC4574027 DOI: 10.1186/s13578-015-0043-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/16/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease that is associated with a gradual accumulation of genetic and epigenetic alterations. Among all CRC stages, stage II tumors are highly heterogeneous with a high relapse rate in about 20–25 % of stage II CRC patients following surgery. Thus, a comprehensive analysis of gene signatures to identify aggressive and metastatic phenotypes in stage II CRC is desired for a more accurate disease classification and outcome prediction. By utilizing a Cancer Array, containing 440 oncogenes and tumor suppressors to profile mRNA expression, we identified a larger number of differentially expressed genes in poorly differentiated stage II colorectal adenocarcinoma tissues, compared to their matched normal tissues. Ontology and Ingenuity Pathway Analysis (IPA) indicated that these genes are involved in functional mechanisms associated with several transcription factors. Genomic alterations of these genes were also investigated through The Cancer Genome Atlas (TCGA) database, utilizing 195 published CRC specimens. The percentage of genomic alterations in these genes was ranked based on their mRNA expression, copy number variations and mutations. This data was further combined with published microarray studies from a large set of CRC tumors classified based on prognostic features. This led to the identification of eight candidate genes including RPN2, HMGB1, AARS, IGFBP3, STAT1, HYOU1, NQO1 and PEA15 that were associated with the progressive phenotype. In particular, RPN2 and HMGB1 displayed a higher genomic alteration frequency in CRC, compared to eight other major solid cancers. Immunohistochemistry was performed on additional 78 stage I–IV CRC samples, where RPN2 protein immunostaining exhibited a significant association with stage III/IV tumors, distant metastasis, and poor differentiation, indicating that RPN2 expression is associated with poor prognosis. Further, our study revealed significant transcriptional regulatory mechanisms, networks and gene signatures, underlying CRC malignant progression and phenotype warranting future clinical investigations.
Collapse
Affiliation(s)
- Jialing Zhang
- School of Public Health, Wuhan University, Wuhan, China ; Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China ; Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, USA
| | - Bin Yan
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Stephan Stanislaw Späth
- Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Hu Qun
- Department of Oncology, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Shaleeka Cornelius
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, USA
| | - Daogang Guan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jiaofang Shao
- Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Koichi Hagiwara
- Department of Respiratory Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, USA
| | - Xiulan Su
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Yongyi Bi
- School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Assanhou AG, Li W, Zhang L, Xue L, Kong L, Sun H, Mo R, Zhang C. Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials 2015; 73:284-95. [PMID: 26426537 DOI: 10.1016/j.biomaterials.2015.09.022] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) remains the primary issue in cancer therapy, which is characterized by the overexpressed P-glycoprotein (P-gp)-included efflux pump or the upregulated anti-apoptotic proteins. In this study, a D-alpha-tocopheryl poly (ethylene glycol 1000) succinate (TPGS) and hyaluronic acid (HA) dual-functionalized cationic liposome containing a synthetic cationic lipid, 1,5-dioctadecyl-N-histidyl-L-glutamate (HG2C18) was developed for co-delivery of a small-molecule chemotherapeutic drug, paclitaxel (PTX) with a chemosensitizing agent, lonidamine (LND) to treat the MDR cancer. It was demonstrated that the HG2C18 lipid contributes to the endo-lysosomal escape of the liposome following internalization for efficient intracellular delivery. The TPGS component was confirmed able to elevate the intracellular accumulation of PTX by inhibiting the P-gp efflux, and to facilitate the mitochondrial-targeting of the liposome. The intracellularly released LND suppressed the intracellular ATP production by interfering with the mitochondrial function for enhanced P-gp inhibition, and additionally, sensitized the MDR breast cancer (MCF-7/MDR) cells to PTX for promoted induction of apoptosis through a synergistic effect. Functionalized with the outer HA shell, the liposome preferentially accumulated at the tumor site and showed a superior antitumor efficacy in the xenograft MCF-7/MDR tumor mice models. These findings suggest that this dual-functional liposome for co-delivery of a cytotoxic drug and an MDR modulator provides a promising strategy for reversal of MDR in cancer treatment.
