1
|
Wang F, Lu S, Xu W, Yang L. Deciphering the complex molecular architecture of the genetically modified soybean FG72 through paired-end whole genome sequencing. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100238. [PMID: 39839759 PMCID: PMC11750281 DOI: 10.1016/j.fochms.2024.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/23/2025]
Abstract
The clear molecular characterization of genetically modified (GM) plants and animals is a prerequisite for obtaining regulatory approval and safety certification for commercial cultivation. This characterization includes the identification of the transferred DNA (T-DNA) insertion site, its flanking sequences, the copy number of inserted genes, and the detection of any unintended genomic alterations accompanying the transformation process. In this study, we performed a comprehensive molecular characterization of the well-known GM soybean event FG72 using paired-end whole-genome sequencing (PE-WGS). We examined the T-DNA insertion site, flanking sequences, the entire structure and copy number of the T-DNA integration, the presence of plasmid backbone sequences, and genome-wide structural variations (SVs). Our analysis revealed that the T-DNA integrated into two distinct sites on chromosome 15 of the host genome, accompanied by a translocation of host genomic sequences. One site harbored a partial T-DNA integration, while the other site contained two tandem repeats of the full T-DNA. Importantly, no plasmid backbone sequences were detected in the host genome, indicating a clean T-DNA integration during the biolistic transformation process. Furthermore, we identified numerous genome-wide SVs, with chromosome 15 ranking second among all 20 chromosomes in terms of SV frequency, and most of these variations occurring within gene-coding regions. These results provide a refined and comprehensive molecular characterization of the FG72 soybean event, which could further support its commercial approval and cultivation. Our work highlights the utility of the PE-WGS approach as a sensitive and labor-efficient alternative to conventional molecular characterization techniques, generating comprehensive data to facilitate the safety assessment of GM crops during research and commercialization pipelines.
Collapse
Affiliation(s)
- Fan Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengtao Lu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Zhejiang Yuzhi Biotechnology Company Ltd, Ningbo 315032, PR China
| | - Wenting Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Litao Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Zhejiang Yuzhi Biotechnology Company Ltd, Ningbo 315032, PR China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572024, PR China
| |
Collapse
|
2
|
Yang Q, Wang G, Ma J, Zhou H, He L, Qu C. Overexpression of pxAlaAT3 in Populus × xiaohei alleviates root growth inhibition under ammonium nitrogen stress. PLANT CELL REPORTS 2025; 44:126. [PMID: 40399658 DOI: 10.1007/s00299-025-03516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
KEY MESSAGE Overexpressed AlaAT3 in Populus enhances ammonium tolerance by modulating carbohydrate metabolism, nitrogen metabolism, and antioxidant system-related metabolic processes. Alanine aminotransferase (AlaAT) is a critical enzyme involved in the nitrogen assimilation process in plant cells, catalyzing the reversible transfer of an amino group from alanine to α-ketoglutarate. This reaction is essential for maintaining metabolic homeostasis. Previous studies have suggested that AlaAT plays a role in alleviating ammonium toxicity in plants. To investigate this hypothesis, transgenic Populus × xiaohei plants overexpressing AlaAT3 were generated, and their phenotypic, physiological, and transcriptional traits were compared with those of wild-type (WT) plants. Under treatment with 3 mM NH4+ ammonium nitrogen, the transgenic plants exhibited significantly enhanced root biomass. Compared with WT plants, the transgenic lines demonstrated higher activities of GS, SOD, and CAT enzymes, while POD activity was notably reduced. Levels of soluble protein, free amino acids, sucrose, starch, soluble sugars, and proline were significantly elevated, whereas concentrations of O2-, and NH4+ were markedly reduced. Transcriptomic analysis revealed significant enrichment in glutathione metabolism, peroxisome, nitrogen metabolism, and starch and sucrose metabolism pathway in the transgenic plants, with corresponding genes displaying notable transcriptional changes. Regulatory network analysis identified key transcription factors, including WRKY53, DOF3.4, and DOF1.5, as potential regulators of ammonium toxicity resistance in these transgenic lines. These findings demonstrate that AlaAT3 overexpression enhances Populus × xiaohei tolerance to NH4+ by modulating glutathione metabolism, peroxisome, nitrogen metabolism, and starch and sucrose metabolism pathway. This study provides candidate genes and lays a strong foundation for future research into the mechanisms underlying NH4+ tolerance in Populus plants overexpressing AlaAT3.
Collapse
Affiliation(s)
- Qingtong Yang
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Gang Wang
- Guizhou Academy of Forestry, Guiyang, 550005, China
| | - Jing Ma
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Heying Zhou
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Lang He
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Chunpu Qu
- College of Forestry, Guizhou University, Guiyang, 550025, China.
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Zhu Z, Lu S, Wang H, Wang F, Xu W, Zhu Y, Xue J, Yang L. Innovations in Transgene Integration Analysis: A Comprehensive Review of Enrichment and Sequencing Strategies in Biotechnology. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2716-2735. [PMID: 39760503 DOI: 10.1021/acsami.4c14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Understanding the integration of transgene DNA (T-DNA) in transgenic crops, animals, and clinical applications is paramount for ensuring the stability and expression of inserted genes, which directly influence desired traits and therapeutic outcomes. Analyzing T-DNA integration patterns is essential for identifying potential unintended effects and evaluating the safety and environmental implications of genetically modified organisms (GMOs). This knowledge is crucial for regulatory compliance and fostering public trust in biotechnology by demonstrating transparency in genetic modifications. This review highlights recent advancements in T-DNA integration analysis, specifically focusing on targeted DNA enrichment and sequencing strategies. We examine key technologies, such as polymerase chain reaction (PCR)-based methods, hybridization capture, RNA/DNA-guided endonuclease-mediated enrichment, and high-throughput resequencing, emphasizing their contributions to enhancing precision and efficiency in transgene integration analysis. We discuss the principles, applications, and recent developments in these techniques, underscoring their critical role in advancing biotechnological products. Additionally, we address the existing challenges and future directions in the field, offering a comprehensive overview of how innovative DNA-targeted enrichment and sequencing strategies are reshaping biotechnology and genomics.
Collapse
Affiliation(s)
- Zaobing Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
- Zhejiang Yuzhi Biotechnology Company, Limited, Ningbo 315032, People's Republic of China
| | - Shengtao Lu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Zhejiang Yuzhi Biotechnology Company, Limited, Ningbo 315032, People's Republic of China
| | - Hongchun Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Fan Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wenting Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yulei Zhu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Jing Xue
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Litao Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Zhejiang Yuzhi Biotechnology Company, Limited, Ningbo 315032, People's Republic of China
| |
Collapse
|
4
|
Liu Q, Wang Q, Ning L, Chen Z, Zhang C, Liu Y, Qian B, Guo J, Yin Y. Efficient identification of genomic insertions and surrounding regions in two transgenic maize events using third-generation single-molecule nanopore sequencing technology. Sci Rep 2024; 14:31921. [PMID: 39738762 PMCID: PMC11685737 DOI: 10.1038/s41598-024-83403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
The increasing development of new genetically modified organisms underscores the critical need for comprehensive safety assessments, emphasizing the significance of molecular evidence such as gene integration, copy numbers, and adjacent sequences. In this study, the maize nitrate-efficient utilization gene ZmNRT1.1 A was introduced into maize variety y822 using transgenic technology, producing transgenic maize events ND4401 and ND4403 with enhanced tolerance to low nitrogen stress. Southern hybridization confirmed that the exogenous T-DNA was singly inserted in both maize transformation events, ND4401 and ND4403. This study utilized third-generation sequencing technology-nanopore single-molecule sequencing-to perform molecular characterization of the integration events. It successfully determined the exogenous gene insertion sites and flanking sequences in ND4401 and ND4403. Comparative analysis with the control group facilitated the preliminary identification of the integration sites of the exogenous T-DNA fragments in these transgenic maize events. Based on the obtained flanking sequences, specific PCR primers were designed for different transformation events. The insertion site for ND4401 was pinpointed in the non-coding region of chromosome 5, and for ND4403, in the non-coding region of chromosome 3. Utilizing the sequencing results, the study developed specific detection primers for the maize transformation events, establishing a precise method for detecting newly created transgenic maize events, which will contribute to subsequent safety assessments.
Collapse
Affiliation(s)
- Qing Liu
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China
| | - Qi Wang
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China
| | - Lihua Ning
- Jiangsu Provincia Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ziqi Chen
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China
| | - Chuang Zhang
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China
| | - Yang Liu
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China
| | - Buxuan Qian
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China
| | - Jia Guo
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China.
| | - Yuejia Yin
- Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China.
| |
Collapse
|
5
|
Moon K, Basnet P, Um T, Choi IY. Review of the technology used for structural characterization of the GMO genome using NGS data. Genomics Inform 2024; 22:14. [PMID: 39358775 PMCID: PMC11445869 DOI: 10.1186/s44342-024-00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
The molecular characterization of genetically modified organisms (GMOs) is essential for ensuring safety and gaining regulatory approval for commercialization. According to CODEX standards, this characterization involves evaluating the presence of introduced genes, insertion sites, copy number, and nucleotide sequence structure. Advances in technology have led to the increased use of next-generation sequencing (NGS) over traditional methods such as Southern blotting. While both methods provide high reproducibility and accuracy, Southern blotting is labor-intensive and time-consuming due to the need for repetitive probe design and analyses for each target, resulting in low throughput. Conversely, NGS facilitates rapid and comprehensive analysis by mapping whole-genome sequencing (WGS) data to plasmid sequences, accurately identifying T-DNA insertion sites and flanking regions. This advantage allows for efficient detection of T-DNA presence, copy number, and unintended gene insertions without additional probe work. This paper reviews the current status of GMO genome characterization using NGS and proposes more efficient strategies for this purpose.
Collapse
Affiliation(s)
- Kahee Moon
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea.
