1
|
Ivich F, Calderon I, Fang Q, Clark H, Niedre M. Ratiometric fluorescence sensing and quantification of circulating blood sodium sensors in mice in vivo. BIOMEDICAL OPTICS EXPRESS 2023; 14:5555-5568. [PMID: 38021147 PMCID: PMC10659809 DOI: 10.1364/boe.499263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
In this work, we introduce ratiometric diffuse in vivo flow cytometry (R-DiFC) for quantitative measurement of circulating fluorescent red blood cell (fRBC) sensors for systemic blood sodium levels. Unlike in our previous work in measuring circulating fRBC sensors, R-DiFC allows simultaneous measurement of two fluorophores encapsulated in the sensor, the ratio of which enables self-calibration of the fluorescence signal with different fRBC depths in biological tissue. We show that the R-DiFC signal varies significantly less than either fluorescence signal alone. This work holds promise for personalized monitoring of systemic sodium for bipolar patients in the future.
Collapse
Affiliation(s)
- Fernando Ivich
- Department of Bioengineering, Northeastern University, Boston, MA 02120, USA
| | - Isen Calderon
- Department of Bioengineering, Northeastern University, Boston, MA 02120, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, MA 02120, USA
| | - Heather Clark
- Department of Bioengineering, Northeastern University, Boston, MA 02120, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA 02120, USA
| |
Collapse
|
2
|
Folz J, Wasserman JH, Jo J, Wang X, Kopelman R. Photoacoustic Chemical Imaging Sodium Nano-Sensor Utilizing a Solvatochromic Dye Transducer for In Vivo Application. BIOSENSORS 2023; 13:923. [PMID: 37887116 PMCID: PMC10605089 DOI: 10.3390/bios13100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Sodium has many vital and diverse roles in the human body, including maintaining the cellular pH, generating action potential, and regulating osmotic pressure. In cancer, sodium dysregulation has been correlated with tumor growth, metastasis, and immune cell inhibition. However, most in vivo sodium measurements are performed via Na23 NMR, which is handicapped by slow acquisition times, a low spatial resolution (in mm), and low signal-to-noise ratios. We present here a plasticizer-free, ionophore-based sodium-sensing nanoparticle that utilizes a solvatochromic dye transducer to circumvent the pH cross-sensitivity of most previously reported sodium nano-sensors. We demonstrate that this nano-sensor is non-toxic, boasts a 200 μM detection limit, and is over 1000 times more selective for sodium than potassium. Further, the in vitro photoacoustic calibration curve presented demonstrates the potential of this nano-sensor for performing the in vivo chemical imaging of sodium over the entire physiologically relevant concentration range.
Collapse
Affiliation(s)
- Jeff Folz
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Janggun Jo
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.J.); (X.W.)
| | - Xueding Wang
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.J.); (X.W.)
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
3
|
Ionophore-Based Potassium Selective Fluorescent Organosilica Nano-Optodes Containing Covalently Attached Solvatochromic Dyes. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fluorescent nanoprobes containing ionophores and solvatochromic dyes (SDs) were previously reported as an alternative to chromoionophore-based nano-optodes. However, the small-molecular SDs are prone to leakage and sequestration in complex samples. Here, we chemically attached the SDs to the surface of organosilica nanospheres through copper-catalyzed Click chemistry to prevent dye leakage. The nano-optodes remained well responsive to K+ even after exposure to a large amount of cation-exchange resin, which acted as a sink of the SDs. The potassium nanoprobes exhibited a dynamic range between 1 μM to 10 mM and a good selectivity thanks to valinomycin. Preliminary sensing device based on a nylon filter paper and agarose hydrogel was demonstrated. The results indicate that the covalent anchoring of SDs on nanospheres is promising for developing ionophore-based nanoprobes.
Collapse
|
4
|
Oishi R, Maki K, Mizuta T, Sueyoshi K, Endo T, Hisamoto H. Enzyme-responsive fluorescent nanoemulsion based on lipophilic dye liquid. Analyst 2021; 146:4121-4124. [PMID: 34075944 DOI: 10.1039/d1an00447f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enzyme-responsive fluorescent nanoemulsion (NE) based on lipophilic dye liquid (LDL) was developed for alkaline phosphatase (ALP). The response mechanism of the NE involved enzymatic reactions and simultaneous extraction of anions. The LDL-based NE exhibited 3.8 times higher sensitivity than plasticizer-based conventional NE. Detection limit and response range were 2.7 (U L-1) and 5-50 (U L-1), respectively. The response time was reduced to less than half that of the LDL-based membrane.