Collapse
Affiliation(s)
- Assogba G Assanhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China; UFR Pharmacie, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, 01 BP 188 Cotonou, Benin; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Wenyuan Li
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Lei Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Hongbin Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China.
| | - Can Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
29
|
Fedorova MS, Kudryavtseva AV, Lakunina VA, Snezhkina AV, Volchenko NN, Slavnova EN, Danilova TV, Sadritdinova AF, Melnikova NV, Belova AA, Klimina KM, Sidorov DV, Alekseev BY, Kaprin AD, Dmitriev AA, Krasnov GS. Downregulation of OGDHL expression is associated with promoter hypermethylation in colorectal cancer. Mol Biol 2015. [DOI: 10.1134/s0026893315040044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention. Oncotarget 2015; 5:4603-50. [PMID: 25051360 PMCID: PMC4148087 DOI: 10.18632/oncotarget.2209] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway.
Collapse
|
31
|
Ono M, Tsuda H, Kobayashi T, Takeshita F, Takahashi RU, Tamura K, Akashi-Tanaka S, Moriya T, Yamasaki T, Kinoshita T, Yamamoto J, Fujiwara Y, Ochiya T. The expression and clinical significance of ribophorin II (RPN2) in human breast cancer. Pathol Int 2015; 65:301-8. [PMID: 25881688 DOI: 10.1111/pin.12297] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/19/2015] [Indexed: 01/08/2023]
Abstract
Ribophorin II (RPN2), part of the N-oligosaccharyltransferase complex, is highly expressed in breast cancer stem cells and is associated with tumor metastasis through interaction with mutant p53. The clinicopathological implication of RPN2 expression is undetermined. We examined immunohistochemically the expression levels of RPN2 and p53 in primary breast cancer tissues surgically resected from 218 patients. The correlations of RPN2 expression with the intrinsic subtype defined by hormone receptors (HRs) and HER2, clinicopathological parameters, p53 expression, and patients' clinical outcomes were examined. RPN2 was positive in 139 (64%), and the incidence of RPN2 expression was higher in the triple-negative breast cancer (TNBC) (HR-/HER2-) (65%) and HER2-enriched (HR-/HER2+) subtype (95%) than in the luminal A-like (HR+/HER2-) subtype (58%) (P = 0.0009). RPN2 expression was also correlated with p53 nuclear accumulation (P = 0.04). The RPN2-positive/p53-positive patient group showed significantly poorer prognosis than the RPN2-negative group for disease-free survival (P = 0.05) and for overall survival (P = 0.02). By multivariate analyses, the combination of RPN2 and p53 was not an independent prognostic factor. RPN2 expression was correlated with clinically aggressive features of breast cancer. These data support the further clinical application of anti-RPN2 therapy and the development of personalized medicine.
Collapse
Affiliation(s)
- Makiko Ono
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Tsuda
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan.,Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Takayuki Kobayashi
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Fumitaka Takeshita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryou-U Takahashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenji Tamura
- Breast and Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Sadako Akashi-Tanaka
- Breast and Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyuki Moriya
- Department of Surgery, National Defense Medical College, Saitama, Japan
| | - Tamio Yamasaki
- Department of Surgery, National Defense Medical College, Saitama, Japan
| | - Takayuki Kinoshita
- Breast and Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Junji Yamamoto
- Department of Surgery, National Defense Medical College, Saitama, Japan
| | - Yasuhiro Fujiwara
- Breast and Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
32
|
Takahashi RU, Miyazaki H, Ochiya T. The Roles of MicroRNAs in Breast Cancer. Cancers (Basel) 2015; 7:598-616. [PMID: 25860815 PMCID: PMC4491673 DOI: 10.3390/cancers7020598] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) constitute a large family of small, approximately 20–22 nucleotide, non-coding RNAs that regulate the expression of target genes, mainly at the post-transcriptional level. Accumulating lines of evidence have indicated that miRNAs play important roles in the maintenance of biological homeostasis and that aberrant expression levels of miRNAs are associated with the onset of many diseases, including cancer. In various cancers, miRNAs play important roles in tumor initiation, drug resistance and metastasis. Recent studies reported that miRNAs could also be secreted via small endosome-derived vesicles called exosomes, which are derived from multiple cell types, including dendritic cells, lymphocytes, and tumor cells. Exosomal miRNAs play an important role in cell-to-cell communication and have been investigated as prognostic and diagnostic biomarkers. In this review, we summarize the major findings related to the functions of miRNAs in breast cancer, which is the most frequent cancer in women, and discuss the potential clinical uses of miRNAs, including their roles as therapeutic targets and diagnostic markers.