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
6
|
Adams PE, Thies JL, Sutton JM, Millwood JD, Caldwell GA, Caldwell KA, Fierst JL. Identifying transgene insertions in Caenorhabditis elegans genomes with Oxford Nanopore sequencing. PeerJ 2024; 12:e18100. [PMID: 39285918 PMCID: PMC11404476 DOI: 10.7717/peerj.18100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Genetically modified organisms are commonly used in disease research and agriculture but the precise genomic alterations underlying transgenic mutations are often unknown. The position and characteristics of transgenes, including the number of independent insertions, influences the expression of both transgenic and wild-type sequences. We used long-read, Oxford Nanopore Technologies (ONT) to sequence and assemble two transgenic strains of Caenorhabditis elegans commonly used in the research of neurodegenerative diseases: BY250 (pPdat-1::GFP) and UA44 (GFP and human α-synuclein), a model for Parkinson's research. After scaffolding to the reference, the final assembled sequences were ∼102 Mb with N50s of 17.9 Mb and 18.0 Mb, respectively, and L90s of six contiguous sequences, representing chromosome-level assemblies. Each of the assembled sequences contained more than 99.2% of the Nematoda BUSCO genes found in the C. elegans reference and 99.5% of the annotated C. elegans reference protein-coding genes. We identified the locations of the transgene insertions and confirmed that all transgene sequences were inserted in intergenic regions, leaving the organismal gene content intact. The transgenic C. elegans genomes presented here will be a valuable resource for Parkinson's research as well as other neurodegenerative diseases. Our work demonstrates that long-read sequencing is a fast, cost-effective way to assemble genome sequences and characterize mutant lines and strains.
Collapse
Affiliation(s)
- Paula E Adams
- Department of Biological Sciences, Auburn University, Auburn, AL, United States of America
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
| | - Jennifer L Thies
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - John M Sutton
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
- Absci, Vancouver, WA, United States of America
| | - Joshua D Millwood
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
- Department of Biological and Environmental Sciences, University of West Alabama, Livingston, AL, United States of America
| | - Guy A Caldwell
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
| | - Kim A Caldwell
- Department of Biological Sciences, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America
| | - Janna L Fierst
- Department of Biological Sciences, Florida International University, Miami, FL, United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| |
Collapse
|
7
|
European Food Safety Authority (EFSA), César‐Razquin A, Casacuberta J, Dalmay T, Federici S, Jacchia S, Kagkli DM, Moxon S, Papadopoulou N. Technical Note on the quality of DNA sequencing for the molecular characterisation of genetically modified plants. EFSA J 2024; 22:e8744. [PMID: 38634010 PMCID: PMC11022705 DOI: 10.2903/j.efsa.2024.8744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
As part of the risk assessment (RA) requirements for genetically modified (GM) plants, according to Regulation (EU) No 503/2013 and the EFSA guidance on the RA of food and feed from GM plants (EFSA GMO Panel 2011), applicants need to perform a molecular characterisation of the DNA sequences inserted in the GM plant genome. This Technical Note to the applicants puts together requirements and recommendations for the quality assessment of the methodology, analysis and reporting when DNA sequencing is used for the molecular characterisation of GM plants. In particular, it applies to the use of Sanger sequencing and next-generation sequencing for the characterisation of the inserted genetic material and its flanking regions at each insertion site, the determination of the copy number of all detectable inserts and the analysis of the genetic stability of the inserts. This updated document replaces the EFSA 2018 Technical Note and reflects the current knowledge in scientific-technical methods for generating and verifying, in a standardised manner, DNA sequencing data in the context of RA of GM plants. It does not take into consideration the verification and validation of the detection method which remains under the remit of the Joint Research Centre (JRC).
Collapse
|
8
|
Gagnon M, Duceppe M, Colville A, Pope L, Côté M, Ogunremi D. An integrated strategy involving high-throughput sequencing to characterize an unknown GM wheat event in Canada. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:904-914. [PMID: 38051549 PMCID: PMC10955494 DOI: 10.1111/pbi.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023]
Abstract
Glyphosate-resistant wheat plants were discovered in southern Alberta in 2017, representing an unauthorized GM release in Canada. The Canadian Food Inspection Agency undertook a series of experiments to characterize and identify this unknown GM wheat, as well as to develop and validate construct-specific and event-specific qPCR assays. Results of PCR-based assays and Sanger sequencing indicated the presence of CaMV 35S promoter (p35S), Rice Actin 1 intron (RactInt1), CP4-EPSPS gene and nopaline synthase terminator (tNOS) elements in the unknown GM wheat. Genome walking and bead capture strategies, combined with high-throughput sequencing, were used to identify the 5' and 3' wheat junctions and the subsequent mapping of the insert to chromosome 3B of the wheat genome. A probable transformation vector, pMON25497, was recognized, and further testing identified the unknown GM wheat as MON71200 event, one of two events obtained with the pMON25497 vector. The two construct-specific assays targeted the junctions of the RactInt1 and the CP4-EPSPS elements and the CP4-EPSPS and tNOS elements, while the event-specific assay was located at the 3' junction into the wheat genome. Both construct-specific and event-specific assays had limits of detection of 0.10% of MON71200 in a seed pool. As expected, the two construct-specific assays cross-reacted with other wheat and corn events containing the same elements in the same order. No cross-reactivity was observed for the event-specific assay. The integrated strategy employed in this study can serve as a model for other cases when facing similar challenges involving unknown GM events.
Collapse
Affiliation(s)
| | | | - Adam Colville
- Canadian Food Inspection Agency (CFIA)OttawaOntarioCanada
| | - Louise Pope
- Canadian Food Inspection Agency (CFIA)OttawaOntarioCanada
| | | | - Dele Ogunremi
- Canadian Food Inspection Agency (CFIA)OttawaOntarioCanada
| |
Collapse
|
9
|
Long Y, Xu W, Liu C, Dong M, Liu W, Pei X, Li L, Chen R, Jin W. Genetically modified soybean lines exhibit less transcriptomic variation compared to natural varieties. GM CROPS & FOOD 2023; 14:1-11. [PMID: 37454359 DOI: 10.1080/21645698.2023.2233122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Genetically modified (GM) soybeans provide a huge amount of food for human consumption and animal feed. However, the possibility of unexpected effects of transgenesis has increased food safety concerns. High-throughput sequencing profiling provides a potential approach to directly evaluate unintended effects caused by foreign genes. In this study, we performed transcriptomic analyses to evaluate differentially expressed genes (DEGs) in individual soybean tissues, including cotyledon (C), germ (G), hypocotyl (H), and radicle (R), instead of using the whole seed, from four GM and three non-GM soybean lines. A total of 3,351 DEGs were identified among the three non-GM soybean lines. When the GM lines were compared with their non-GM parents, 1,836 to 4,551 DEGs were identified. Furthermore, Gene Ontology (GO) analysis of the DEGs showed more abundant categories of GO items (199) among non-GM lines than between GM lines and the non-GM natural varieties (166). Results of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that most KEGG pathways were the same for the two types of comparisons. The study successfully employed RNA sequencing to assess the differences in gene expression among four tissues of seven soybean varieties, and the results suggest that transgenes do not induce massive transcriptomic alterations in transgenic soybeans compared with those that exist among natural varieties. This work offers empirical evidence to investigate the genomic-level disparities induced by genetic modification in soybeans, specifically focusing on seed tissues.
Collapse
Affiliation(s)
- Yan Long
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China
| | - Caiyue Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixiao Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinwu Pei
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wujun Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Magembe EM, Li H, Taheri A, Zhou S, Ghislain M. Identification of T-DNA structure and insertion site in transgenic crops using targeted capture sequencing. FRONTIERS IN PLANT SCIENCE 2023; 14:1156665. [PMID: 37502707 PMCID: PMC10369180 DOI: 10.3389/fpls.2023.1156665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023]
Abstract
The commercialization of GE crops requires a rigorous safety assessment, which includes a precise DNA level characterization of inserted T-DNA. In the past, several strategies have been developed for identifying T-DNA insertion sites including, Southern blot and different PCR-based methods. However, these methods are often challenging to scale up for screening of dozens of transgenic events and for crops with complex genomes, like potato. Here, we report using target capture sequencing (TCS) to characterize the T-DNA structure and insertion sites of 34 transgenic events in potato. This T-DNA is an 18 kb fragment between left and right borders and carries three resistance (R) genes (RB, Rpi-blb2 and Rpi-vnt1.1 genes) that result in complete resistance to late blight disease. Using TCS, we obtained a high sequence read coverage within the T-DNA and junction regions. We identified the T-DNA breakpoints on either ends for 85% of the transgenic events. About 74% of the transgenic events had their T-DNA with 3R gene sequences intact. The flanking sequences of the T-DNA were from the potato genome for half of the transgenic events, and about a third (11) of the transgenic events have a single T-DNA insertion mapped into the potato genome, of which five events do not interrupt an existing potato gene. The TCS results were confirmed using PCR and Sanger sequencing for 6 of the best transgenic events representing 20% of the transgenic events suitable for regulatory approval. These results demonstrate the wide applicability of TCS for the precise T-DNA insertion characterization in transgenic crops.
Collapse
Affiliation(s)
- Eric Maina Magembe
- Potato Agri-food Systems Program, International Potato Center, Nairobi, Kenya
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Ali Taheri
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Marc Ghislain
- Potato Agri-food Systems Program, International Potato Center, Nairobi, Kenya
| |
Collapse
|
11
|
Siddiqui HA, Asad S, Naqvi RZ, Asif M, Liu C, Liu X, Farooq M, Abro S, Rizwan M, Arshad M, Sarwar M, Amin I, Mukhtar Z, Mansoor S. Development and evaluation of triple gene transgenic cotton lines expressing three genes (Cry1Ac-Cry2Ab-EPSPS) for lepidopteran insect pests and herbicide tolerance. Sci Rep 2022; 12:18422. [PMID: 36319662 PMCID: PMC9626562 DOI: 10.1038/s41598-022-22209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cotton is an international agricultural commodity and the main cash crop of Pakistan of which quality and quantity are subject to various whims of nature. Climate change, insect pest complex, and weeds are reducing its productivity. Here, we have developed triple gene cotton containing EPSPS gene along with two Bt toxin genes Cry1Ac and Cry2Ab using a strategy where all three genes are cloned in the same T-DNA, followed by successful cotton transformation via Agrobacterium-mediated transformation. This strategy has been developed to help cotton breeders in developing new cultivars by incorporating these genes into the non-transgenic or single Bt (Cry1Ac) gene cotton background where all three genes will inherit together. The expression of all three proteins was confirmed through immunostrips and was quantified through enzyme-linked immunosorbent assay (ELISA). The spatio-temporal expression of Bt protein in different parts of triple gene NIBGE cotton plants was determined. Maximum expression was found in leaves followed by seeds and boll rinds. Insect bioassays with cotton bollworms (Helicoverpa armigera), armyworms (Spodoptera litura), and pink bollworms (Pectinophora gossypiella) showed more than 90% mortality. The best performing line (NIBGE-E2) on the basis of spatiotemporal expression, glyphosate assays, and insect mortality data, was used for event characterization by using the genome sequencing approach. The event was successfully characterized and named NIBGE 20-01. A diagnostics test based on event-specific PCR was developed and its ability to distinguish NIBGE 20-01 event from other commercial transgenic cotton events was confirmed. To confirm stable expression of all three proteins in the field conditions, homozygous transgenic lines were grown in the field and the expression was confirmed through immunostrip assays. It was found that all three genes are expressed under field conditions. To show that all three genes are inherited together upon crossing with local elite cotton lines, the F1 generation was grown under glasshouse and field conditions. The expression of all three genes was confirmed under field conditions. Our results showed that transgenic cotton with three genes cloned in the same T-DNA can express all genes and can be conveniently transferred into elite cotton lines through a single cross.
