1
|
Tribble JR, Jöe M, Varricchio C, Otmani A, Canovai A, Habchi B, Daskalakis E, Chaleckis R, Loreto A, Gilley J, Wheelock CE, Jóhannesson G, Wong RCB, Coleman MP, Brancale A, Williams PA. NMNAT2 is a druggable target to drive neuronal NAD production. Nat Commun 2024; 15:6256. [PMID: 39048544 PMCID: PMC11269627 DOI: 10.1038/s41467-024-50354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Maintenance of NAD pools is critical for neuronal survival. The capacity to maintain NAD pools declines in neurodegenerative disease. We identify that low NMNAT2, the critical neuronal NAD producing enzyme, drives retinal susceptibility to neurodegenerative insults. As proof of concept, gene therapy over-expressing full length human NMNAT2 is neuroprotective. To pharmacologically target NMNAT2, we identify that epigallocatechin gallate (EGCG) can drive NAD production in neurons through an NMNAT2 and NMN dependent mechanism. We confirm this by pharmacological and genetic inhibition of the NAD-salvage pathway. EGCG is neuroprotective in rodent (mixed sex) and human models of retinal neurodegeneration. As EGCG has poor drug-like qualities, we use it as a tool compound to generate novel small molecules which drive neuronal NAD production and provide neuroprotection. This class of NMNAT2 targeted small molecules could have an important therapeutic impact for neurodegenerative disease following further drug development.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden
| | - Melissa Jöe
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences; Cardiff University, Cardiff, Wales, UK
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden
| | - Alessio Canovai
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden
- Department of Biology, University of Pisa, 56127, Pisa, Italy
| | - Baninia Habchi
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- C2VN, INRAE, INSERM, Aix Marseille University, 13007, Marseille, France
| | - Evangelia Daskalakis
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Romanas Chaleckis
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences; University of Cambridge, Cambridge, UK
- School of Medical Sciences and Save Sight Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences; University of Cambridge, Cambridge, UK
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Gauti Jóhannesson
- Department of Clinical Sciences, Ophthalmology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre of Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences; University of Cambridge, Cambridge, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences; Cardiff University, Cardiff, Wales, UK
- Vysoká škola chemicko-technologická v Praze, Prague, Czech Republic
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital; Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Loreto A, Merlini E, Coleman MP. Programmed axon death: a promising target for treating retinal and optic nerve disorders. Eye (Lond) 2024; 38:1802-1809. [PMID: 38538779 PMCID: PMC11226669 DOI: 10.1038/s41433-024-03025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 07/07/2024] Open
Abstract
Programmed axon death is a druggable pathway of axon degeneration that has garnered considerable interest from pharmaceutical companies as a promising therapeutic target for various neurodegenerative disorders. In this review, we highlight mechanisms through which this pathway is activated in the retina and optic nerve, and discuss its potential significance for developing therapies for eye disorders and beyond. At the core of programmed axon death are two enzymes, NMNAT2 and SARM1, with pivotal roles in NAD metabolism. Extensive preclinical data in disease models consistently demonstrate remarkable, and in some instances, complete and enduring neuroprotection when this mechanism is targeted. Findings from animal studies are now being substantiated by genetic human data, propelling the field rapidly toward clinical translation. As we approach the clinical phase, the selection of suitable disorders for initial clinical trials targeting programmed axon death becomes crucial for their success. We delve into the multifaceted roles of programmed axon death and NAD metabolism in retinal and optic nerve disorders. We discuss the role of SARM1 beyond axon degeneration, including its potential involvement in neuronal soma death and photoreceptor degeneration. We also discuss genetic human data and environmental triggers of programmed axon death. Lastly, we touch upon potential therapeutic approaches targeting NMNATs and SARM1, as well as the nicotinamide trials for glaucoma. The extensive literature linking programmed axon death to eye disorders, along with the eye's suitability for drug delivery and visual assessments, makes retinal and optic nerve disorders strong contenders for early clinical trials targeting programmed axon death.
Collapse
Affiliation(s)
- Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
- School of Medical Sciences and Save Sight Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Elisa Merlini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| |
Collapse
|
3
|
Tarasiuk O, Molteni L, Malacrida A, Nicolini G. The Role of NMNAT2/SARM1 in Neuropathy Development. BIOLOGY 2024; 13:61. [PMID: 38275737 PMCID: PMC10813049 DOI: 10.3390/biology13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) commonly arises as a side effect of diverse cancer chemotherapy treatments. This condition presents symptoms such as numbness, tingling, and altered sensation in patients, often accompanied by neuropathic pain. Pathologically, CIPN is characterized by an intensive "dying-back" axonopathy, starting at the intra-epidermal sensory innervations and advancing retrogradely. The lack of comprehensive understanding regarding its underlying mechanisms explains the absence of effective treatments for CIPN. Recent investigations into axon degeneration mechanisms have pinpointed nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha and TIR motif-containing 1 protein (SARM1) as pivotal mediators of injury-induced axonal degeneration. In this review, we aim to explore various studies shedding light on the interplay between NMNAT2 and SARM1 proteins and their roles in the progression of CIPN.
Collapse
Affiliation(s)
- Olga Tarasiuk
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (A.M.); (G.N.)
| | | | | | | |
Collapse
|
4
|
Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Kristian T, Russell JW. NAD + Precursors Reverse Experimental Diabetic Neuropathy in Mice. Int J Mol Sci 2024; 25:1102. [PMID: 38256175 PMCID: PMC10816262 DOI: 10.3390/ijms25021102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Abnormal NAD+ signaling has been implicated in axonal degeneration in diabetic peripheral neuropathy (DPN). We hypothesized that supplementing NAD+ precursors could alleviate DPN symptoms through increasing the NAD+ levels and activating the sirtuin-1 (SIRT1) protein. To test this, we exposed cultured Dorsal Root Ganglion neurons (DRGs) to Nicotinamide Riboside (NR) or Nicotinamide Mononucleotide (NMN), which increased the levels of NAD+, the SIRT1 protein, and the deacetylation activity that is associated with increased neurite growth. A SIRT1 inhibitor blocked the neurite growth induced via NR or NMN. We then induced neuropathy in C57BL6 mice with streptozotocin (STZ) or a high fat diet (HFD) and administered NR or NMN for two months. Both the STZ and HFD mice developed neuropathy, which was reversed through the NR or NMN administration: sensory function improved, nerve conduction velocities normalized, and intraepidermal nerve fibers were restored. The NAD+ levels and SIRT1 activity were reduced in the DRGs from diabetic mice but were preserved with the NR or NMN treatment. We also tested the effect of NR or NMN administration in mice that overexpress the SIRT1 protein in neurons (nSIRT1 OE) and found no additional benefit from the addition of the drug. These findings suggest that supplementing with NAD+ precursors or activating SIRT1 may be a promising treatment for DPN.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Neda Najimi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Avinash R. Sagi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Sushuma Yarlagadda
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Muhammed Ikbal Arvas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Ahmad F. Hedayat
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Anand Kadakia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - James W. Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- CAMC Institute for Academic Medicine, 415 Morris Street Suite 300, Charleston, WV 25301, USA
| |
Collapse
|
5
|
Kim HR, Lee HJ, Jeon Y, Jang SY, Shin YK, Yun JH, Park HJ, Koh H, Lee KE, Shin JE, Park HT. Targeting SARM1 improves autophagic stress-induced axonal neuropathy. Autophagy 2024; 20:29-44. [PMID: 37561040 PMCID: PMC10761069 DOI: 10.1080/15548627.2023.2244861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
ABBREVIATIONS AAV: adeno-associated virus; ATF3: activating transcription factor 3; ATG7: autophagy related 7; AVIL: advillin; cADPR: cyclic ADP ribose; CALC: calcitonin/calcitonin-related polypeptide; CMT: Charcot-Marie-Tooth disease; cKO: conditional knockout; DEG: differentially expressed gene; DRG: dorsal root ganglion; FE-SEM: field emission scanning electron microscopy; IF: immunofluorescence; NCV: nerve conduction velocity; PVALB: parvalbumin; RAG: regeneration-associated gene; ROS: reactive oxygen species; SARM1: sterile alpha and HEAT/Armadillo motif containing 1; SYN1: synapsin I.