Collapse
Affiliation(s)
- Ryou-U Takahashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroaki Miyazaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 1-5-8 Hatanodai Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
33
|
Salvato F, Balbuena TS, Nelson W, Rao RSP, He R, Soderlund CA, Gang DR, Thelen JJ. Comparative proteomic analysis of developing rhizomes of the ancient vascular plant Equisetum hyemale and different monocot species. J Proteome Res 2015; 14:1779-91. [PMID: 25716083 DOI: 10.1021/pr501157w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rhizome is responsible for the invasiveness and competitiveness of many plants with great economic and agricultural impact worldwide. Besides its value as an invasive organ, the rhizome plays a role in the establishment and massive growth of forage, providing biomass for biofuel production. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development, and function in plants. In this work, we characterized the proteome of rhizome apical tips and elongation zones from different species using a GeLC-MS/MS (one-dimensional electrophoresis in combination with liquid chromatography coupled online with tandem mass spectrometry) spectral-counting proteomics strategy. Five rhizomatous grasses and an ancient species were compared to study the protein regulation in rhizomes. An average of 2200 rhizome proteins per species were confidently identified and quantified. Rhizome-characteristic proteins showed similar functional distributions across all species analyzed. The over-representation of proteins associated with central roles in cellular, metabolic, and developmental processes indicated accelerated metabolism in growing rhizomes. Moreover, 61 rhizome-characteristic proteins appeared to be regulated similarly among analyzed plants. In addition, 36 showed conserved regulation between rhizome apical tips and elongation zones across species. These proteins were preferentially expressed in rhizome tissues regardless of the species analyzed, making them interesting candidates for more detailed investigative studies about their roles in rhizome development.
Collapse
Affiliation(s)
- Fernanda Salvato
- †Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Tiago S Balbuena
- †Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - William Nelson
- ‡BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| | - R Shyama Prasad Rao
- †Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Ruifeng He
- §Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Carol A Soderlund
- ‡BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| | - David R Gang
- §Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jay J Thelen
- †Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
34
|
Yang M, Wang X, Jia J, Gao H, Chen P, Sha X, Wu S. Tumor protein D52-like 2 contributes to proliferation of breast cancer cells. Cancer Biother Radiopharm 2015; 30:1-7. [PMID: 25629696 DOI: 10.1089/cbr.2014.1723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Breast cancer is a major cause of cancer-related death among women. Tumor protein D52-like 2 (TPD52L2) is one member of the TPD52 family, which has been shown to function in mediating cell proliferation, apoptosis, and vehicle trafficking. TPD52 was originally identified in human breast carcinoma. In this study, the authors found that TPD52L2 is extensively expressed in multiple human breast cancer cell lines. To elucidate the functional role of TPD52L2 in breast cancer, the authors employed lentivirus-mediated short hairpin RNA (shRNA) to knock down TPD52L2 in one breast cancer cell line, ZR-75-30, which showed high TPD52L2 expression. The shRNA-mediated TPD52L2 knockdown inhibited the proliferation and colony formation in ZR-75-30 cells, as determined by MTT and colony formation assays. Knockdown of TPD52L2 led to an accumulation of cells in the G0/G1 phase of the cell cycle. Furthermore, knockdown of TPD52L2 promoted GSK3β phosphorylation in ZR-75-30 cells. This investigation indicates that TPD52L2 plays an essential role in the growth of breast cancer cells, which may contribute to provide gene therapy for breast cancer treatment.