Collapse
Affiliation(s)
- Hamid Anees Siddiqui
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Shaheen Asad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | | | - Xin Liu
- Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Muhammad Farooq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Saifullah Abro
- Plant Breeding and Genetics Division, Nuclear Institute of Agriculture (NIA), Tando Jam, Pakistan
| | - Muhammad Rizwan
- Plant Breeding and Genetics Division, Nuclear Institute of Agriculture (NIA), Tando Jam, Pakistan
| | - Muhammad Arshad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Muhammad Sarwar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan.
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, College Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan.
| |
Collapse
|
12
|
Zhang H, Zhang Y, Xu W, Li R, Zhang D, Yang L. Development and performance evaluation of whole-genome sequencing with paired-end and mate-pair strategies in molecular characterization of GM crops: One GM rice 114-7-2 line as an example. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100061. [PMID: 35415698 PMCID: PMC8991703 DOI: 10.1016/j.fochms.2021.100061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Basic data for the safety assessment of transgenic line involves the molecular characterization of the integration site of exogenous DNA, flanking sequences, copy number, and unintended plasmid backbone residues. However, performing a full molecular characterization remains challenging, especially for GMOs that possess complex exogenous DNA integrations. We established two whole-genome sequencing strategies: paired-end and mate-pair, to characterize the exogenous DNA integration of a human serum albumin gene into rice line 114-7-2, and evaluated the performance of these two strategies in the molecular characterization of transgenic line. The results showed the existence of two exogenous DNA insertion loci (Chr 01 and Chr 04) and their corresponding flanking sequences, five copies of the exogenous rHSA gene, and the presence of unintended residual plasmid backbone sequences. However, the WGS-MP strategy demonstrated higher efficiency, lower cost, and lower background noise compared with the WGS-PE analysis, especially for identification of the exogenous DNA integration site.
Collapse
Key Words
- BHQ, black hole quencher
- CTAB, Cetyltrimethyl ammonium bromide
- FAM, 6-carboxyfluorescein
- GM rice line 114-7-2
- GMO, genetically modified organism
- ISAAA, International Service for the Acquisition of Agri-Biotech Applications
- MP, mate-pair
- Mate pair
- Molecular characterization
- NGS, Next-generation sequencing
- NOS, nopaline synthase
- PE, paired-end
- Paired-end
- WGS, whole-genome sequencing
- WT, Wild type
- Whole-genome sequencing
- ddPCR, Droplet digital polymerase chain reaction
Collapse
Affiliation(s)
- Hanwen Zhang
- National Center for the Molecular Characterization of Genetically Modified Organisms, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuchen Zhang
- National Center for the Molecular Characterization of Genetically Modified Organisms, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenting Xu
- National Center for the Molecular Characterization of Genetically Modified Organisms, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Li
- National Center for the Molecular Characterization of Genetically Modified Organisms, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- National Center for the Molecular Characterization of Genetically Modified Organisms, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Litao Yang
- National Center for the Molecular Characterization of Genetically Modified Organisms, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
A paired-end whole-genome sequencing approach enables comprehensive characterization of transgene integration in rice. Commun Biol 2022; 5:667. [PMID: 35790849 PMCID: PMC9256713 DOI: 10.1038/s42003-022-03608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Efficient, accurate molecular characterization of genetically modified (GM) organisms is challenging, especially for those transgenic events transferred with genes/elements of recipient species. Herein, we decipher the comprehensive molecular characterization of one novel GM rice event G281 which was transferred with native promoters and an RNA interference (RNAi) expression cassette using paired-end whole genome sequencing (PE-WGS) and modified TranSeq approach. Our results show that transgenes integrate at rice chromosome 3 locus 16,439,674 included a 36 bp deletion of rice genomic DNA, and the whole integration contains two copies of the complete transfer DNA (T-DNA) in a head-to-head arrangement. No unintended insertion or backbone sequence of the transformed plasmid is observed at the whole genome level. Molecular characterization of the G281 event will assist risk assessment and application for a commercial license. In addition, we speculate that our approach could be further used for identifying the transgene integration of cisgenesis/intragenesis crops since both ends of T-DNA in G281 rice were from native gene or elements which is similar with that of cisgenesis/intrasgenesis. Our results from the in silico mimicking cisgenesis event confirm that the mimic rice Gt1 gene insertion and its flanking sequences are successfully identified, demonstrating the applicability of PE-WGS for molecular characterization of cisgenesis/intragenesis crops. Coupling paired-end whole-genome sequencing with droplet digital PCR enabled precise identification of a transgene insertion in the genetically modified rice event G281 on chromosome 3 and the potential for exploring the native gene integration.
Collapse
|
14
|
Zhang H, Li R, Guo Y, Zhang Y, Zhang D, Yang L. LIFE-Seq: a universal Large Integrated DNA Fragment Enrichment Sequencing strategy for deciphering the transgene integration of genetically modified organisms. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:964-976. [PMID: 34990051 PMCID: PMC9055813 DOI: 10.1111/pbi.13776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Molecular characterization of genetically modified organisms (GMOs) yields basic information on exogenous DNA integration, including integration sites, entire inserted sequences and structures, flanking sequences and copy number, providing key data for biosafety assessment. However, there are few effective methods for deciphering transgene integration, especially for large DNA fragment integration with complex rearrangement, inversion and tandem repeats. Herein, we developed a universal Large Integrated DNA Fragments Enrichment strategy combined with PacBio Sequencing (LIFE-Seq) for deciphering transgene integration in GMOs. Universal tilling DNA probes targeting transgenic elements and exogenous genes facilitate specific enrichment of large inserted DNA fragments associated with transgenes from plant genomes, followed by PacBio sequencing. LIFE-Seq were evaluated using six GM events and four crop species. Target DNA fragments averaging ~6275 bp were enriched and sequenced, generating ~26 352 high fidelity reads for each sample. Transgene integration structures were determined with high repeatability and sensitivity. Compared with next-generation whole-genome sequencing, LIFE-Seq achieved better data integrity and accuracy, greater universality and lower cost, especially for transgenic crops with complex inserted DNA structures. LIFE-Seq could be applied in molecular characterization of transgenic crops and animals, and complex DNA structure analysis in genetics research.
Collapse
Affiliation(s)
- Hanwen Zhang
- National Center for the Molecular Characterization of Genetically Modified OrganismsJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Rong Li
- National Center for the Molecular Characterization of Genetically Modified OrganismsJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yongkun Guo
- National Center for the Molecular Characterization of Genetically Modified OrganismsJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yuchen Zhang
- National Center for the Molecular Characterization of Genetically Modified OrganismsJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Dabing Zhang
- National Center for the Molecular Characterization of Genetically Modified OrganismsJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Litao Yang
- National Center for the Molecular Characterization of Genetically Modified OrganismsJoint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
15
|
Börjesson V, Martinez-Monleon A, Fransson S, Kogner P, Johnsen JI, Milosevic J, López MD. TC-hunter: identification of the insertion site of a transgenic gene within the host genome. BMC Genomics 2022; 23:149. [PMID: 35184734 PMCID: PMC8859905 DOI: 10.1186/s12864-022-08376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transgenic animal models are crucial for the study of gene function and disease, and are widely utilized in basic biological research, agriculture and pharma industries. Since the current methods for generating transgenic animals result in the random integration of the transgene under study, the phenotype may be compromised due to disruption of known genes or regulatory regions. Unfortunately, most of the tools that predict transgene insertion sites from high-throughput data are not publicly available or not properly maintained. RESULTS We implemented TC-hunter, Transgene-Construct hunter, an open tool that identifies transgene insertion sites and provides simple reports and visualization aids. It relies on common tools used in the analysis of high-throughput data and makes use of chimeric reads and discordant read pairs to identify and support the transgenic insertion site. To demonstrate its applicability, we applied TC-hunter to four transgenic mice samples harboring the human PPM1D gene, a model used in the study of malignant tumor development. We identified the transgenic insertion site in each sample and experimentally validated them with Touchdown-polymerase chain reaction followed by Sanger sequencing. CONCLUSIONS TC-hunter is an accessible bioinformatics tool that can automatically identify transgene insertion sites from DNA sequencing data with high sensitivity (98%) and precision (92.45%). TC-hunter is a valuable tool that can aid in evaluating any potential phenotypic complications due to the random integration of the transgene and can be accessed at https://github.com/bcfgothenburg/SSF .