Collapse
Affiliation(s)
- Ryoutarou Oishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Kaho Maki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Tatsumi Mizuta
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan. and Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 5-3 Yonban-cho, Chiyoda, Tokyo 102-8666, Japan
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
5
|
Huynh GT, Henderson EC, Frith JE, Meagher L, Corrie SR. Stability and Performance Study of Fluorescent Organosilica pH Nanosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6578-6587. [PMID: 34009994 DOI: 10.1021/acs.langmuir.1c00936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Long-term stability and function are key challenges for optical nanosensors operating in complex biological environments. While much focus is rightly placed on issues related to specificity, sensitivity, reversibility, and response time, many nanosensors are not capable of transducing accurate results over prolonged time periods. Sensors could fail over time due to the degradation of scaffold material, degradation of signaling dyes and components, or a combination of both. It is critical to investigate how such degradative processes affect sensor output, as the consequences could be severe. Herein, we used fluorescent core-shell organosilica pH nanosensors as a model system, incubating them in a range of common aqueous solutions over time at different temperatures, and then searched for changes in fluorescence signal, particle size, and evidence of silica degradation. We found that these ratiometric nanosensors produced stable optical signals after aging for 30 days at 37 °C in standard saline buffers with and without 10% fetal bovine serum, and without any evidence of material degradation. Next, we evaluated their performance as real-time pH nanosensors in bacterial suspension cultures, observing a close agreement with a pH electrode for control nanosensors, yet observing obvious deviations in signal based on the aging conditions. The results show that while the organosilica scaffold does not degrade appreciably over time, careful selection of dyes and further systematic investigations into the effects of salt and protein levels are required to realize long-term stable nanosensors.
Collapse
Affiliation(s)
- Gabriel T Huynh
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC 3800, Australia
| | - Edward C Henderson
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC 3800, Australia
| | - Jessica E Frith
- Monash Institute of Medical Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Material Science and Engineering, Monash University, Clayton, VIC 3800, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Laurence Meagher
- Department of Material Science and Engineering, Monash University, Clayton, VIC 3800, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Simon R Corrie
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC 3800, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
6
|
|
7
|
Dailey AL, Greer MD, Sodia TZ, Jewell MP, Kalin TA, Cash KJ. LipiSensors: Exploiting Lipid Nanoemulsions to Fabricate Ionophore-Based Nanosensors. BIOSENSORS-BASEL 2020; 10:bios10090120. [PMID: 32927619 PMCID: PMC7557773 DOI: 10.3390/bios10090120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
Ionophore-based nanosensors (IBNS) are tools that enable quantification of analytes in complex chemical and biological systems. IBNS methodology is adopted from that of bulk optodes where an ion exchange event is converted to a change in optical output. While valuable, an important aspect for application is the ability to intentionally tune their size with simple approaches, and ensure that they contain compounds safe for application. Lipidots are a platform of size tunable lipid nanoemulsions with a hydrophobic lipid core typically used for imaging and drug delivery. Here, we present LipiSensors as size tunable IBNS by exploiting the Lipidot model as a hydrophobic structural support for the sensing moieties that are traditionally encased in plasticized PVC nanoparticles. The LipiSensors we demonstrate here are sensitive and selective for calcium, reversible, and have a lifetime of approximately one week. By changing the calcium sensing components inside the hydrophobic core of the LipiSensors to those sensitive for oxygen, they are also able to be used as ratiometric O2 sensitive nanosensors via a quenching-based mechanism. LipiSensors provide a versatile, general platform nanosensing with the ability to directly tune the size of the sensors while including biocompatible materials as the structural support by merging sensing approaches with the Lipidot platform.
Collapse
Affiliation(s)
- Alexandra L. Dailey
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
| | - Meredith D. Greer
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
| | - Tyler Z. Sodia
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO 80401, USA.;
| | - Megan P. Jewell
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
| | - Tabitha A. Kalin
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
| | - Kevin J. Cash
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA; (A.L.D.); (M.D.G.); (M.P.J.); (T.A.K.)
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO 80401, USA.;
- Correspondence: ; Tel.: +1-303-273-3631
| |
Collapse
|
8
|
Di W, Clark HA. Optical Nanosensors for in vivo Physiological Chloride Detection for Monitoring Cystic Fibrosis Treatment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:1441-1448. [PMID: 32226484 PMCID: PMC7100910 DOI: 10.1039/c9ay02717c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Personalized approaches for continuous monitoring of chloride levels are potentially valuable for evaluating the efficacy of new treatments of genetic disorders such as cystic fibrosis. In this report, we validated optode-based nanosensors for real-time chloride monitoring in the interstitial fluid of living animals. These nanosensors take advantage of a ratiometric sensing scheme which demonstrates reversible and selective chloride detection in the physiological range. We further investigate how skin pigmentation affects the sensor performance during in vivo fluorescence imaging. We successfully monitored endogenous chloride changes using nanosensors during pharmacological treatment in a cystic fibrosis mouse model. We believe this platform is a valuable tool for chloride detection which could assess the efficacy of new treatments for cystic fibrosis.