Collapse
Affiliation(s)
- Mei Yang
- 1 The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University , Changchun, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Kwak TK, Sohn EJ, Kim S, Won G, Choi JU, Jeong K, Jeong M, Kwon OS, Kim SH. Inhibitory effect of ethanol extract of Ocimum sanctum on osteopontin mediated metastasis of NCI-H460 non-small cell lung cancer cells. Altern Ther Health Med 2014; 14:419. [PMID: 25345853 PMCID: PMC4219006 DOI: 10.1186/1472-6882-14-419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 06/27/2014] [Indexed: 01/10/2023]
Abstract
Background Osteopontin (OPN) is one of important molecular targets in cancer progression, metastasis as a calcium-binding, extracellular-matrix-associated protein of the small integrin-binding ligand and, N-linked glycoprotein. In the present study, anti-metastatic mechanism of ethanol extracts of Ocimum sanctum (EEOS) was elucidated on OPN enhanced metastasis in NCI-H460 non- small cell lung cancer cells. Methods Cell viability was measured by MTT assay. Adhesion and invasion assays were carried out to see that EEOS inhibited cell adhesion and invasion in OPN treated and non-treated NCI-H 460 cells. RT-PCR was used to determine the mRNA levels of uPA, uPAR, and EGFR. Results EEOS significantly inhibited cell adhesion and invasion in OPN treated and non treated NCI-H460 cells, though EEOS did not show any toxicity up to 200 μg/ml. EEOS effectively attenuated the expression of OPN and CD44 and also OPN activated the expression of CD44 in NCI-H460 cells. In addition, EEOS effectively suppressed the expression of phosphatidylinositide 3-kinases (PI3K) and cyclooxygenase 2 (COX-2) and the phosphorylation of Akt at protein level in OPN treated NCI-H460 cells. Also, EEOS significantly attenuated the expression of urokinase plasminogen activator (uPA), its receptor (uPAR) and epidermal growth factor receptor (EGFR) at mRNA level and reduced vascular endothelial growth factor (VEGF) production and MMP-9 activity in OPN treated NCI-H460 cells. Furthermore, PI3K/Akt inhibitor LY294002 enhanced anti-metastatic potential of EEOS to attenuate the expression of uPA and MMP-9 in OPN treated NCI-H 460 cells. Conclusion Overall, our findings suggest that anti-metastatic mechanism of EEOS is mediated by inhibition of PI3K/Akt in OPN treated NCI-H460 non-small cell lung cancer cells.
Collapse
|
36
|
RPN2 Gene Confers Osteosarcoma Cell Malignant Phenotypes and Determines Clinical Prognosis. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e189. [PMID: 25181275 PMCID: PMC4222647 DOI: 10.1038/mtna.2014.35] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/23/2014] [Indexed: 01/15/2023]
Abstract
Drug resistance and metastasis are lethal characteristics of tumors. We previously demonstrated that silencing of ribophorin II (RPN2), which is part of the N-oligosaccharyl transferase complex, efficiently induced apoptosis and reduced resistance to docetaxel in human breast cancer cells. Here, we report the clinical and functional correlations of RPN2 expression in osteosarcoma. Immunohistochemical evaluation of 35 osteosarcoma patient biopsies revealed that RPN2 was moderately to highly expressed in all specimens, and higher RPN2 mRNA expression was significantly correlated with poor prognosis. To investigate whether lethal phenotypes of osteosarcoma could be reduced by regulating the expression of RPN2, we conducted a study of RNAi-induced RPN2 knockdown in highly metastatic human osteosarcoma cells. The results indicated that RPN2 silencing reduced cell proliferation, sphere formation, cell invasion, and sensitized drug response in vitro. Mice bearing RPN2-silenced highly metastatic osteosarcoma xenografts showed reduced tumor growth and lung metastasis, and survived longer than mice bearing control tumor xenografts. Taken together, our data suggest that RPN2 silencing contributes to regulation of lethal osteosarcoma phenotypes and could be a novel target for RNAi-based therapeutics against osteosarcoma.