Collapse
Affiliation(s)
- Vanja Börjesson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Angela Martinez-Monleon
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Jelena Milosevic
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Marcela Dávila López
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Patocchi A, Keilwagen J, Berner T, Wenzel S, Broggini GAL, Altschmied L, Hanke MV, Flachowsky H. No Evidence of Unexpected Transgenic Insertions in T1190 - A Transgenic Apple Used in Rapid Cycle Breeding - Following Whole Genome Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:715737. [PMID: 34456955 PMCID: PMC8386123 DOI: 10.3389/fpls.2021.715737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 05/24/2023]
Abstract
Rapid cycle breeding uses transgenic early flowering plants as crossbreed parents to facilitate the shortening of breeding programs for perennial crops with long-lasting juvenility. Rapid cycle breeding in apple was established using the transgenic genotype T1190 expressing the BpMADS4 gene of silver birch. In this study, the genomes of T1190 and its non-transgenic wild-type PinS (F1-offspring of 'Pinova' and 'Idared') were sequenced by Illumina short-read sequencing in two separate experiments resulting in a mean sequencing depth of 182× for T1190 and 167× for PinS. The sequencing revealed 8,450 reads, which contain sequences of ≥20 bp identical to the plant transformation vector. These reads were assembled into 125 contigs, which were examined to see whether they contained transgenic insertions or if they are not using a five-step procedure. The sequence of one contig represents the known T-DNA insertion on chromosome 4 of T1190. The sequences of the remaining contigs were either equally present in T1190 and PinS, their part with sequence identity to the vector was equally present in apple reference genomes, or they seem to result from endophytic contaminations rather than from additional transgenic insertions. Therefore, we conclude that the transgenic apple plant T1190 contains only one transgenic insertion, located on chromosome 4, and shows no further partial insertions of the transformation vector. Accession Numbers: JQ974028.1.
Collapse
Affiliation(s)
- Andrea Patocchi
- Research Division Plant Breeding, Agroscope, Wädenswil, Switzerland
| | - Jens Keilwagen
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Quedlinburg, Germany
| | - Thomas Berner
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Quedlinburg, Germany
| | - Stefanie Wenzel
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Giovanni A. L. Broggini
- Swiss Federal Institute of Technology, Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Lothar Altschmied
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, Germany
| | - Magda-Viola Hanke
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| |
Collapse
|
17
|
Peng C, Mei Y, Ding L, Wang X, Chen X, Wang J, Xu J. Using Combined Methods of Genetic Mapping and Nanopore-Based Sequencing Technology to Analyze the Insertion Positions of G10evo-EPSPS and Cry1Ab/Cry2Aj Transgenes in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:690951. [PMID: 34394143 PMCID: PMC8358107 DOI: 10.3389/fpls.2021.690951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The insertion position of the exogenous fragment sequence in a genetically modified organism (GMO) is important for the safety assessment and labeling of GMOs. SK12-5 is a newly developed transgenic maize line transformed with two trait genes [i.e., G10evo-5-enolpyrul-shikimate-3-phosphate synthase (EPSPS) and Cry1Ab/Cry2Aj] that was recently approved for commercial use in China. In this study, we tried to determine the insertion position of the exogenous fragment for SK12-5. The transgene-host left border and right border integration junctions were obtained from SK12-5 genomic DNA by using the thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR) and next-generation Illumina sequencing technology. However, a Basic Local Alignment Search Tool (BLAST) analysis revealed that the flanking sequences in the maize genome are unspecific and that the insertion position is located in a repetitive sequence area in the maize genome. To locate the fine-scale insertion position in SK12-5, we combined the methods of genetic mapping and nanopore-based sequencing technology. From a classical bulked-segregant analysis (BSA), the insertion position in SK12-5 was mapped onto Bin9.03 of chromosome 9 between the simple sequence repeat (SSR) markers umc2337 and umc1743 (26,822,048-100,724,531 bp). The nanopore sequencing results uncovered 10 reads for which one end was mapped onto the vector and the other end was mapped onto the maize genome. These observations indicated that the exogenous T-DNA fragments were putatively integrated at the position from 82,329,568 to 82,379,296 bp of chromosome 9 in the transgenic maize SK12-5. This study is helpful for the safety assessment of the novel transgenic maize SK12-5 and shows that the combined method of genetic mapping and the nanopore-based sequencing technology will be a useful approach for identifying the insertion positions of transgenic sequences in other GM plants with relatively large and complex genomes.
Collapse
Affiliation(s)
- Cheng Peng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingting Mei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Ding
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaofu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoyun Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junmin Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junfeng Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
18
|
Chen X, Dong Y, Huang Y, Fan J, Yang M, Zhang J. Whole-genome resequencing using next-generation and Nanopore sequencing for molecular characterization of T-DNA integration in transgenic poplar 741. BMC Genomics 2021; 22:329. [PMID: 33957867 PMCID: PMC8101135 DOI: 10.1186/s12864-021-07625-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The molecular characterization information of T-DNA integration is not only required by public risk assessors and regulators, but is also closely related to the expression of exogenous and endogenous genes. At present, with the development of sequencing technology, whole-genome resequencing has become an attractive approach to identify unknown genetically modified events and characterise T-DNA integration events. RESULTS In this study, we performed genome resequencing of Pb29, a transgenic high-resistance poplar 741 line that has been commercialized, using next-generation and Nanopore sequencing. The results revealed that there are two T-DNA insertion sites, located at 9,283,905-9,283,937 bp on chromosome 3 (Chr03) and 10,868,777-10,868,803 bp on Chr10. The accuracy of the T-DNA insertion locations and directions was verified using polymerase chain reaction amplification. Through sequence alignment, different degrees of base deletions were detected on the T-DNA left and right border sequences, and in the flanking sequences of the insertion sites. An unknown fragment was inserted between the Chr03 insertion site and the right flanking sequence, but the Pb29 genome did not undergo chromosomal rearrangement. It is worth noting that we did not detect the API gene in the Pb29 genome, indicating that Pb29 is a transgenic line containing only the BtCry1AC gene. On Chr03, the insertion of T-DNA disrupted a gene encoding TAF12 protein, but the transcriptional abundance of this gene did not change significantly in the leaves of Pb29. Additionally, except for the gene located closest to the T-DNA integration site, the expression levels of four other neighboring genes did not change significantly in the leaves of Pb29. CONCLUSIONS This study provides molecular characterization information of T-DNA integration in transgenic poplar 741 line Pb29, which contribute to safety supervision and further extensive commercial planting of transgenic poplar 741.
Collapse
Affiliation(s)
- Xinghao Chen
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, PR China
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, PR China
| | - Yali Huang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, PR China
| | - Jianmin Fan
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, PR China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China. .,Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, PR China.
| | - Jun Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China. .,Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, PR China.
| |
Collapse
|
19
|
Skarzyńska A, Pawełkowicz M, Pląder W. Influence of transgenesis on genome variability in cucumber lines with a thaumatin II gene. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:985-996. [PMID: 34092948 PMCID: PMC8139995 DOI: 10.1007/s12298-021-00990-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 06/01/2023]
Abstract
UNLABELLED The development of new plant varieties by genetic modification aims at improving their features or introducing new qualities. However, concerns about the unintended effects of transgenes and negative environmental impact of genetically modified plants are an obstacle for the use of these plants in crops. To analyze the impact of transgenesis on plant genomes, we analyze three cucumber transgenic lines with an introduced thaumatin II gene. After genomes sequencing, we analyzed the transgene insertion site and performed variant prediction. As a result, we obtained similar number of variants for all analyzed lines (average of 4307 polymorphisms), with high abundance in one region of chromosome 4. According to SnpEff analysis, the presence of genomic variants generally does not influence the genome functionality, as less than 2% of polymorphisms have high impact. Moreover, analysis indicates that these changes were more likely induced by in vitro culture than by the transgenesis itself. The insertion site analysis shows that the region of transgene integration could cause changes in gene expression, by gene disruption or loss of promoter region continuity. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00990-8.
Collapse
Affiliation(s)
- Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Thomy J, Sanchez F, Gut M, Cruz F, Alioto T, Piganeau G, Grimsley N, Yau S. Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri. Cells 2021; 10:cells10030664. [PMID: 33802698 PMCID: PMC8002553 DOI: 10.3390/cells10030664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Ostreococcus tauri is a simple unicellular green alga representing an ecologically important group of phytoplankton in oceans worldwide. Modern molecular techniques must be developed in order to understand the mechanisms that permit adaptation of microalgae to their environment. We present for the first time in O. tauri a detailed characterization of individual genomic integration events of foreign DNA of plasmid origin after PEG-mediated transformation. Vector integration occurred randomly at a single locus in the genome and mainly as a single copy. Thus, we confirmed the utility of this technique for insertional mutagenesis. While the mechanism of double-stranded DNA repair in the O. tauri model remains to be elucidated, we clearly demonstrate by genome resequencing that the integration of the vector leads to frequent structural variations (deletions/insertions and duplications) and some chromosomal rearrangements in the genome at the insertion loci. Furthermore, we often observed variations in the vector sequence itself. From these observations, we speculate that a nonhomologous end-joining-like mechanism is employed during random insertion events, as described in plants and other freshwater algal models. PEG-mediated transformation is therefore a promising molecular biology tool, not only for functional genomic studies, but also for biotechnological research in this ecologically important marine alga.
Collapse
Affiliation(s)
- Julie Thomy
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Frederic Sanchez
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
- Correspondence: (N.G.); (S.Y.)
| | - Sheree Yau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
- Correspondence: (N.G.); (S.Y.)
| |
Collapse
|
21
|
Yang L, Chen Y, Li R, Xu W, Cui J, Zhang D, Zhang X. Universal LNA Probe-Mediated Multiplex Droplet Digital Polymerase Chain Reaction for Ultrasensitive and Accurate Quantitative Analysis of Genetically Modified Organisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1705-1713. [PMID: 33528262 DOI: 10.1021/acs.jafc.0c06433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multiplex and high-throughput assays are becoming the main trends in the development of new nucleic acid detection and quantification methods, such as those for genetically modified organism (GMO) analysis. Here, we report a novel universal LNA probe-mediated droplet digital polymerase chain reaction (PCR) method (ULNA-ddPCR) for multiple DNA target quantification in GMOs. In ULNA-ddPCR, only one universal LNA probe is used for multiple DNA targets instead of using one to one TaqMan probe. The specificity, sensitivity, dynamic range, and accuracy of the ULNA-ddPCR method are determined by employing GM rice analysis as an example. Simplex and triplex ULNA-ddPCR assays for three GM rice events, T2A-1, T1C-19, and G6H1, are established and evaluated. All results indicate that the developed simplex and triplex ULNA-ddPCR assays are suitable for quantitative analysis of GM rice events with high sensitivity, accuracy, and low cost. The ULNA-ddPCR method also has the potential for multiple DNA target quantification in other research fields.