Collapse
Affiliation(s)
- Wenjun Di
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Heather A Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Real-time particle-by-particle detection of erythrocyte-camouflaged microsensor with extended circulation time in the bloodstream. Proc Natl Acad Sci U S A 2020; 117:3509-3517. [PMID: 32019879 DOI: 10.1073/pnas.1914913117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Personalized medicine offers great potential benefits for disease management but requires continuous monitoring of drugs and drug targets. For instance, the therapeutic window for lithium therapy of bipolar disorder is very narrow, and more frequent monitoring of sodium levels could avoid toxicity. In this work, we developed and validated a platform for long-term, continuous monitoring of systemic analyte concentrations in vivo. First, we developed sodium microsensors that circulate directly in the bloodstream. We used "red blood cell mimicry" to achieve long sensor circulation times of up to 2 wk, while being stable, reversible, and sensitive to sodium over physiologically relevant concentration ranges. Second, we developed an external optical reader to detect and quantify the fluorescence activity of the sensors directly in circulation without having to draw blood samples and correlate the measurement with a phantom calibration curve to measure in vivo sodium. The reader design is inherently scalable to larger limbs, species, and potentially even humans. In combination, this platform represents a paradigm for in vivo drug monitoring that we anticipate will have many applications in the future.
Collapse
|
10
|
Lee CH, Folz J, Tan JWY, Jo J, Wang X, Kopelman R. Chemical Imaging in Vivo: Photoacoustic-Based 4-Dimensional Chemical Analysis. Anal Chem 2019; 91:2561-2569. [DOI: 10.1021/acs.analchem.8b04797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chang H. Lee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff Folz
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joel W. Y. Tan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Rong G, Kim EH, Qiang Y, Di W, Zhong Y, Zhao X, Fang H, Clark HA. Imaging Sodium Flux during Action Potentials in Neurons with Fluorescent Nanosensors and Transparent Microelectrodes. ACS Sens 2018; 3:2499-2505. [PMID: 30358986 DOI: 10.1021/acssensors.8b00903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sodium flux plays a pivotal role in neurobiological processes including initiation of action potentials and regulation of neuronal cell excitability. However, unlike the wide range of fluorescent calcium indicators used extensively for cellular studies, the choice of sodium probes remains limited. We have previously demonstrated optode-based nanosensors (OBNs) for detecting sodium ions with advantageous modular properties such as tunable physiological sensing range, full reversibility, and superb selectivity against key physiological interfering ion potassium. (1) Motivated by bridging the gap between the great interest in sodium imaging of neuronal cell activity as an alternative to patch clamp and limited choices of optical sodium indicators, in this Letter we report the application of nanosensors capable of detecting intracellular sodium flux in isolated rat dorsal root ganglion neurons during electrical stimulation using transparent microelectrodes. Taking advantage of the ratiometric detection scheme offered by this fluorescent modular sensing platform, we performed dual color imaging of the sensor to monitor the intracellular sodium currents underlying trains of action potentials in real time. The combination of nanosensors and microelectrodes for monitoring neuronal sodium dynamics is a novel tool for investigating the regulatory role of sodium ions involved during neural activities.
Collapse
|
12
|
Gerold CT, Bakker E, Henry CS. Selective Distance-Based K+ Quantification on Paper-Based Microfluidics. Anal Chem 2018; 90:4894-4900. [DOI: 10.1021/acs.analchem.8b00559] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chase T. Gerold
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
- Department of Inorganic and Analytical Chemistry, The University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, The University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| |
Collapse
|
13
|
A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging. Sci Rep 2017; 7:10819. [PMID: 28883429 PMCID: PMC5589868 DOI: 10.1038/s41598-017-11162-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/18/2017] [Indexed: 11/22/2022] Open
Abstract
Optical nanoparticle (NP)-based sensors have been widely implemented as tools for detection of targeted ions and biomolecules. The NP sensing platform offer a modular design that can incorporate different sensing components for greater target specificity and the ability to tune the dynamic range, as well as encapsulation of multiple dyes to generate a ratiometric signal with varying spectra. Despite these advantages, demonstrating quantitative ion imaging for intracellular measurement still possess a major challenge. Here, we describe fundamentals that enable intracellular validation of this approach using ion-selective nanosensors for investigating calcium (Ca2+) as a model ion. While conventional indicators can improve individual aspects of indicator performance such as Kd, wavelength, and ratiometric measurements, the use of NP sensors can achieve combined benefits of addressing these issues simultaneously. The nanosensor incorporates highly calcium-selective ionophores and two fluorescence indicators that act as signal transducers to facilitate quantitative ratiometric imaging. For intracellular Ca2+ application, the sensors are fine-tuned to physiological sensing range, and live-cell imaging and quantification are demonstrated in HeLa cells loaded with nanosensors and their responsiveness to carbachol-evoked store release (~400 nM). The current nanosensor design thus provides a promising sensing platform for real-time detection and optical determination of intracellular ions.