Collapse
|
37
|
Tominaga N, Hagiwara K, Kosaka N, Honma K, Nakagama H, Ochiya T. RPN2-mediated glycosylation of tetraspanin CD63 regulates breast cancer cell malignancy. Mol Cancer 2014; 13:134. [PMID: 24884960 PMCID: PMC4070641 DOI: 10.1186/1476-4598-13-134] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/14/2014] [Indexed: 01/15/2023] Open
Abstract
Background The tetraspanin CD63 is a highly N-glycosylated protein that is known to regulate cancer malignancy. However, the contribution of glycosylation of CD63 to cancer malignancy remains unclear. Previously, we reported that ribophorin II (RPN2), which is part of an N-oligosaccharyle transferase complex, is responsible for drug resistance in breast cancer cells. In this study, we demonstrate that cancer malignancy associated with the glycosylation of CD63 is regulated by RPN2. Results Inhibition of RPN2 expression led to a reduction in CD63 glycosylation. In addition, the localization of CD63 was deregulated by knockdown of RPN2. Interestingly, multidrug resistance protein 1 (MDR1) localization was displaced from the cell surface in CD63-silenced cells. CD63 silencing reduced the chemoresistance and invasion ability of malignant breast cancer cells. Furthermore, the enrichment of CD63/MDR1-double positive cells was associated with lymph node metastasis. Taken together, these results indicated that high glycosylation of CD63 by RPN2 is implicated in clinical outcomes in breast cancer patients. Conclusions These findings describe a novel and important function of RPN2-mediated CD63 glycosylation, which regulates MDR1 localization and cancer malignancy, including drug resistance and invasion.
Collapse
Affiliation(s)
| | | | | | | | | | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
38
|
Wang X, Lin C, Zhao X, Liu A, Zhu J, Li X, Song L. Acylglycerol kinase promotes cell proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. Mol Cancer 2014; 13:106. [PMID: 24886245 PMCID: PMC4028287 DOI: 10.1186/1476-4598-13-106] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/22/2014] [Indexed: 11/29/2022] Open
Abstract
Background Acylglycerol kinase (AGK) is reported to be overexpressed in multiple cancers. The clinical significance and biological role of AGK in breast cancer, however, remain to be established. Methods AGK expression in breast cancer cell lines, paired patient tissues were determined using immunoblotting and Real-time PCR. 203 human breast cancer tissue samples were analyzed by immunochemistry (IHC) to investigate the relationship between AGK expression and the clinicopathological features of breast cancer. Functional assays, such as colony formation, anchorage-independent growth and BrdU assay, and a xenograft tumor model were used to determine the oncogenic role of AGK in human breast cancer progression. The effect of AGK on FOXO1 transactivity was further investigated using the luciferase reporter assays, and by detection of the FOXO1 downstream genes. Results Herein, we report that AGK was markedly overexpressed in breast cancer cells and clinical tissues. Immunohistochemical analysis showed that the expression of AGK significantly correlated with patients’ clinicopathologic characteristics, including clinical stage and tumor-nodule-metastasis (TNM) classification. Breast cancer patients with higher levels of AGK expression had shorter overall survival compared to patients with lower AGK levels. We gained valuable insights into the mechanism of AGK expression in breast cancer cells by demonstrating that overexpressing AGK significantly enhanced, whereas silencing endogenous AGK inhibited, the proliferation and tumorigenicity of breast cancer cells both in vitro and in vivo. Furthermore, overexpression of AGK enhanced G1-S phase transition in breast cancer cells, which was associated with activation of AKT, suppression of FOXO1 transactivity, downregulation of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1 and upregulation of the cell cycle regulator cyclin D1. Conclusions Taken together, these findings provide new evidence that AGK plays an important role in promoting proliferation and tumorigenesis in human breast cancer and may serve as a novel prognostic biomarker and therapeutic target in this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.