Collapse
Affiliation(s)
- Hye Ran Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hye Jin Lee
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Yewon Jeon
- Department of Life Sciences, Division of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - So Young Jang
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Yoon Kyoung Shin
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jean Ho Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hye Ji Park
- Neuroscience Translational Research Solution Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hyongjong Koh
- Neuroscience Translational Research Solution Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jung Eun Shin
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
6
|
Groh J, Abdelwahab T, Kattimani Y, Hörner M, Loserth S, Gudi V, Adalbert R, Imdahl F, Saliba AE, Coleman M, Stangel M, Simons M, Martini R. Microglia-mediated demyelination protects against CD8 + T cell-driven axon degeneration in mice carrying PLP defects. Nat Commun 2023; 14:6911. [PMID: 37903797 PMCID: PMC10616105 DOI: 10.1038/s41467-023-42570-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
Axon degeneration and functional decline in myelin diseases are often attributed to loss of myelin but their relation is not fully understood. Perturbed myelinating glia can instigate chronic neuroinflammation and contribute to demyelination and axonal damage. Here we study mice with distinct defects in the proteolipid protein 1 gene that develop axonal damage which is driven by cytotoxic T cells targeting myelinating oligodendrocytes. We show that persistent ensheathment with perturbed myelin poses a risk for axon degeneration, neuron loss, and behavioral decline. We demonstrate that CD8+ T cell-driven axonal damage is less likely to progress towards degeneration when axons are efficiently demyelinated by activated microglia. Mechanistically, we show that cytotoxic T cell effector molecules induce cytoskeletal alterations within myelinating glia and aberrant actomyosin constriction of axons at paranodal domains. Our study identifies detrimental axon-glia-immune interactions which promote neurodegeneration and possible therapeutic targets for disorders associated with myelin defects and neuroinflammation.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.
| | - Tassnim Abdelwahab
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Yogita Kattimani
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Michaela Hörner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Department of Neurology, Section of Neurodegeneration, University Hospital Heidelberg, Heidelberg, Germany
| | - Silke Loserth
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Robert Adalbert
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary
- Institute of Health Sciences Education, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Michael Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Translational Medicine, Novartis Institute of Biomedical Research, Basel, Switzerland
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Murata H, Yasui Y, Oiso K, Ochi T, Tomonobu N, Yamamoto KI, Kinoshita R, Sakaguchi M. STAT1/3 signaling suppresses axon degeneration and neuronal cell death through regulation of NAD +-biosynthetic and consuming enzymes. Cell Signal 2023; 108:110717. [PMID: 37187216 DOI: 10.1016/j.cellsig.2023.110717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD)+-biosynthetic and consuming enzymes are involved in various intracellular events through the regulation of NAD+ metabolism. Recently, it has become clear that alterations in the expression of NAD+-biosynthetic and consuming enzymes contribute to the axonal stability of neurons. We explored soluble bioactive factor(s) that alter the expression of NAD+-metabolizing enzymes and found that cytokine interferon (IFN)-γ increased the expression of nicotinamide nucleotide adenylyltransferase 2 (NMNAT2), an NAD+-biosynthetic enzyme. IFN-γ activated signal transducers and activators of transcription 1 and 3 (STAT1/3) followed by c-Jun N-terminal kinase (JNK) suppression. As a result, STAT1/3 increased the expression of NMNAT2 at both mRNA and protein levels in a dose- and time-dependent manner and, at the same time, suppressed activation of sterile alpha and Toll/interleukin receptor motif-containing 1 (SARM1), an NAD+-consuming enzyme, and increased intracellular NAD+ levels. We examined the protective effect of STAT1/3 signaling against vincristine-mediated cell injury as a model of chemotherapy-induced peripheral neuropathy (CIPN), in which axonal degeneration is involved in disease progression. We found that IFN-γ-mediated STAT1/3 activation inhibited vincristine-induced downregulation of NMNAT2 and upregulation of SARM1 phosphorylation, resulting in modest suppression of subsequent neurite degradation and cell death. These results indicate that STAT1/3 signaling induces NMNAT2 expression while simultaneously suppressing SARM1 phosphorylation, and that both these actions contribute to suppression of axonal degeneration and cell death.
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Yu Yasui
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuma Oiso
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshiki Ochi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
8
|
Sato-Yamada Y, Strickland A, Sasaki Y, Bloom J, DiAntonio A, Milbrandt J. A SARM1-mitochondrial feedback loop drives neuropathogenesis in a Charcot-Marie-Tooth disease type 2A rat model. J Clin Invest 2022; 132:e161566. [PMID: 36287202 PMCID: PMC9711878 DOI: 10.1172/jci161566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A) is an axonal neuropathy caused by mutations in the mitofusin 2 (MFN2) gene. MFN2 mutations result in profound mitochondrial abnormalities, but the mechanism underlying the axonal pathology is unknown. Sterile α and Toll/IL-1 receptor motif-containing 1 (SARM1), the central executioner of axon degeneration, can induce neuropathy and is activated by dysfunctional mitochondria. We tested the role of SARM1 in a rat model carrying a dominant CMT2A mutation (Mfn2H361Y) that exhibits progressive dying-back axonal degeneration, neuromuscular junction (NMJ) abnormalities, muscle atrophy, and mitochondrial abnormalities - all hallmarks of the human disease. We generated Sarm1-KO (Sarm1-/-) and Mfn2H361Y Sarm1 double-mutant rats and found that deletion of Sarm1 rescued axonal, synaptic, muscle, and functional phenotypes, demonstrating that SARM1 was responsible for much of the neuropathology in this model. Despite the presence of mutant MFN2 protein in these double-mutant rats, loss of SARM1 also dramatically suppressed many mitochondrial defects, including the number, size, and cristae density defects of synaptic mitochondria. This surprising finding indicates that dysfunctional mitochondria activated SARM1 and that activated SARM1 fed back on mitochondria to exacerbate the mitochondrial pathology. As such, this work identifies SARM1 inhibition as a therapeutic candidate for the treatment of CMT2A and other neurodegenerative diseases with prominent mitochondrial pathology.