Collapse
Affiliation(s)
- Litao Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Yi Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenting Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinjie Cui
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang, Henan 455000, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiujie Zhang
- Development Center of Science and Technology, Ministry of Agriculture of People's Republic of China, Beijing 100025, China
| |
Collapse
|
22
|
Asif M, Siddiqui HA, Naqvi RZ, Amin I, Asad S, Mukhtar Z, Bashir A, Mansoor S. Development of event-specific detection method for identification of insect resistant NIBGE-1601 cotton harboring double gene Cry1Ac-Cry2Ab construct. Sci Rep 2021; 11:3479. [PMID: 33568702 PMCID: PMC7876094 DOI: 10.1038/s41598-021-82798-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
Bt cotton expressing Cry1Ac is being cultivated in Pakistan. It has been observed that pink bollworm may have developed resistance against single Bt gene (Cry1Ac). For durable resistance, insect resistant NIBGE-1601 cotton harboring double gene Cry1Ac-Cry2Ab construct was developed. There was a need to characterize NIBGE-1601 event for intellectual property rights protection. The Presence of NIBGE Cry1Ac and NIBGE Cry2Ab genes was checked in NIBGE-1601 cotton plants through PCR, while there was no amplification using primers specific for Monsanto events (MON531, MON15985, MON1445). Using genome walking technology, NIBGE-601 event has been characterized. Event-specific primers of NIBGE-1601 were designed and evaluated to differentiate it from other cotton events mentioned above. NIBGE-1601 event detection primers are highly specific, therefore, can detect NIBGE 1601 event at different conditions using single or multiplex PCR. In the qualitative PCR, using NIBGE-1601 event specific primers, 0.05 ng was the limit of detection for NIBGE-1601double gene cotton genomic DNA. Thus event characterization and development of event-specific diagnostics will help in breeding new cotton varieties resistant to cotton bollworms.
Collapse
Affiliation(s)
- Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic, Engineering, Faisalabad, Pakistan
| | - Hamid Anees Siddiqui
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic, Engineering, Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic, Engineering, Faisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic, Engineering, Faisalabad, Pakistan
| | - Shaheen Asad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic, Engineering, Faisalabad, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic, Engineering, Faisalabad, Pakistan
| | - Aftab Bashir
- Department of Biological Sciences, Forman Christian College, Lahore, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic, Engineering, Faisalabad, Pakistan.
| |
Collapse
|
23
|
Giraldo PA, Shinozuka H, Spangenberg GC, Smith KF, Cogan NOI. Rapid and Detailed Characterization of Transgene Insertion Sites in Genetically Modified Plants via Nanopore Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 11:602313. [PMID: 33613582 PMCID: PMC7889508 DOI: 10.3389/fpls.2020.602313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/24/2020] [Indexed: 05/15/2023]
Abstract
Molecular characterization of genetically modified plants can provide crucial information for the development of detection and identification methods, to comply with traceability, and labeling requirements prior to commercialization. Detailed description of the genetic modification was previously a challenging step in the safety assessment, since it required the use of laborious and time-consuming techniques. In this study an accurate, simple, and fast method was developed for molecular characterization of genetically modified (GM) plants, following a user-friendly workflow for researchers with limited bioinformatic capabilities. Three GM events from a diverse array of crop species-perennial ryegrass, white clover, and canola-were used to test the approach that exploits long-read sequencing by the MinION device, from Oxford Nanopore Technologies. The method delivered a higher degree of resolution of the transgenic events within the host genome than has previously been possible with the standard Illumina short-range sequencing strategies. The flanking sequences, copy number, and presence of backbone sequences, and overall transgene insertion structure were determined for each of the plant genomes, with the additional identification of moderate-sized secondary insertions that would have previously been missed. The proposed workflow takes only about 1 week from DNA extraction to analyzed result, and the method will complement the existing approaches for molecular characterization of GM plants, since it makes the process faster, simpler, and more cost-effective.
Collapse
Affiliation(s)
- Paula A. Giraldo
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Hiroshi Shinozuka
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
| | - German C. Spangenberg
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- AgriBio, The Centre for AgriBioscience, School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Kevin F. Smith
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
- Agriculture Victoria Research, Hamilton, VIC, Australia
| | - Noel O. I. Cogan
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- AgriBio, The Centre for AgriBioscience, School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
24
|
Niu L, He H, Zhang Y, Yang J, Zhao Q, Xing G, Zhong X, Yang X. Efficient identification of genomic insertions and flanking regions through whole-genome sequencing in three transgenic soybean events. Transgenic Res 2021; 30:1-9. [PMID: 33393017 DOI: 10.1007/s11248-020-00225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Genomic insertions and flanking regions of transgenes in host genomes constitute a critical component of precise molecular characterization and event-specific detection, which are required in the development and assessment for regulatory approval of genetically modified (GM) crops. Previously, we reported three transgenic soybean events harboring the inverted repeats of the soybean mosaic virus NIb (nuclear inclusion b) gene, exhibiting significantly enhanced resistance to multiple Potyvirus strains. To facilitate safety assessment and event-specific detection, we identified the transgene insertion sites and flanking sequences of the events L120, L122, and L123 using whole-genome sequencing. More than 14.48 Gb sequence data (13 × coverage) were generated using the Illumina HiSeq Xten platform for each event. The sequence reads corresponding to boundaries of inserted T-DNA, and associated native flanking sequences were identified by bioinformatic comparison with the soybean reference genome (Wm82.a2.v1) and the transformation vector sequence. The results indicated that two T-DNA insertions occurred in L120, on Chr07 and Chr13, while L122 and L123 showed single insertions, on Chr02 and Chr06, respectively. Based on the flanking sequences of the inserted T-DNA, the event-specific detection for each event was established using specific PCR primers, and PCR amplification followed by sequencing of PCR products further confirmed the putative insertion loci and flanking regions in the transgenic lines. Our results demonstrate the efficacy and robustness of whole-genome sequencing in identifying the genomic insertions and flanking regions in GM crops. Moreover, the characterization of insertion loci and the establishment of event-specific detection will facilitate the application and development of broad-spectrum virus-resistant transgenic soybean cultivars.
Collapse
Affiliation(s)
- Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- School of Life Science, Jilin Normal University, Siping, 136000, China
| | - Yuanyu Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qianqian Zhao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
25
|
Duan L, Zhang S, Yang Y, Wang Q, Lan Q, Wang Y, Xu W, Jin W, Li L, Chen R. A feasible method for detecting unknown GMOs via a combined strategy of PCR-based suppression subtractive hybridization and next-generation sequencing. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Lup SD, Wilson-Sánchez D, Andreu-Sánchez S, Micol JL. Easymap: A User-Friendly Software Package for Rapid Mapping-by-Sequencing of Point Mutations and Large Insertions. FRONTIERS IN PLANT SCIENCE 2021; 12:655286. [PMID: 34040621 PMCID: PMC8143052 DOI: 10.3389/fpls.2021.655286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/18/2021] [Indexed: 05/15/2023]
Abstract
Mapping-by-sequencing strategies combine next-generation sequencing (NGS) with classical linkage analysis, allowing rapid identification of the causal mutations of the phenotypes exhibited by mutants isolated in a genetic screen. Computer programs that analyze NGS data obtained from a mapping population of individuals derived from a mutant of interest to identify a causal mutation are available; however, the installation and usage of such programs requires bioinformatic skills, modifying or combining pieces of existing software, or purchasing licenses. To ease this process, we developed Easymap, an open-source program that simplifies the data analysis workflows from raw NGS reads to candidate mutations. Easymap can perform bulked segregant mapping of point mutations induced by ethyl methanesulfonate (EMS) with DNA-seq or RNA-seq datasets, as well as tagged-sequence mapping for large insertions, such as transposons or T-DNAs. The mapping analyses implemented in Easymap have been validated with experimental and simulated datasets from different plant and animal model species. Easymap was designed to be accessible to all users regardless of their bioinformatics skills by implementing a user-friendly graphical interface, a simple universal installation script, and detailed mapping reports, including informative images and complementary data for assessment of the mapping results. Easymap is available at http://genetics.edu.umh.es/resources/easymap; its Quickstart Installation Guide details the recommended procedure for installation.
Collapse
|
27
|
Kim MS, Jo H, Kim JH, Bae DN, Pack IS, Kim CG, Kwon T, Nam J, Chung YS, Jeong SC. Elucidation of genomic organizations of transgenic soybean plants through de novo genome assembly with short paired-end reads. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:1. [PMID: 37309526 PMCID: PMC10231564 DOI: 10.1007/s11032-020-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/26/2020] [Indexed: 06/14/2023]
Abstract
Elucidation of the genomic organizations of transgene insertion sites is essential for the genetic studies of transgenic plants. Herein, we establish an analysis pipeline that identifies the transgene insertion sites as well as the presence of vector backbones, through de novo genome assembly with high-throughput sequencing data in two transgenic soybean lines, AtYUCCA6-#5 and 35S-UGT72E3/2-#7. Sequencing data of approximately 28× and 29× genome coverages for each line generated by high-throughput sequencing were de novo assembled. The databases generated from the de novo assembled sequences were used to search contigs that contained putative insertion sites and their flanking sequences (integration sites) of transgene fragments using transgenic vector sequences as queries. The predicted integration site sequences, which are located at three annotated genes that might regulate plant development or confer disease resistance, were then confirmed by local alignment against the soybean reference genome and PCR amplification. As results, we revealed the precise transgene-flanking sequences and sequence rearrangements at insertion sites in both the transgenic lines, as well as the aberrant insertion of a transgene fragment. Consequently, relative to experimental or enrichment technologies, our approach is straightforward and time-effective, providing an alternative method for the identification of insertion sites in transgenic plants.
Collapse
Affiliation(s)
- Myung-Shin Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116 Republic of Korea
| | - Hojin Jo
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116 Republic of Korea
| | - Ji Hong Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116 Republic of Korea
| | - Dong Nyuk Bae
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116 Republic of Korea
| | - In-Soon Pack
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116 Republic of Korea
| | - Chang-Gi Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116 Republic of Korea
| | - Tackmin Kwon
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Busan, 49315 Republic of Korea
| | - Jaesung Nam
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Busan, 49315 Republic of Korea
| | - Young-Soo Chung
- Department of Molecular Genetics, College of Natural Resources and Life Science, Dong-A University, Busan, 49315 Republic of Korea
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk 28116 Republic of Korea
| |
Collapse
|
28
|
Wang XJ, Jiao Y, Ma S, Yang JT, Wang ZX. Whole-Genome Sequencing: An Effective Strategy for Insertion Information Analysis of Foreign Genes in Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:573871. [PMID: 33335534 PMCID: PMC7736074 DOI: 10.3389/fpls.2020.573871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Molecular characterization is a key step in the risk assessment of genetically modified organisms (GMOs) for regulatory approval. Herein, we describe a method for analyzing copy number, insertion loci, and flanking sequences through whole-genome sequencing (WGS) and bioinformatics. Comprehensive molecular characterization of G2-6 transgenic rice was performed using this pipeline. The results showed that one copy of the foreign gene was inserted into rice chromosome 8. There was no vector backbone insertion but an unexpected insertion and DNA rearrangement at the 3' end of the T-DNA. We also obtained the 5' and 3' flanking sequences of the T-DNA. Our results suggested that the use of a combination of WGS and bioinformatics is an effective strategy for the molecular characterization of GMOs.