| |
Collapse
|
39
|
Jia Y, Wu D, Yun F, Shi L, Luo N, Liu Z, Shi Y, Sun Q, Jiang L, Wang S, Du M. Transforming growth factor-β1 regulates epithelial-mesenchymal transition in association with cancer stem-like cells in a breast cancer cell line. Int J Clin Exp Med 2014; 7:865-872. [PMID: 24955155 PMCID: PMC4057834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with altered connection and junctions between cells and changes in abilities of invasion and migration. In this study, we investigated whether SK-BR-3 breast cancer cells induced to undergo EMT exhibit changes in morphological and invasion abilities after Transforming growth factor β1 (TGF-β1) treatment. Serum-deprived SK-BR-3 cells were treated with TGF-β1 (0, 10 ng/mL) for 24 h. The cells morphological changes were observed and imaged using inverted phase contrast microscope. Scratch experiment and invasion experiment were employed to detect changes of invasion ability, cell-flow experiment was used to assess cell cycle, immunohistochemistry technique was used to detect epithelial and mesenchymal markers after the crawling cells were fixed. Our research reveal that SK-BR-3 cells become larger and more messy, the elongated cells extend pseudopodia, the link of the cells became more loosely and cell gap widened after TGF-β1 treatment. SK-BR-3 cells showed faster growing and improved invasion abilities after TGF-β1 treatment, and reduced G1 phase cells proportion in the total number of cells after the conversion, in contrast the S phase cells accounted for the proportion of the total number of cells increased. These findings indicate that TGF-β1-induced EMT in breast cancer cells may be associated with major alterations in morphological and invasion abilities.
Collapse
Affiliation(s)
- Yongfeng Jia
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical UniversityHuhhot, 010059, China
| | - Di Wu
- Department of Pathology, Erdos City Central HospitalErdos, 017000, China
| | - Fen Yun
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical UniversityHuhhot, 010059, China
| | - Lin Shi
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical UniversityHuhhot, 010059, China
| | - Nianrong Luo
- Physical Examination Center, The Inner Mongolia Autonomous Region People’s HospitalHuhhot, 010017, China
| | - Zhiyue Liu
- Department of PathoPhysiology, College of Basic Medicine of Inner Mongolia Medical UniversityHuhhot, 010059, China
| | - Yonghong Shi
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical UniversityHuhhot, 010059, China
| | - Qinnuan Sun
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical UniversityHuhhot, 010059, China
| | - Lili Jiang
- Molecular Pathology Laboratory, College of Basic Medicine of Inner Mongolia Medical UniversityHuhhot, 010059, China
| | - Shiqi Wang
- The College of Public Health, Inner Mongolia Medical UniversityHuhhot, 010059, China
| | - Maolin Du
- The College of Public Health, Inner Mongolia Medical UniversityHuhhot, 010059, China
| |
Collapse
|
40
|
Fujita Y, Takeshita F, Mizutani T, Ohgi T, Kuwano K, Ochiya T. A novel platform to enable inhaled naked RNAi medicine for lung cancer. Sci Rep 2013; 3:3325. [PMID: 24270189 PMCID: PMC3839038 DOI: 10.1038/srep03325] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/08/2013] [Indexed: 12/14/2022] Open
Abstract
Small interfering RNA (siRNA)-based therapeutics have been used in humans and offer distinct advantages over traditional therapies. However, previous investigations have shown that there are several technical obstacles that need to be overcome before routine clinical applications are used. Currently, we are launching a novel class of RNAi therapeutic agents (PnkRNA™, nkRNA) that show high resistance to degradation and are less immunogenic, less cytotoxic, and capable of efficient intracellular delivery. Here, we develop a novel platform to promote naked RNAi approaches administered through inhalation without sophisticated delivery technology in mice. Furthermore, a naked and unmodified novel RNAi agent, such as ribophorin II (RPN2-PnkRNA), which has been selected as a therapeutic target for lung cancer, resulted in efficient inhibition of tumor growth without any significant toxicity. Thus, this new technology using aerosol delivery could represent a safe, potentially RNAi-based strategy for clinical applications in lung cancer treatment without delivery vehicles.
Collapse
Affiliation(s)
- Yu Fujita
- 1] Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan [2] Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-19-18, Nishi-shinbashi, Minato-ku, Tokyo 105-8471, Japan
| | | | | | | | | | | |
Collapse
|