Collapse
Affiliation(s)
- Yurie Sato-Yamada
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Science, Niigata City, Japan
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
- Department of Developmental Biology and
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Dai Y, Lin J, Ren J, Zhu B, Wu C, Yu L. NAD + metabolism in peripheral neuropathic pain. Neurochem Int 2022; 161:105435. [PMID: 36273706 DOI: 10.1016/j.neuint.2022.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an omnipresent metabolite that participates in redox reactions. Multiple NAD+-consuming enzymes are implicated in numerous biological processes, including transcription, signaling, and cell survival. Multiple pieces of evidence have demonstrated that NAD+-consuming enzymes, including poly(ADP-ribose) polymerases (PARPs), sirtuins (SIRTs), and sterile alpha and TIR motif-containing 1 (SARM1), play major roles in peripheral neuropathic pain of various etiologies. These NAD+ consumers primarily participate in peripheral neuropathic pain via mechanisms such as mitochondrial dysfunction, oxidative stress, and inflammation. Furthermore, NAD+ synthase and nicotinamide phosphoribosyltransferase (NAMPT) have recently been found to contribute to the regulation of pain. Here, we review the evidence indicating the involvement of NAD+ metabolism in the pathological mechanisms of peripheral neuropathic pain. Advanced understanding of the molecular and cellular mechanisms associated with NAD+ in peripheral neuropathic pain will facilitate the development of novel treatment options for diverse types of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Yi Dai
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jiaqi Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Jinxuan Ren
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Bin Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Chengwei Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, PR China.
| |
Collapse
|
10
|
Fang F, Zhuang P, Feng X, Liu P, Liu D, Huang H, Li L, Chen W, Liu L, Sun Y, Jiang H, Ye J, Hu Y. NMNAT2 is downregulated in glaucomatous RGCs, and RGC-specific gene therapy rescues neurodegeneration and visual function. Mol Ther 2022; 30:1421-1431. [PMID: 35114390 PMCID: PMC9077370 DOI: 10.1016/j.ymthe.2022.01.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
The lack of neuroprotective treatments for retinal ganglion cells (RGCs) and optic nerve (ON) is a central challenge for glaucoma management. Emerging evidence suggests that redox factor NAD+ decline is a hallmark of aging and neurodegenerative diseases. Supplementation with NAD+ precursors and overexpression of NMNAT1, the key enzyme in the NAD+ biosynthetic process, have significant neuroprotective effects. We first profile the translatomes of RGCs in naive mice and mice with silicone oil-induced ocular hypertension (SOHU)/glaucoma by RiboTag mRNA sequencing. Intriguingly, only NMNAT2, but not NMNAT1 or NMNAT3, is significantly decreased in SOHU glaucomatous RGCs, which we confirm by in situ hybridization. We next demonstrate that AAV2 intravitreal injection-mediated overexpression of long half-life NMNAT2 mutant driven by RGC-specific mouse γ-synuclein (mSncg) promoter restores decreased NAD+ levels in glaucomatous RGCs and ONs. Moreover, this RGC-specific gene therapy strategy delivers significant neuroprotection of both RGC soma and axon and preservation of visual function in the traumatic ON crush model and the SOHU glaucoma model. Collectively, our studies suggest that the weakening of NMNAT2 expression in glaucomatous RGCs contributes to a deleterious NAD+ decline, and that modulating RGC-intrinsic NMNAT2 levels by AAV2-mSncg vector is a promising gene therapy for glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Fang Fang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Pei Zhuang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xue Feng
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Pingting Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Dong Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Wei Chen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Liang Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA.
| |
Collapse
|
11
|
Gould SA, Adalbert R, Milde S, Coleman M. Imaging Axonal Transport in Ex Vivo Central and Peripheral Nerves. Methods Mol Biol 2022; 2431:73-93. [PMID: 35412272 DOI: 10.1007/978-1-0716-1990-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neurones are highly polarized cells with extensive axonal projections that rely on transport of proteins, RNAs, and organelles in a bidirectional manner to remain healthy. This process, known as axonal transport, can be imaged in real time through epifluorescent imaging of fluorescently labeled proteins, organelles, and other cargoes. While this is most conveniently done in primary neuronal cultures, it is more physiologically relevant when carried out in the context of a developed nerve containing both axons and glia. Here we outline how to image axonal transport ex vivo in sciatic and optic nerves, and the fimbria of the fornix. These methods could be altered to image other fluorescently labeled molecules, as well as different mechanisms of intracellular transport.
Collapse
Affiliation(s)
- Stacey Anne Gould
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Robert Adalbert
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Stefan Milde
- The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge, UK
| | - Michael Coleman
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Fortunato C, Mazzola F, Raffaelli N. The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions. IUBMB Life 2021; 74:562-572. [PMID: 34866305 PMCID: PMC9299865 DOI: 10.1002/iub.2584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/06/2023]
Abstract
The enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes a reaction central to all known NAD biosynthetic routes. In mammals, three isoforms with distinct molecular and catalytic properties, different subcellular and tissue distribution have been characterized. Each isoform is essential for cell survival, with a critical role in modulating NAD levels in a compartment‐specific manner. Each isoform supplies NAD to specific NAD‐dependent enzymes, thus regulating their activity with impact on several biological processes, including DNA repair, proteostasis, cell differentiation, and neuronal maintenance. The nuclear NMNAT1 and the cytoplasmic NMNAT2 are also emerging as relevant targets in specific types of cancers and NMNAT2 has a key role in the activation of antineoplastic compounds. This review recapitulates the biochemical properties of the three isoforms and focuses on recent advances on their protective function, involvement in human diseases and role as druggable targets.