Collapse
Affiliation(s)
- Xu-jing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing China
| | - Yue Jiao
- Development Center for Science and Technology/MARA, Beijing, China
| | - Shuo Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing China
| | - Jiang-tao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing China
| | - Zhi-xing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing China
| |
Collapse
|
29
|
Abstract
The presence of genetically modified organisms (GMO) is commonly assessed using real-time PCR methods targeting the most common transgenic elements found in GMOs. Once the presence of GM material has been established using these screening methods, GMOs are further identified using a battery of real-time PCR methods, each being specific of one GM event and usually targeting the junction of the plant genome and of the transgenic DNA insert. If, using these specific methods, no GMO could be identified, the presence of an unauthorized GMO is suspected. In this context, the aim of this work was to develop a fast and simple method to obtain the sequence of the transgene and of its junction with plant DNA, with the presence of a screening sequence as only prior knowledge. An unauthorized GM petunia, recently found on the French market, was used as template during the development of this new molecular tool. The innovative proposed protocol is based on the circularization of fragmented DNA followed by the amplification of the transgene and of its flanking regions using long-range inverse PCR. Sequencing was performed using the Oxford Nanopore MinION technology and a bioinformatic pipeline was developed.
Collapse
|
30
|
Kersten B, Leite Montalvão AP, Hoenicka H, Vettori C, Paffetti D, Fladung M. Sequencing of two transgenic early-flowering poplar lines confirmed vector-free single-locus T-DNA integration. Transgenic Res 2020; 29:321-337. [PMID: 32356192 PMCID: PMC7283205 DOI: 10.1007/s11248-020-00203-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/18/2020] [Indexed: 02/02/2023]
Abstract
Next-generation sequencing (NGS) approaches are attractive alternatives to the PCR-based characterisation of genetically modified plants for safety assessment and labelling since NGS is highly sensitive to the detection of T-DNA inserts as well as vector backbone sequences in transgenic plants. In this study, two independent transgenic male Populus tremula lines, T193-2 and T195-1, both carrying the FLOWERING LOCUS T gene from Arabidopsis thaliana under control of a heat-inducible promoter (pHSP::AtFT) and the non-transgenic control clone W52, were further characterised by NGS and third-generation sequencing. The results support previous findings that the T-DNA was hemizygously inserted in one genomic locus of each line. However, the T-DNA insertions consist of conglomerations of one or two T-DNA copies together with a small T-DNA fragment without AtFT parts. Based on NGS data, no additional T-DNA splinters or vector backbone sequences could be identified in the genome of the two transgenic lines. Seedlings derived from crosses between the pHSP::AtFT transgenic male parents and female wild type plants are therefore expected to be T-DNA splinter or vector backbone free. Thus, PCR analyses amplifying a partial T-DNA fragment with AtFT-specific primers are sufficient to determine whether the seedlings are transgenic or not. An analysis of 72 second generation-seedlings clearly showed that about 50% of them still reveal the presence of the T-DNA, confirming data already published. To prove if unanticipated genomic changes were induced by T-DNA integration, extended future studies using long-range sequencing technologies are required once a suitable chromosome-level P. tremula reference genome sequence is available.
Collapse
Affiliation(s)
- Birgit Kersten
- Thünen Institute of Forest Genetics, 22927, Grosshansdorf, Germany.
| | | | - Hans Hoenicka
- Thünen Institute of Forest Genetics, 22927, Grosshansdorf, Germany
| | - Cristina Vettori
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Donatella Paffetti
- Department of Agriculture, Food, Environment and Forestry, Agricultural Genetics Section, University of Florence, P. le delle Cascine 18, 50144, Florence, Italy
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927, Grosshansdorf, Germany.
| |
Collapse
|
31
|
Fu W, Wang C, Zhu P, Xu W, Li X, Zhu S. A universal analytical approach for screening and monitoring of authorized and unauthorized GMOs. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Zeng T, Zhang D, Li Y, Li C, Liu X, Shi Y, Song Y, Li Y, Wang T. Identification of genomic insertion and flanking sequences of the transgenic drought-tolerant maize line "SbSNAC1-382" using the single-molecule real-time (SMRT) sequencing method. PLoS One 2020; 15:e0226455. [PMID: 32275664 PMCID: PMC7147794 DOI: 10.1371/journal.pone.0226455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/22/2020] [Indexed: 11/22/2022] Open
Abstract
Safety assessment of genetically modified (GM) crops is crucial at the product-development phase before GM crops are placed on the market. Determining characteristics of sequences flanking exogenous insertion sequences is essential for the safety assessment and marketing of transgenic crops. In this study, we used genome walking and whole-genome sequencing (WGS) to identify the flanking sequence characteristics of the SbSNAC1 transgenic drought-tolerant maize line "SbSNAC1-382", but both of the two methods failed. Then, we constructed a genomic fosmid library of the transgenic maize line, which contained 4.18×105 clones with an average insertion fragment of 35 kb, covering 5.85 times the maize genome. Subsequently, three positive clones were screened by pairs of specific primers, and one of the three positive clones was sequenced by using single-molecule real-time (SMRT) sequencing technology. More than 1.95 Gb sequence data (~105× coverage) for the sequenced clone were generated. The junction reads mapped to the boundaries of T-DNA, and the flanking sequences in the transgenic line were identified by comparing all sequencing reads with the maize reference genome and the sequence of the transgenic vector. Furthermore, the putative insertion loci and flanking sequences were confirmed by PCR amplification and Sanger sequencing. The results indicated that two copies of the exogenous T-DNA fragments were inserted at the same genomic site, and the exogenous T-DNA fragments were integrated at the position of Chromosome 5 from 177155650 to 177155696 in the transgenic line 382. In this study, we demonstrated the successful application of the SMRT technology for the characterization of genomic insertion and flanking sequences.
Collapse
Affiliation(s)
- Tingru Zeng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongxiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuyang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsu Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchun Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Zhang Y, Zhang H, Qu Z, Zhang X, Cui J, Wang C, Yang L. Comprehensive analysis of the molecular characterization of GM rice G6H1 using a paired-end sequencing approach. Food Chem 2020; 309:125760. [DOI: 10.1016/j.foodchem.2019.125760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/11/2019] [Accepted: 10/20/2019] [Indexed: 02/04/2023]
|
34
|
Identification of T-DNA Insertion Site and Flanking Sequence of a Genetically Modified Maize Event IE09S034 Using Next-Generation Sequencing Technology. Mol Biotechnol 2020; 61:694-702. [PMID: 31256331 DOI: 10.1007/s12033-019-00196-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Molecular characteristics including information of insertion site, flanking sequence, and copy numbers are the base for the safety assessment and subsequent monitoring of genetically modified organisms (GMOs), which has to be revealed thoroughly in a case-by-case manner. Although both polymerase chain reaction (PCR)-based and next-generation sequencing (NGS)-based approaches are proven to be effective in the molecular characterization of most of GM events, they often fail to work with GM maize events, mainly due to the genome complexity. In this study, by using NGS, we successfully identified the 3' end T-DNA insertion site and flanking sequence of a GM maize event IE09S034, which were confirmed by PCR amplification and Sanger sequencing. Notably, insertions of unintended exogenous elements were revealed in this event although the single copy of target exogenous genes was also confirmed by digital PCR. The output of this study provides novel and important genetic evidence for the safety assessment and monitoring of GM maize event IE09S034.
Collapse
|
35
|
Giraldo PA, Shinozuka H, Spangenberg GC, Cogan NO, Smith KF. Safety Assessment of Genetically Modified Feed: Is There Any Difference From Food? FRONTIERS IN PLANT SCIENCE 2019; 10:1592. [PMID: 31921242 PMCID: PMC6918800 DOI: 10.3389/fpls.2019.01592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Food security is one of major concerns for the growing global population. Modern agricultural biotechnologies, such as genetic modification, are a possible solution through enabling an increase of production, more efficient use of natural resources, and reduced environmental impacts. However, new crop varieties with altered genetic materials may be subjected to safety assessments to fulfil the regulatory requirements, prior to marketing. The aim of the assessment is to evaluate the impact of products from the new crop variety on human, animal, and the environmental health. Although, many studies on the risk assessment of genetically modified (GM) food have been published, little consideration to GM feedstuff has been given, despite that between 70 to 90% of all GM crops and their biomass are used as animal feed. In addition, in some GM plants such as forages that are only used for animal feeds, the assessment of the genetic modification may be of relevance only to livestock feeding. In this article, the regulatory framework of GM crops intended for animal feed is reviewed using the available information on GM food as the baseline. Although, the majority of techniques used for the safety assessment of GM food can be used in GM feed, many plant parts used for livestock feeding are inedible to humans. Therefore, the concentration of novel proteins in different plant tissues and level of exposure to GM feedstuff in the diet of target animals should be considered. A further development of specific methodologies for the assessment of GM crops intended for animal consumption is required, in order to provide a more accurate and standardized assessment to the GM feed safety.