Collapse
Affiliation(s)
- Carlo Fortunato
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
13
|
Arthur-Farraj P, Coleman MP. Lessons from Injury: How Nerve Injury Studies Reveal Basic Biological Mechanisms and Therapeutic Opportunities for Peripheral Nerve Diseases. Neurotherapeutics 2021; 18:2200-2221. [PMID: 34595734 PMCID: PMC8804151 DOI: 10.1007/s13311-021-01125-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Since Waller and Cajal in the nineteenth and early twentieth centuries, laboratory traumatic peripheral nerve injury studies have provided great insight into cellular and molecular mechanisms governing axon degeneration and the responses of Schwann cells, the major glial cell type of peripheral nerves. It is now evident that pathways underlying injury-induced axon degeneration and the Schwann cell injury-specific state, the repair Schwann cell, are relevant to many inherited and acquired disorders of peripheral nerves. This review provides a timely update on the molecular understanding of axon degeneration and formation of the repair Schwann cell. We discuss how nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha TIR motif containing protein 1 (SARM1) are required for axon survival and degeneration, respectively, how transcription factor c-JUN is essential for the Schwann cell response to nerve injury and what each tells us about disease mechanisms and potential therapies. Human genetic association with NMNAT2 and SARM1 strongly suggests aberrant activation of programmed axon death in polyneuropathies and motor neuron disorders, respectively, and animal studies suggest wider involvement including in chemotherapy-induced and diabetic neuropathies. In repair Schwann cells, cJUN is aberrantly expressed in a wide variety of human acquired and inherited neuropathies. Animal models suggest it limits axon loss in both genetic and traumatic neuropathies, whereas in contrast, Schwann cell secreted Neuregulin-1 type 1 drives onion bulb pathology in CMT1A. Finally, we discuss opportunities for drug-based and gene therapies to prevent axon loss or manipulate the repair Schwann cell state to treat acquired and inherited neuropathies and neuronopathies.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Michael P Coleman
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
14
|
Hsu JM, Kang Y, Corty MM, Mathieson D, Peters OM, Freeman MR. Injury-Induced Inhibition of Bystander Neurons Requires dSarm and Signaling from Glia. Neuron 2021; 109:473-487.e5. [PMID: 33296670 PMCID: PMC7864878 DOI: 10.1016/j.neuron.2020.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/28/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Nervous system injury and disease have broad effects on the functional connectivity of the nervous system, but how injury signals are spread across neural circuits remains unclear. We explored how axotomy changes the physiology of severed axons and adjacent uninjured "bystander" neurons in a simple in vivo nerve preparation. Within hours after injury, we observed suppression of axon transport in all axons, whether injured or not, and decreased mechano- and chemosensory signal transduction in uninjured bystander neurons. Unexpectedly, we found the axon death molecule dSarm, but not its NAD+ hydrolase activity, was required cell autonomously for these early changes in neuronal cell biology in bystander neurons, as were the voltage-gated calcium channel Cacophony (Cac) and the mitogen-activated protein kinase (MAPK) signaling cascade. Bystander neurons functionally recovered at later time points, while severed axons degenerated via α/Armadillo/Toll-interleukin receptor homology domain (dSarm)/Axundead signaling, and independently of Cac/MAPK. Interestingly, suppression of bystander neuron function required Draper/MEGF10 signaling in glia, indicating glial cells spread injury signals and actively suppress bystander neuron function. Our work identifies a new role for dSarm and glia in suppression of bystander neuron function after injury and defines two genetically and temporally separable phases of dSarm signaling in the injured nervous system.
Collapse
Affiliation(s)
- Jiun-Min Hsu
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Megan M Corty
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Danielle Mathieson
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Owen M Peters
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
15
|
Upregulated Nmnat2 causes neuronal death and increases seizure susceptibility in temporal lobe epilepsy. Brain Res Bull 2020; 167:1-10. [PMID: 33248200 DOI: 10.1016/j.brainresbull.2020.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/28/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022]
Abstract
A significant pathological feature of refractory temporal lobe epilepsy (TLE) is neuronal loss. Oxidative stress caused by repeated seizures is an important mechanism leading to neuronal loss in hippocampus. Nicotinamide-adenine dinucleotide (NAD) a coenzyme that is involved in many biochemical oxidation-reduction reactions. Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) catalyzes an essential step in NAD (NADP) biosynthetic pathwayhas and been considered as a neuronal maintenance factor that protect neurons against insults through context-dependent mechanism. However, it is unexpected that Nmnat2 does not play a neuroprotective role in epilepsy. We found that Nmnat2 was increased in mice model of TLE. Gain-of-function approach revealed that overexpression of Nmnat2 in CA1 area enhanced seizure susceptibility and caused neuronal loss in vivo. Moreover, we found that the chaperone function was essential to increased apoptosis through the function mutation of Nmnat2. Finally, Nmnat2 overexpression in vivo reduced in expression of SOD2 and increased FoxO3a. Overall, our study discloses a new biological function of Nmnat2 in epilepsy and provides novel insights into the molecular events underlying epilepsy.
Collapse
|
16
|
Zwilling M, Theiss C, Matschke V. Caffeine and NAD + Improve Motor Neural Integrity of Dissociated Wobbler Cells In Vitro. Antioxidants (Basel) 2020; 9:antiox9060460. [PMID: 32471290 PMCID: PMC7346375 DOI: 10.3390/antiox9060460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common degenerative disease of the central nervous system concerning a progressive loss of upper and lower motor neurons. While 5%–10% of patients are diagnosed with the inherited form of the disease, the vast majority of patients suffer from the less characterized sporadic form of ALS (sALS). As the wobbler mouse and the ALS show striking similarities in view of phenotypical attributes, the mouse is rated as an animal model for the disease. Recent investigations show the importance of nicotinamide adenine dinucleotide (NAD+) and its producing enzyme nicotinic acid mononucleotide transferase 2 (Nmnat2) for neurodegeneration as well as for the preservation of health of the neuronal cells. Furthermore, it is newly determined that these molecules show significant downregulations in the spinal cord of wobbler mice in the stable phase of disease development. Here, we were able to prove a positive benefit on affected motor neurons from an additional NAD+ supply as well as an increase in the Nmnat2 level through caffeine treatment in cells in vitro. In addition, first assumptions about the importance of endogenous and exogenous factors that have an influence on the wellbeing of motor nerve cells in the model of ALS can be considered.
Collapse
|
17
|
Programmed axon degeneration: from mouse to mechanism to medicine. Nat Rev Neurosci 2020; 21:183-196. [PMID: 32152523 DOI: 10.1038/s41583-020-0269-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
Wallerian degeneration is a widespread mechanism of programmed axon degeneration. In the three decades since the discovery of the Wallerian degeneration slow (WldS) mouse, research has generated extensive knowledge of the molecular mechanisms underlying Wallerian degeneration, demonstrated its involvement in non-injury disorders and found multiple ways to block it. Recent developments have included: the detection of NMNAT2 mutations that implicate Wallerian degeneration in rare human diseases; the capacity for lifelong rescue of a lethal condition related to Wallerian degeneration in mice; the discovery of 'druggable' enzymes, including SARM1 and MYCBP2 (also known as PHR1), in Wallerian pathways; and the elucidation of protein structures to drive further understanding of the underlying mechanisms and drug development. Additionally, new data have indicated the potential of these advances to alleviate a number of common disorders, including chemotherapy-induced and diabetic peripheral neuropathies, traumatic brain injury, and amyotrophic lateral sclerosis.
Collapse
|
18
|
Llobet Rosell A, Neukomm LJ. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol 2019; 9:190118. [PMID: 31455157 PMCID: PMC6731592 DOI: 10.1098/rsob.190118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Axon loss is a shared feature of nervous systems being challenged in neurological disease, by chemotherapy or mechanical force. Axons take up the vast majority of the neuronal volume, thus numerous axonal intrinsic and glial extrinsic support mechanisms have evolved to promote lifelong axonal survival. Impaired support leads to axon degeneration, yet underlying intrinsic signalling cascades actively promoting the disassembly of axons remain poorly understood in any context, making the development to attenuate axon degeneration challenging. Wallerian degeneration serves as a simple model to study how axons undergo injury-induced axon degeneration (axon death). Severed axons actively execute their own destruction through an evolutionarily conserved axon death signalling cascade. This pathway is also activated in the absence of injury in diseased and challenged nervous systems. Gaining insights into mechanisms underlying axon death signalling could therefore help to define targets to block axon loss. Herein, we summarize features of axon death at the molecular and subcellular level. Recently identified and characterized mediators of axon death signalling are comprehensively discussed in detail, and commonalities and differences across species highlighted. We conclude with a summary of engaged axon death signalling in humans and animal models of neurological conditions. Thus, gaining mechanistic insights into axon death signalling broadens our understanding beyond a simple injury model. It harbours the potential to define targets for therapeutic intervention in a broad range of human axonopathies.
Collapse
Affiliation(s)
- Arnau Llobet Rosell
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, VD, Switzerland
| | - Lukas J Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, VD, Switzerland
| |
Collapse
|
19
|
Yaku K, Okabe K, Nakagawa T. NAD metabolism: Implications in aging and longevity. Ageing Res Rev 2018; 47:1-17. [PMID: 29883761 DOI: 10.1016/j.arr.2018.05.006] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an important co-factor involved in numerous physiological processes, including metabolism, post-translational protein modification, and DNA repair. In living organisms, a careful balance between NAD production and degradation serves to regulate NAD levels. Recently, a number of studies have demonstrated that NAD levels decrease with age, and the deterioration of NAD metabolism promotes several aging-associated diseases, including metabolic and neurodegenerative diseases and various cancers. Conversely, the upregulation of NAD metabolism, including dietary supplementation with NAD precursors, has been shown to prevent the decline of NAD and exhibits beneficial effects against aging and aging-associated diseases. In addition, many studies have demonstrated that genetic and/or nutritional activation of NAD metabolism can extend the lifespan of diverse organisms. Collectively, it is clear that NAD metabolism plays important roles in aging and longevity. In this review, we summarize the basic functions of the enzymes involved in NAD synthesis and degradation, as well as the outcomes of their dysregulation in various aging processes. In addition, a particular focus is given on the role of NAD metabolism in the longevity of various organisms, with a discussion of the remaining obstacles in this research field.
Collapse
|
20
|
Pottorf T, Mann A, Fross S, Mansel C, Vohra BPS. Nicotinamide Mononucleotide Adenylyltransferase 2 maintains neuronal structural integrity through the maintenance of golgi structure. Neurochem Int 2018; 121:86-97. [PMID: 30278188 DOI: 10.1016/j.neuint.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Golgi fragmentation and loss of Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2) are the early key features of many neurodegenerative disorders. We investigated the link between NMNAT2 loss, Golgi fragmentation and axon degeneration. Golgi fragmentation in the cultured dorsal root ganglion (DRG) neurons resulted in caspase dependent axon degeneration and neuronal cell death. NMNAT2 depletion in the DRG neurons caused Golgi fragmentation and caspase dependent axon degeneration. NMNAT2 depletion did not cause ATP loss in the axons. These results indicate that NMNAT2 is required for maintenance of Golgi structure. Loss of Golgi structure or Nmnat2 depletion causes caspase dependent neurodegeneration. cytNmnat1 overexpression inhibited the axon degeneration induced by Golgi fragmentation or NMNAT2 depletion. These results also suggest that these degeneration signals converge on a common cytNmnat1 mediated axon protective program and are distinct from the SARM1 mediated caspase independent axon degeneration.
Collapse
Affiliation(s)
- Tana Pottorf
- William Jewell College, Department of Biology, Liberty, MO, USA
| | - Alexis Mann
- William Jewell College, Department of Biology, Liberty, MO, USA
| | - Shaneann Fross
- William Jewell College, Department of Biology, Liberty, MO, USA
| | - Clayton Mansel
- William Jewell College, Department of Biology, Liberty, MO, USA
| | | |
Collapse
|
21
|
Röderer P, Klatt L, John F, Theis V, Winklhofer KF, Theiss C, Matschke V. Increased ROS Level in Spinal Cord of Wobbler Mice due to Nmnat2 Downregulation. Mol Neurobiol 2018; 55:8414-8424. [PMID: 29549647 DOI: 10.1007/s12035-018-0999-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis is a devastating motor neuron disease and to this day not curable. While 5-10% of patients inherit the disease (familiar ALS), up to 95% of patients are diagnosed with the sporadic form (sALS). ALS is characterized by the degeneration of upper motor neurons in the cerebral cortex and of lower motor neurons in the brainstem and spinal cord. The wobbler mouse resembles almost all phenotypical hallmarks of human sALS patients and is therefore an excellent motor neuron disease model. The motor neuron disease of the wobbler mouse develops over a time course of around 40 days and can be divided into three phases: p0, presymptomatic; p20, early clinical; and p40, stable clinical phase. Recent findings suggest an essential implication of the NAD+-producing enzyme Nmnat2 in neurodegeneration as well as maintenance of healthy axons. Here, we were able to show a significant downregulation of both gene and protein expression of Nmnat2 in the spinal cord of the wobbler mice at the stable clinical phase. The product of the enzyme NAD+ is also significantly reduced, and the values of the reactive oxygen species are significantly increased in the spinal cord of the wobbler mouse at p40. Thus, the deregulated expression of Nmnat2 appears to have a great influence on the cellular stress in the spinal cord of wobbler mice.
Collapse
Affiliation(s)
- Pascal Röderer
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Lara Klatt
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Felix John
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Verena Theis
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Konstanze F Winklhofer
- Institute of Biochemistry and Pathobiochemistry, Department of Molecular Cell Biology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Veronika Matschke
- Institute of Anatomy, Department of Cytology, Ruhr University Bochum, 44801, Bochum, Germany. .,Institute of Anatomy, Department of Cytology, Ruhr University Bochum, Universitätsstr. 150, Building MA 5/52, 44780, Bochum, Germany.
| |
Collapse
|
22
|
Fukuda Y, Li Y, Segal RA. A Mechanistic Understanding of Axon Degeneration in Chemotherapy-Induced Peripheral Neuropathy. Front Neurosci 2017; 11:481. [PMID: 28912674 PMCID: PMC5583221 DOI: 10.3389/fnins.2017.00481] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Chemotherapeutic agents cause many short and long term toxic side effects to peripheral nervous system (PNS) that drastically alter quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is a common and enduring disorder caused by several anti-neoplastic agents. CIPN typically presents with neuropathic pain, numbness of distal extremities, and/or oversensitivity to thermal or mechanical stimuli. This adverse side effect often requires a reduction in chemotherapy dosage or even discontinuation of treatment. Currently there are no effective treatment options for CIPN. While the underlying mechanisms for CIPN are not understood, current data identify a “dying back” axon degeneration of distal nerve endings as the major pathology in this disorder. Therefore, mechanistic understanding of axon degeneration will provide insights into the pathway and molecular players responsible for CIPN. Here, we review recent findings that expand our understanding of the pathogenesis of CIPN and discuss pathways that may be shared with the axonal degeneration that occurs during developmental axon pruning and during injury-induced Wallerian degeneration. These mechanistic insights provide new avenues for development of therapies to prevent or treat CIPN.