Collapse
Affiliation(s)
- Paula A. Giraldo
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Hiroshi Shinozuka
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - German C. Spangenberg
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Noel O.I. Cogan
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Kevin F. Smith
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Agriculture Victoria Research, Hamilton, VIC, Australia
| |
Collapse
|
36
|
Debode F, Hulin J, Charloteaux B, Coppieters W, Hanikenne M, Karim L, Berben G. Detection and identification of transgenic events by next generation sequencing combined with enrichment technologies. Sci Rep 2019; 9:15595. [PMID: 31666537 PMCID: PMC6821802 DOI: 10.1038/s41598-019-51668-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Next generation sequencing (NGS) is a promising tool for analysing the quality and safety of food and feed products. The detection and identification of genetically modified organisms (GMOs) is complex, as the diversity of transgenic events and types of structural elements introduced in plants continue to increase. In this paper, we show how a strategy that combines enrichment technologies with NGS can be used to detect a large panel of structural elements and partially or completely reconstruct the new sequence inserted into the plant genome in a single analysis, even at low GMO percentages. The strategy of enriching sequences of interest makes the approach applicable even to mixed products, which was not possible before due to insufficient coverage of the different genomes present. This approach is also the first step towards a more complete characterisation of agrifood products in a single analysis.
Collapse
Affiliation(s)
- Frédéric Debode
- Walloon Agricultural Research Center (CRA-W), Unit Traceability and Authentication, chaussée de Namur 24, 5030, Gembloux, Belgium.
| | - Julie Hulin
- Walloon Agricultural Research Center (CRA-W), Unit Traceability and Authentication, chaussée de Namur 24, 5030, Gembloux, Belgium
| | - Benoît Charloteaux
- University of Liège, GIGA - Genomics Platform, B34, 4000, Liège (Sart Tilman), Belgium
| | - Wouter Coppieters
- University of Liège, GIGA - Genomics Platform, B34, 4000, Liège (Sart Tilman), Belgium
| | - Marc Hanikenne
- University of Liège, InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, Chemin de la Vallée, 4, B22, 4000, Liège (Sart Tilman), Belgium
| | - Latifa Karim
- University of Liège, GIGA - Genomics Platform, B34, 4000, Liège (Sart Tilman), Belgium
| | - Gilbert Berben
- Walloon Agricultural Research Center (CRA-W), Unit Traceability and Authentication, chaussée de Namur 24, 5030, Gembloux, Belgium
| |
Collapse
|
37
|
Development and evaluation of double gene transgenic cotton lines expressing Cry toxins for protection against chewing insect pests. Sci Rep 2019; 9:11774. [PMID: 31409859 PMCID: PMC6692333 DOI: 10.1038/s41598-019-48188-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/09/2019] [Indexed: 11/18/2022] Open
Abstract
Cotton is the main fiber producing crop globally, with a significant impact on the economy of Pakistan. Bt cotton expressing a Cry1Ac gene is grown over a large area in Pakistan, however, there is a major concern that bollworms may develop resistance. Here we have used a durable resistance strategy against bollworms by developing a double gene construct containing Cry1Ac and Cry2Ab (pGA482-12R) for cotton transformation. Both Cry toxin genes have been cloned in the same T-DNA borders and transferred successfully into cotton via Agrobacterium-mediated transformation. Both genes are expressed in transgenic cotton plants and is likely to help breeders in developing new cotton cultivars by incorporating these genes in cotton lines having no Bt genes or expressing Cry1Ac gene (Mon 531). Positive transgenic cotton was identified by PCR using specific primers for the amplification of both Cry1Ac and Cry2Ab genes. Cry1Ac and Cry2Ab expression was confirmed with an immunostrip test and quantified using ELISA that showed significant spatio-temporal expression of Cry2Ab ranging from 3.28 to 7.72 µg/g of the tissue leaf. Insect bioassay with army worm (Spodoptera litura) was performed to check the efficacy of NIBGE (National Institute for Biotechnology and Genetic Engineering) double gene transgenic cotton plants and up to 93% insect mortality was observed.
Collapse
|
38
|
Haynes E, Jimenez E, Pardo MA, Helyar SJ. The future of NGS (Next Generation Sequencing) analysis in testing food authenticity. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.02.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Mueller S. Are Market GM Plants an Unrecognized Platform for Bioterrorism and Biocrime? Front Bioeng Biotechnol 2019; 7:121. [PMID: 31192204 PMCID: PMC6549539 DOI: 10.3389/fbioe.2019.00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
This article discusses a previously unrecognized avenue for bioterrorism and biocrime. It is suggested that new gene editing technologies may have the potential to create plants that are genetically modified in harmful ways, either in terms of their effect on the plant itself or in terms of harming those who would consume foods produced by that plant. While several risk scenarios involving GMOs-such as antibiotic resistant pathogens, synthetic biology, or mixing of non-GMO seeds with GMO seeds-have previously have been recognized, the new vulnerability is rooted in a different paradigm-that of clandestinely manipulating GMOs to create damage. The ability to actively inflict diseases on plants would pose serious health hazards to both humans and animals, have detrimental consequences to the economy, and directly threaten the food supply. As this is the first study of this kind, the full scope and impact of suck attacks-especially those involving the intended misuse of technologies such as gene-drives-merits further investigation. Herein, the plausibility of some of the new risks will be analyzed by, (1) Highlighting ownership and origination issues (esp. of event-specific GM-plants) as unrecognized risk factors; (2) Investigating the unique role of GMOs, why-and how-certified GMOs could become a new venue for such attacks; (3) Analyzing possible dual-use potentials of modern technologies and research oriented toward the advancement of GMOs, plant breeding and crop improvement. The identification and analysis of harmful genetic manipulations to utilize (covertly modified) plants (GMOs and non-GMOs) as an attack vector show that these concerns need to be taken seriously, raising the prospect not only of direct harm, but of the more likely effects in generating public concern, reputational harm of agricultural biotechnology companies, law-suits, and increased import bans of certain plants or their derived products.
Collapse
|
40
|
Arulandhu AJ, van Dijk J, Staats M, Hagelaar R, Voorhuijzen M, Molenaar B, van Hoof R, Li R, Yang L, Shi J, Scholtens I, Kok E. NGS-based amplicon sequencing approach; towards a new era in GMO screening and detection. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Casacuberta J, Nogué F, Naegeli H, Birch AN, De Schrijver A, Gralak MA, Guerche P, Manachini B, Messéan A, Nielsen EE, Robaglia C, Rostoks N, Sweet J, Tebbe C, Visioli F, Wal JM, Moxon S, Schneeberger K, Federici S, Ramon M, Papadopoulou N, Jones H. Technical Note on the quality of DNA sequencing for the molecular characterisation of genetically modified plants. EFSA J 2018; 16:e05345. [PMID: 32625981 PMCID: PMC7009663 DOI: 10.2903/j.efsa.2018.5345] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
As part of the risk assessment (RA) requirements for genetically modified (GM) plants, according to Regulation (EU) No 503/2013 and the EFSA guidance on the RA of food and feed from GM plants (EFSA GMO Panel, 2011), applicants need to perform a molecular characterisation of the DNA sequences inserted in the GM plant genome. The European Commission has mandated EFSA to develop a technical note to the applicants on, and checking of, the quality of the methodology, analysis and reporting covering complete sequencing of the insert and flanking regions, insertion site analysis of the GM event, and generational stability and integrity. This Technical Note puts together requirements and recommendations for when DNA sequencing is part of the molecular characterisation of GM plants, in particular for the characterisation of the inserted genetic material at each insertion site and flanking regions, the determination of the copy number of all detectable inserts, and the analysis of the genetic stability of the inserts, when addressed by Sanger sequencing or NGS. This document reflects the current knowledge in scientific-technical methods for generating and verifying, in a standardised manner, DNA sequencing data in the context of RA of GM plants. From 1 October 2018, this Technical Note will replace the JRC guideline of 2016 (updated April 2017) related to the verification and quality assessment of the sequencing of the insert(s) and flanking regions. It does not take into consideration the verification and validation of the detection method which remains under the remit of the JRC.
Collapse
|
42
|
Leguizamón Guerrero JE, Vela Rojas AF, Arias Cortés MM, Cifuentes Fernández LF. Panorama general de los organismos genéticamente modificados en Colombia y en el mundo: Capacidad nacional de detección. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2018. [DOI: 10.15446/rev.colomb.biote.v20n2.77080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los organismos genéticamente modificados (OGM) y en particular los cultivos genéticamente modificados (GM), son el resultado de la modificación de la información genética de una especie a partir del uso de la biotecnología moderna para proporcionar nuevas características que su contraparte no modificada no posee, tales como resistencia a insectos, tolerancia a herbicidas, contenido de nutrientes entre otros. La mayor parte de estos cultivos se concentran en cuatro productos: soya (Glycine max), maíz (Zea Mays), canola (Brassica napus) y algodón (Gossypium hirsutum); y los principales productores son Estados Unidos, Brasil, Argentina, India y Canadá. Por su parte, Colombia ocupa el puesto 18 con cultivos de maíz, algodón y claveles azules. La introducción de estas especies en cualquier mercado está limitada por la legislación propia del país destino, así como por los estudios que permiten establecer su efecto sobre el medio ambiente, la salud humana y animal; en este sentido, la precisión y confianza de las técnicas analíticas empleadas en la evaluación del contenido de OGM son un elemento importante para la toma de decisiones basadas en evidencias objetivas, especialmente frente al debate en torno a su uso. Este documento presenta una revisión de las tecnologías de análisis más importantes disponibles a nivel mundial, frente a las capacidades nacionales para su detección.
Collapse
|
43
|
International collaborative ring trial of four gene-specific loop-mediated isothermal amplification assays in GMO analysis. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Characterization of Plant Genetic Modifications Using Next-Generation Sequencing. Synth Biol (Oxf) 2018. [DOI: 10.1007/978-981-10-8693-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
45
|
Salisu IB, Shahid AA, Yaqoob A, Ali Q, Bajwa KS, Rao AQ, Husnain T. Molecular Approaches for High Throughput Detection and Quantification of Genetically Modified Crops: A Review. FRONTIERS IN PLANT SCIENCE 2017; 8:1670. [PMID: 29085378 PMCID: PMC5650622 DOI: 10.3389/fpls.2017.01670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/11/2017] [Indexed: 06/01/2023]
Abstract
As long as the genetically modified crops are gaining attention globally, their proper approval and commercialization need accurate and reliable diagnostic methods for the transgenic content. These diagnostic techniques are mainly divided into two major groups, i.e., identification of transgenic (1) DNA and (2) proteins from GMOs and their products. Conventional methods such as PCR (polymerase chain reaction) and enzyme-linked immunosorbent assay (ELISA) were routinely employed for DNA and protein based quantification respectively. Although, these Techniques (PCR and ELISA) are considered as significantly convenient and productive, but there is need for more advance technologies that allow for high throughput detection and the quantification of GM event as the production of more complex GMO is increasing day by day. Therefore, recent approaches like microarray, capillary gel electrophoresis, digital PCR and next generation sequencing are more promising due to their accuracy and precise detection of transgenic contents. The present article is a brief comparative study of all such detection techniques on the basis of their advent, feasibility, accuracy, and cost effectiveness. However, these emerging technologies have a lot to do with detection of a specific event, contamination of different events and determination of fusion as well as stacked gene protein are the critical issues to be addressed in future.