Collapse
Affiliation(s)
- Yusuke Fukuda
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Yihang Li
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| |
Collapse
|
23
|
Neukomm LJ, Burdett TC, Seeds AM, Hampel S, Coutinho-Budd JC, Farley JE, Wong J, Karadeniz YB, Osterloh JM, Sheehan AE, Freeman MR. Axon Death Pathways Converge on Axundead to Promote Functional and Structural Axon Disassembly. Neuron 2017; 95:78-91.e5. [PMID: 28683272 DOI: 10.1016/j.neuron.2017.06.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/25/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023]
Abstract
Axon degeneration is a hallmark of neurodegenerative disease and neural injury. Axotomy activates an intrinsic pro-degenerative axon death signaling cascade involving loss of the NAD+ biosynthetic enzyme Nmnat/Nmnat2 in axons, activation of dSarm/Sarm1, and subsequent Sarm-dependent depletion of NAD+. Here we identify Axundead (Axed) as a mediator of axon death. axed mutants suppress axon death in several types of axons for the lifespan of the fly and block the pro-degenerative effects of activated dSarm in vivo. Neurodegeneration induced by loss of the sole fly Nmnat ortholog is also fully blocked by axed, but not dsarm, mutants. Thus, pro-degenerative pathways activated by dSarm signaling or Nmnat elimination ultimately converge on Axed. Remarkably, severed axons morphologically preserved by axon death pathway mutations remain integrated in circuits and able to elicit complex behaviors after stimulation, indicating that blockade of axon death signaling results in long-term functional preservation of axons.
Collapse
Affiliation(s)
- Lukas J Neukomm
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Thomas C Burdett
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew M Seeds
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stefanie Hampel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jaeda C Coutinho-Budd
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jonathan E Farley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jack Wong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yonca B Karadeniz
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeannette M Osterloh
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amy E Sheehan
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marc R Freeman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
24
|
Ali YO, Bradley G, Lu HC. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons. Sci Rep 2017; 7:43846. [PMID: 28266613 PMCID: PMC5358788 DOI: 10.1038/srep43846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/30/2017] [Indexed: 12/29/2022] Open
Abstract
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a key neuronal maintenance factor and provides potent neuroprotection in numerous preclinical models of neurological disorders. NMNAT2 is significantly reduced in Alzheimer’s, Huntington’s, Parkinson’s diseases. Here we developed a Meso Scale Discovery (MSD)-based screening platform to quantify endogenous NMNAT2 in cortical neurons. The high sensitivity and large dynamic range of this NMNAT2-MSD platform allowed us to screen the Sigma LOPAC library consisting of 1280 compounds. This library had a 2.89% hit rate, with 24 NMNAT2 positive and 13 negative modulators identified. Western analysis was conducted to validate and determine the dose-dependency of identified modulators. Caffeine, one identified NMNAT2 positive-modulator, when systemically administered restored NMNAT2 expression in rTg4510 tauopathy mice to normal levels. We confirmed in a cell culture model that four selected positive-modulators exerted NMNAT2-specific neuroprotection against vincristine-induced cell death while four selected NMNAT2 negative modulators reduced neuronal viability in an NMNAT2-dependent manner. Many of the identified NMNAT2 positive modulators are predicted to increase cAMP concentration, suggesting that neuronal NMNAT2 levels are tightly regulated by cAMP signaling. Taken together, our findings indicate that the NMNAT2-MSD platform provides a sensitive phenotypic screen to detect NMNAT2 in neurons.
Collapse
Affiliation(s)
- Yousuf O Ali
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,The Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, United States of America.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gillian Bradley
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,Developmental Biology Program and Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America.,The Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, United States of America.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America.,Developmental Biology Program and Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
25
|
Walker LJ, Summers DW, Sasaki Y, Brace EJ, Milbrandt J, DiAntonio A. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. eLife 2017; 6. [PMID: 28095293 PMCID: PMC5241118 DOI: 10.7554/elife.22540] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Injury-induced (Wallerian) axonal degeneration is regulated via the opposing actions of pro-degenerative factors such as SARM1 and a MAPK signal and pro-survival factors, the most important of which is the NAD+ biosynthetic enzyme NMNAT2 that inhibits activation of the SARM1 pathway. Here we investigate the mechanism by which MAPK signaling facilitates axonal degeneration. We show that MAPK signaling promotes the turnover of the axonal survival factor NMNAT2 in cultured mammalian neurons as well as the Drosophila ortholog dNMNAT in motoneurons. The increased levels of NMNAT2 are required for the axonal protection caused by loss of MAPK signaling. Regulation of NMNAT2 by MAPK signaling does not require SARM1, and so cannot be downstream of SARM1. Hence, pro-degenerative MAPK signaling functions upstream of SARM1 by limiting the levels of the essential axonal survival factor NMNAT2 to promote injury-dependent SARM1 activation. These findings are consistent with a linear molecular pathway for the axonal degeneration program. DOI:http://dx.doi.org/10.7554/eLife.22540.001
Collapse
Affiliation(s)
- Lauren J Walker
- Department of Developmental Biology, Washington University Medical School, Saint Louis, United States
| | - Daniel W Summers
- Department of Genetics, Washington University Medical School, Saint Louis, United States
| | - Yo Sasaki
- Department of Genetics, Washington University Medical School, Saint Louis, United States
| | - E J Brace
- Department of Developmental Biology, Washington University Medical School, Saint Louis, United States
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University Medical School, Saint Louis, United States.,Hope Center for Neurological Disorders, Saint Louis, United States
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University Medical School, Saint Louis, United States.,Hope Center for Neurological Disorders, Saint Louis, United States
| |
Collapse
|
26
|
Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, McCabe C, Xu J, Bjorklund N, Taglialatela G, Bennett DA, De Jager PL, Shulman JM, Bellen HJ, Lu HC. NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biol 2016; 14:e1002472. [PMID: 27254664 PMCID: PMC4890852 DOI: 10.1371/journal.pbio.1002472] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/28/2016] [Indexed: 12/02/2022] Open
Abstract
Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is neuroprotective in numerous preclinical models of neurodegeneration. Here, we show that brain nmnat2 mRNA levels correlate positively with global cognitive function and negatively with AD pathology. In AD brains, NMNAT2 mRNA and protein levels are reduced. NMNAT2 shifts its solubility and colocalizes with aggregated Tau in AD brains, similar to chaperones, which aid in the clearance or refolding of misfolded proteins. Investigating the mechanism of this observation, we discover a novel chaperone function of NMNAT2, independent from its enzymatic activity. NMNAT2 complexes with heat shock protein 90 (HSP90) to refold aggregated protein substrates. NMNAT2’s refoldase activity requires a unique C-terminal ATP site, activated in the presence of HSP90. Furthermore, deleting NMNAT2 function increases the vulnerability of cortical neurons to proteotoxic stress and excitotoxicity. Interestingly, NMNAT2 acts as a chaperone to reduce proteotoxic stress, while its enzymatic activity protects neurons from excitotoxicity. Taken together, our data indicate that NMNAT2 exerts its chaperone or enzymatic function in a context-dependent manner to maintain neuronal health. This study reveals NMNAT2 to be a dual-function neuronal maintenance factor that not only generates NAD to protect neurons from excitotoxicity but also moonlights as a chaperone to combat protein toxicity. Pathological protein aggregates are found in many neurodegenerative diseases, and it has been hypothesized that these protein aggregates are toxic and cause neuronal death. Little is known about how neurons protect against pathological protein aggregates to maintain their health. Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is a newly identified neuronal maintenance factor. We found that in humans, levels of NMNAT2 transcript are positively correlated with cognitive function and are negatively correlated with pathological features of neurodegenerative disease like plaques and tangles. In this study, we demonstrate that NMNAT2 can act as a chaperone to reduce protein aggregates, and this function is independent from its known function in the enzymatic synthesis of nicotinamide adenine dinucleotide (NAD). We find that NMNAT2 interacts with heat shock protein 90 (HSP90) to refold protein aggregates, and that deleting NMNAT2 in cortical neurons renders them vulnerable to protein stress or excitotoxicity. Interestingly, the chaperone function of NMNAT2 protects neurons from protein toxicity, while its enzymatic function is required to defend against excitotoxicity. Our work here suggests that NMNAT2 uses either its chaperone or enzymatic function to combat neuronal insults in a context-dependent manner. In Alzheimer disease brains, NMNAT2 levels are less than 50% of control levels, and we propose that enhancing NMNAT2 function may provide an effective therapeutic intervention to reserve cognitive function.
Collapse
Affiliation(s)
- Yousuf O. Ali
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hunter M. Allen
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Lei Yu
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dena Bakhshizadehmahmoudi
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Asante Hatcher
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristin McCabe
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Jishu Xu
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Nicole Bjorklund
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Giulio Taglialatela
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center and Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | - Philip L. De Jager
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua M. Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute (HHMI), Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- The Cain Foundation Laboratories, Texas Children’s Hospital, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Chang B, Quan Q, Lu S, Wang Y, Peng J. Molecular mechanisms in the initiation phase of Wallerian degeneration. Eur J Neurosci 2016; 44:2040-8. [PMID: 27062141 DOI: 10.1111/ejn.13250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
Axonal degeneration is an early hallmark of nerve injury and many neurodegenerative diseases. The discovery of the Wallerian degeneration slow mutant mouse, in which axonal degeneration is delayed, revealed that Wallerian degeneration is an active progress and thereby illuminated the mechanisms underlying axonal degeneration. Nicotinamide mononucleotide adenylyltransferase 2 and sterile alpha and armadillo motif-containing protein 1 play essential roles in the maintenance of axon integrity by regulating the level of nicotinamide adenine dinucleotide, which seems to be the key molecule involved in the maintenance of axonal health. However, the function of nicotinamide mononucleotide remains debatable, and we discuss two apparently conflicting roles of nicotinamide mononucleotide in Wallerian degeneration. In this article, we focus on the roles of these molecules in the initiation phase of Wallerian degeneration to improve our understanding of the mechanisms underpinning this phenomenon.
Collapse
Affiliation(s)
- Biao Chang
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China
| | - Qi Quan
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China
| | - Shibi Lu
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China
| | - Yu Wang
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China.,The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, China
| | - Jiang Peng
- Institute of Orthopedics, General Hospital of People's Liberation Army, 28th Fuxing Road, Beijing, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Beijing, China.,Key Laboratory of Musculoskeletal Trauma & War Injuries, People's Liberation Army, Beijing, China.,The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, China
| |
Collapse
|
28
|
Tikka S, Monogioudi E, Gotsopoulos A, Soliymani R, Pezzini F, Scifo E, Uusi-Rauva K, Tyynelä J, Baumann M, Jalanko A, Simonati A, Lalowski M. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules. Neuromolecular Med 2015; 18:109-33. [PMID: 26707855 DOI: 10.1007/s12017-015-8382-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients' fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington's disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood encephalopathy.
Collapse
Affiliation(s)
- Saara Tikka
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland.,Folkhälsan Institute of Genetics, 00014, Helsinki, Finland
| | - Evanthia Monogioudi
- Folkhälsan Institute of Genetics, 00014, Helsinki, Finland.,Joint Research Centre, Directorate D-Institute for Reference Materials and Measurements, Standards for Innovation and Sustainable Development, Geel, Belgium
| | - Athanasios Gotsopoulos
- Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science (BECS), Aalto University School of Science, 02150, Espoo, Finland
| | - Rabah Soliymani
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland
| | - Francesco Pezzini
- Department of Neurological and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Enzo Scifo
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland.,Doctoral Program Brain & Mind, University of Helsinki, Helsinki, Finland.,Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Canada
| | - Kristiina Uusi-Rauva
- Folkhälsan Institute of Genetics, 00014, Helsinki, Finland.,Genomics and Biomarkers, National Institute for Health and Welfare (THL), P.O. Box 30, 00271, Helsinki, Finland
| | - Jaana Tyynelä
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland
| | - Marc Baumann
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland
| | - Anu Jalanko
- Institute for Molecular Medicine (FIMM), University of Helsinki, 00014, Helsinki, Finland.,Genomics and Biomarkers, National Institute for Health and Welfare (THL), P.O. Box 30, 00271, Helsinki, Finland
| | - Alessandro Simonati
- Department of Neurological and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Maciej Lalowski
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland. .,Folkhälsan Institute of Genetics, 00014, Helsinki, Finland.
| |
Collapse
|
29
|
Gilley J, Orsomando G, Nascimento-Ferreira I, Coleman MP. Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Cell Rep 2015; 10:1974-81. [PMID: 25818290 PMCID: PMC4386025 DOI: 10.1016/j.celrep.2015.02.060] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/23/2014] [Accepted: 02/24/2015] [Indexed: 11/01/2022] Open
Abstract
SARM1 function and nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) loss both promote axon degeneration, but their relative relationship in the process is unknown. Here, we show that NMNAT2 loss and resultant changes to NMNAT metabolites occur in injured SARM1-deficient axons despite their delayed degeneration and that axon degeneration specifically induced by NMNAT2 depletion requires SARM1. Strikingly, SARM1 deficiency also corrects axon outgrowth in mice lacking NMNAT2, independently of NMNAT metabolites, preventing perinatal lethality. Furthermore, NAMPT inhibition partially restores outgrowth of NMNAT2-deficient axons, suggesting that the NMNAT substrate, NMN, contributes to this phenotype. NMNAT2-depletion-dependent degeneration of established axons and restricted extension of developing axons are thus both SARM1 dependent, and SARM1 acts either downstream of NMNAT2 loss and NMN accumulation in a linear pathway or in a parallel branch of a convergent pathway. Understanding the pathway will help establish relationships with other modulators of axon survival and facilitate the development of effective therapies for axonopathies.