Collapse
Affiliation(s)
- Ibrahim B. Salisu
- Department of Animal Science, Faculty of Agriculture, Federal University Dutse, Jigawa, Nigeria
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad A. Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Amina Yaqoob
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Kamran S. Bajwa
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abdul Q. Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
46
|
Li Z, Li X, Wang C, Song G, Pi L, Zheng L, Zhang D, Yang L. One Novel Multiple-Target Plasmid Reference Molecule Targeting Eight Genetically Modified Canola Events for Genetically Modified Canola Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8489-8500. [PMID: 28844131 DOI: 10.1021/acs.jafc.7b02453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiple-target plasmid DNA reference materials have been generated and utilized as good substitutes of matrix-based reference materials in the analysis of genetically modified organisms (GMOs). Herein, we report the construction of one multiple-target plasmid reference molecule, pCAN, which harbors eight GM canola event-specific sequences (RF1, RF2, MS1, MS8, Topas 19/2, Oxy235, RT73, and T45) and a partial sequence of the canola endogenous reference gene PEP. The applicability of this plasmid reference material in qualitative and quantitative PCR assays of the eight GM canola events was evaluated, including the analysis of specificity, limit of detection (LOD), limit of quantification (LOQ), and performance of pCAN in the analysis of various canola samples, etc. The LODs are 15 copies for RF2, MS1, and RT73 assays using pCAN as the calibrator and 10 genome copies for the other events. The LOQ in each event-specific real-time PCR assay is 20 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and PEP assays are between 91% and 97%, and the squared regression coefficients (R2) are all higher than 0.99. The quantification bias values varied from 0.47% to 20.68% with relative standard deviation (RSD) from 1.06% to 24.61% in the quantification of simulated samples. Furthermore, 10 practical canola samples sampled from imported shipments in the port of Shanghai, China, were analyzed employing pCAN as the calibrator, and the results were comparable with those assays using commercial certified materials as the calibrator. Concluding from these results, we believe that this newly developed pCAN plasmid is one good candidate for being a plasmid DNA reference material in the detection and quantification of the eight GM canola events in routine analysis.
Collapse
Affiliation(s)
- Zhuqing Li
- National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Xiang Li
- Shanghai Entry-Exit Inspection and Quarantine Bureau, GMO Detection Laboratory , 1208 Minheng Road, Shanghai 200135, P. R. China
| | - Canhua Wang
- National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Guiwen Song
- Development Center of Science and Technology, Ministry of Agriculture of People's Republic of China , Beijing 100025, China
| | - Liqun Pi
- National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Lan Zheng
- National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Dabing Zhang
- National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
- Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection , Huaian 223300, China
| | - Litao Yang
- National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
47
|
Nadal A, De Giacomo M, Einspanier R, Kleter G, Kok E, McFarland S, Onori R, Paris A, Toldrà M, van Dijk J, Wal JM, Pla M. Exposure of livestock to GM feeds: Detectability and measurement. Food Chem Toxicol 2017; 117:13-35. [PMID: 28847764 DOI: 10.1016/j.fct.2017.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/30/2017] [Accepted: 08/22/2017] [Indexed: 11/30/2022]
Abstract
This review explores the possibilities to determine livestock consumption of genetically modified (GM) feeds/ingredients including detection of genetically modified organism (GMO)-related DNA or proteins in animal samples, and the documentary system that is in place for GM feeds under EU legislation. The presence and level of GMO-related DNA and proteins can generally be readily measured in feeds, using established analytical methods such as polymerase chain reaction and immuno-assays, respectively. Various technical challenges remain, such as the simultaneous detection of multiple GMOs and the identification of unauthorized GMOs for which incomplete data on the inserted DNA may exist. Given that transfer of specific GMO-related DNA or protein from consumed feed to the animal had seldom been observed, this cannot serve as an indicator of the individual animal's prior exposure to GM feeds. To explore whether common practices, information exchange and the specific GM feed traceability system in the EU would allow to record GM feed consumption, the dairy chain in Catalonia, where GM maize is widely grown, was taken as an example. It was thus found that this system would neither enable determination of an animal's consumption of specific GM crops, nor would it allow for quantitation of the exposure.
Collapse
Affiliation(s)
- Anna Nadal
- Institute for Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi (EPS-1), 17003 Girona, Spain.
| | - Marzia De Giacomo
- Department of Veterinary Public Health and Food Safety, GMO and Mycotoxins Unit, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Gijs Kleter
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - Esther Kok
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - Sarah McFarland
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Roberta Onori
- Department of Veterinary Public Health and Food Safety, GMO and Mycotoxins Unit, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alain Paris
- Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS, UMR7245 MCAM, Paris, France
| | - Mònica Toldrà
- Institute for Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi (EPS-1), 17003 Girona, Spain
| | - Jeroen van Dijk
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - Jean-Michel Wal
- AgroParisTech, Institut National de la Recherche Agronomique (INRA), Paris, France
| | - Maria Pla
- Institute for Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi (EPS-1), 17003 Girona, Spain
| |
Collapse
|
48
|
Park D, Park SH, Ban YW, Kim YS, Park KC, Kim NS, Kim JK, Choi IY. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data. BMC Biotechnol 2017; 17:67. [PMID: 28810845 PMCID: PMC5558722 DOI: 10.1186/s12896-017-0386-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Genetically modified crops (GM crops) have been developed to improve the agricultural traits of modern crop cultivars. Safety assessments of GM crops are of paramount importance in research at developmental stages and before releasing transgenic plants into the marketplace. Sequencing technology is developing rapidly, with higher output and labor efficiencies, and will eventually replace existing methods for the molecular characterization of genetically modified organisms. METHODS To detect the transgenic insertion locations in the three GM rice gnomes, Illumina sequencing reads are mapped and classified to the rice genome and plasmid sequence. The both mapped reads are classified to characterize the junction site between plant and transgene sequence by sequence alignment. RESULTS Herein, we present a next generation sequencing (NGS)-based molecular characterization method, using transgenic rice plants SNU-Bt9-5, SNU-Bt9-30, and SNU-Bt9-109. Specifically, using bioinformatics tools, we detected the precise insertion locations and copy numbers of transfer DNA, genetic rearrangements, and the absence of backbone sequences, which were equivalent to results obtained from Southern blot analyses. CONCLUSION NGS methods have been suggested as an effective means of characterizing and detecting transgenic insertion locations in genomes. Our results demonstrate the use of a combination of NGS technology and bioinformatics approaches that offers cost- and time-effective methods for assessing the safety of transgenic plants.
Collapse
Affiliation(s)
- Doori Park
- Department of Agriculture and Life Industry, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 24341 Republic of Korea
- Department of Molecular Bioscience, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 24341 Republic of Korea
| | - Su-Hyun Park
- Graduate School of International Agricultural Technology and Crop Biotech Institute/GreenBio Science and Technology, Seoul National University, 1447, Pyeongchang, Gangwon, 25354 Republic of Korea
- Present address: Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Yong Wook Ban
- Department of Agriculture and Life Industry, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 24341 Republic of Korea
- Department of Forest Resources, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 24341 Republic of Korea
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology and Crop Biotech Institute/GreenBio Science and Technology, Seoul National University, 1447, Pyeongchang, Gangwon, 25354 Republic of Korea
| | - Kyoung-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 24341 Republic of Korea
- Bioherb Research Institute, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 24341 Republic of Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 24341 Republic of Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotech Institute/GreenBio Science and Technology, Seoul National University, 1447, Pyeongchang, Gangwon, 25354 Republic of Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 24341 Republic of Korea
- Bioherb Research Institute, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 24341 Republic of Korea
| |
Collapse
|
49
|
Wang Q, Shi N, Shang Y, Liu X, Fu W, Zhao Y, Pan D, Xu W, Lin X. Comprehensive molecular characterization of a transgenic pig expressing hCD46 gene. Gene 2017; 626:376-385. [DOI: 10.1016/j.gene.2017.05.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
50
|
Li WX, Wu SL, Liu YH, Jin GL, Zhao HJ, Fan LJ, Shu QY. Genome-wide profiling of genetic variation in Agrobacterium-transformed rice plants. J Zhejiang Univ Sci B 2017; 17:992-996. [PMID: 27921404 DOI: 10.1631/jzus.b1600301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Agrobacterium-mediated transformation has been widely used in producing transgenic plants, and was recently used to generate "transgene-clean" targeted genomic modifications coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system. Although tremendous variation in morphological and agronomic traits, such as plant height, seed fertility, and grain size, was observed in transgenic plants, the underlying mechanisms are not yet well understood, and the types and frequency of genetic variation in transformed plants have not been fully disclosed. To reveal the genome-wide variation in transformed plants, we sequenced the genomes of five independent T0 rice plants using next-generation sequencing (NGS) techniques. Bioinformatics analyses followed by experimental validation revealed the following: (1) in addition to transfer-DNA (T-DNA) insertions, three transformed plants carried heritable plasmid backbone DNA of variable sizes (855-5216 bp) and in different configurations with the T-DNA insertions (linked or apart); (2) each transgenic plant contained an estimated 338-1774 independent genetic variations (single nucleotide variations (SNVs) or small insertion/deletions); and (3) 2-6 new Tos17 insertions were detected in each transformed plant, but no other transposable elements or bacterial genomic DNA.
Collapse
Affiliation(s)
- Wen-Xu Li
- State Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China.,Institute for Wheat Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - San-Ling Wu
- Analysis Center of Agrobiology and Environmental Sciences, Faculty of Agriculture, Life and Environment Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Hua Liu
- State Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gu-Lei Jin
- Hangzhou Guhe Information and Technology Co., Ltd., Hangzhou 310058, China
| | - Hai-Jun Zhao
- State Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Long-Jiang Fan
- IBM Biocomputational Laboratory, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing-Yao Shu
- State Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|