Collapse
Affiliation(s)
- Jonathan Gilley
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Via Ranieri 67, Ancona 60131, Italy
| | | | - Michael P Coleman
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
30
|
Milde S, Coleman MP. Identification of palmitoyltransferase and thioesterase enzymes that control the subcellular localization of axon survival factor nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2). J Biol Chem 2014; 289:32858-70. [PMID: 25271157 PMCID: PMC4239634 DOI: 10.1074/jbc.m114.582338] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/29/2014] [Indexed: 01/04/2023] Open
Abstract
The NAD-synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is a critical survival factor for axons and its constant supply from neuronal cell bodies into axons is required for axon survival in primary culture neurites and axon extension in vivo. Recently, we showed that palmitoylation is necessary to target NMNAT2 to post-Golgi vesicles, thereby influencing its protein turnover and axon protective capacity. Here we find that NMNAT2 is a substrate for cytosolic thioesterases APT1 and APT2 and that palmitoylation/depalmitoylation dynamics are on a time scale similar to its short half-life. Interestingly, however, depalmitoylation does not release NMNAT2 from membranes. The mechanism of palmitoylation-independent membrane attachment appears to be mediated by the same minimal domain required for palmitoylation itself. Furthermore, we identify several zDHHC palmitoyltransferases that influence NMNAT2 palmitoylation and subcellular localization, among which a role for zDHHC17 (HIP14) in neuronal NMNAT2 palmitoylation is best supported by our data. These findings shed light on the enzymatic regulation of NMNAT2 palmitoylation and highlight individual thioesterases and palmitoyltransferases as potential targets to modulate NMNAT2-dependent axon survival.
Collapse
Affiliation(s)
- Stefan Milde
- From the Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Michael P Coleman
- From the Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
31
|
Milde S, Adalbert R, Elaman MH, Coleman MP. Axonal transport declines with age in two distinct phases separated by a period of relative stability. Neurobiol Aging 2014; 36:971-81. [PMID: 25443288 PMCID: PMC4321880 DOI: 10.1016/j.neurobiolaging.2014.09.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 01/20/2023]
Abstract
Axonal transport is critical for supplying newly synthesized proteins, organelles, mRNAs, and other cargoes from neuronal cell bodies into axons. Its impairment in many neurodegenerative conditions appears likely to contribute to pathogenesis. Axonal transport also declines during normal aging, but little is known about the timing of these changes, or about the effect of aging on specific cargoes in individual axons. This is important for understanding mechanisms of age-related axon loss and age-related axonal disorders. Here we use fluorescence live imaging of peripheral nerve and central nervous system tissue explants to investigate vesicular and mitochondrial axonal transport. Interestingly, we identify 2 distinct periods of change, 1 period during young adulthood and the other in old age, separated by a relatively stable plateau during most of adult life. We also find that after tibial nerve regeneration, even in old animals, neurons are able to support higher transport rates of each cargo for a prolonged period. Thus, the age-related decline in axonal transport is not an inevitable consequence of either aging neurons or an aging systemic milieu.
Collapse
Affiliation(s)
- Stefan Milde
- Signalling ISP, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Robert Adalbert
- Signalling ISP, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - M Handan Elaman
- Signalling ISP, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Michael P Coleman
- Signalling ISP, The Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
32
|
Pease SE, Segal RA. Preserve and protect: maintaining axons within functional circuits. Trends Neurosci 2014; 37:572-82. [PMID: 25167775 DOI: 10.1016/j.tins.2014.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/21/2014] [Accepted: 07/27/2014] [Indexed: 12/14/2022]
Abstract
During development, neural circuits are initially generated by exuberant innervation and are rapidly refined by selective preservation and elimination of axons. The establishment and maintenance of functional circuits therefore requires coordination of axon survival and degeneration pathways. Both developing and mature circuits rely on interdependent mitochondrial and cytoskeletal components to maintain axonal health and homeostasis; injury or diseases that impinge on these components frequently cause pathologic axon loss. Here, we review recent findings that identify mechanisms of axonal preservation in the contexts of development, injury, and disease.
Collapse
Affiliation(s)
- Sarah E Pease
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 2014; 15:394-409. [DOI: 10.1038/nrn3680] [Citation(s) in RCA: 387] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Beirowski B. Concepts for regulation of axon integrity by enwrapping glia. Front Cell Neurosci 2013; 7:256. [PMID: 24391540 PMCID: PMC3867696 DOI: 10.3389/fncel.2013.00256] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
Long axons and their enwrapping glia (EG; Schwann cells (SCs) and oligodendrocytes (OLGs)) form a unique compound structure that serves as conduit for transport of electric and chemical information in the nervous system. The peculiar cytoarchitecture over an enormous length as well as its substantial energetic requirements make this conduit particularly susceptible to detrimental alterations. Degeneration of long axons independent of neuronal cell bodies is observed comparatively early in a range of neurodegenerative conditions as a consequence of abnormalities in SCs and OLGs . This leads to the most relevant disease symptoms and highlights the critical role that these glia have for axon integrity, but the underlying mechanisms remain elusive. The quest to understand why and how axons degenerate is now a crucial frontier in disease-oriented research. This challenge is most likely to lead to significant progress if the inextricable link between axons and their flanking glia in pathological situations is recognized. In this review I compile recent advances in our understanding of the molecular programs governing axon degeneration, and mechanisms of EG’s non-cell autonomous impact on axon-integrity. A particular focus is placed on emerging evidence suggesting that EG nurture long axons by virtue of their intimate association, release of trophic substances, and neurometabolic coupling. The correction of defects in these functions has the potential to stabilize axons in a variety of neuronal diseases in the peripheral nervous system and central nervous system (PNS and CNS).
Collapse
Affiliation(s)
- Bogdan Beirowski
- Department of Genetics, Washington University School of Medicine Saint Louis, MO, USA
| |
Collapse
|
35
|
Milde S, Gilley J, Coleman MP. Axonal trafficking of NMNAT2 and its roles in axon growth and survival in vivo. BIOARCHITECTURE 2013; 3:133-40. [PMID: 24284888 PMCID: PMC3907460 DOI: 10.4161/bioa.27049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The NAD-synthesizing enzyme NMNAT2 is critical for axon survival in primary culture and its depletion may contribute to axon degeneration in a variety of neurodegenerative disorders. Here we discuss several recent reports from our laboratory that establish a critical role for NMNAT2 in axon growth in vivo in mice and shed light on the delivery and turnover of this survival factor in axons. In the absence of NMNAT2, axons fail to extend more than a short distance beyond the cell body during embryonic development, implying a requirement for NMNAT2 in axon maintenance even during development. Furthermore, we highlight findings regarding the bidirectional trafficking of NMNAT2 in axons on a vesicle population that undergoes fast axonal transport in primary culture neurites and in mouse sciatic nerve axons in vivo. Surprisingly, loss of vesicle association boosts the axon protective capacity of NMNAT2, an effect that is at least partially mediated by a longer protein half-life of cytosolic NMNAT2 variants. Analysis of wild-type and variant NMNAT2 in mouse sciatic nerves and Drosophila olfactory receptor neuron axons supports the existence of a similar mechanism in vivo, highlighting the potential for regulation of NMNAT2 stability and turnover as a mechanism to modulate axon degeneration in vivo.
Collapse
Affiliation(s)
- Stefan Milde
- The Babraham Institute; Babraham Research Campus; Cambridge, UK
| | - Jonathan Gilley
- The Babraham Institute; Babraham Research Campus; Cambridge, UK
| | | |
Collapse
|