Collapse
|
14
|
Lee CH, Folz J, Zhang W, Jo J, Tan JWY, Wang X, Kopelman R. Ion-Selective Nanosensor for Photoacoustic and Fluorescence Imaging of Potassium. Anal Chem 2017. [PMID: 28633520 DOI: 10.1021/acs.analchem.7b00930] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ion-selective optodes (ISOs), the optical analog of ion-selective electrodes, have played an increasingly important role in chemical and biochemical analysis. Here we extend this technique to ion-selective photoacoustic optodes (ISPAOs) that serve at the same time as fluorescence-based ISOs, and apply it specifically to potassium (K+). Notably, the potassium ion is one of the most abundant cations in biological systems, involved in numerous physiological and pathological processes. Furthermore, it has been recently reported that the presence of abnormal extracellular potassium concentrations in tumors suppresses the immune responses and thus suppresses immunotherapy. However, unfortunately, sensors capable of providing potassium images in vivo are still a future proposition. Here, we prepared an ion-selective potassium nanosensor (NS) aimed at in vivo photoacoustic (PA) chemical imaging of the extracellular environment, while being also capable of fluorescence based intracellular ion-selective imaging. This potassium nanosensor (K+ NS) modulates its optical properties (absorbance and fluorescence) according to the potassium concentration. The K+ NS is capable of measuring potassium, in the range of 1 mM to 100 mM, with high sensitivity and selectivity, by ISPAO based measurements. Also, a near infrared dye surface modified K+ NS allows fluorescence-based potassium sensing in the range of 20 mM to 1 M. The K+ NS serves thus as both PA and fluorescence based nanosensor, with response across the biologically relevant K+ concentrations, from the extracellular 5 mM typical values (through PA imaging) to the intracellular 150 mM typical values (through fluorescence imaging).
Collapse
Affiliation(s)
- Chang H Lee
- Department of Chemistry, ‡Biophysics Program, §Department of Biomedical Engineering, and ∥Department of Radiology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jeff Folz
- Department of Chemistry, ‡Biophysics Program, §Department of Biomedical Engineering, and ∥Department of Radiology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Wuliang Zhang
- Department of Chemistry, ‡Biophysics Program, §Department of Biomedical Engineering, and ∥Department of Radiology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Janggun Jo
- Department of Chemistry, ‡Biophysics Program, §Department of Biomedical Engineering, and ∥Department of Radiology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Joel W Y Tan
- Department of Chemistry, ‡Biophysics Program, §Department of Biomedical Engineering, and ∥Department of Radiology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Xueding Wang
- Department of Chemistry, ‡Biophysics Program, §Department of Biomedical Engineering, and ∥Department of Radiology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Raoul Kopelman
- Department of Chemistry, ‡Biophysics Program, §Department of Biomedical Engineering, and ∥Department of Radiology, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Levin M, Pezzulo G, Finkelstein JM. Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form. Annu Rev Biomed Eng 2017; 19:353-387. [PMID: 28633567 PMCID: PMC10478168 DOI: 10.1146/annurev-bioeng-071114-040647] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy. We suggest that quantitative strategies recently developed to infer semantic content and information processing from ionic activity in the brain might provide important clues to cracking the bioelectric code. Gaining control of the mechanisms by which large-scale shape is regulated in vivo will drive transformative advances in bioengineering, regenerative medicine, and synthetic morphology, and could be used to therapeutically address birth defects, traumatic injury, and cancer.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Tufts University, Medford, Massachusetts 02155-4243;
- Allen Discovery Center, Tufts University, Medford, Massachusetts 02155;
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome 00185, Italy;
| | | |
Collapse
|
16
|
Di W, Czarny RS, Fletcher NA, Krebs MD, Clark HA. Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing. Pharm Res 2016; 33:2433-44. [PMID: 27380188 PMCID: PMC5007178 DOI: 10.1007/s11095-016-1987-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/27/2016] [Indexed: 01/12/2023]
Abstract
PURPOSE This study aims to develop biodegradable and biocompatible polymer-based nanofibers that continuously monitor pH within microenvironments of cultured cells in real-time. In the future, these fibers will provide a scaffold for tissue growth while simultaneously monitoring the extracellular environment. METHODS Sensors to monitor pH were created by directly electrospinning the sensor components within a polymeric matrix. Specifically, the entire fiber structure is composed of the optical equivalent of an electrode, a pH-sensitive fluorophore, an ionic additive, a plasticizer, and a polymer to impart mechanical stability. The resulting poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA) based sensors were characterized by morphology, dynamic range, reversibility and stability. Since PCL-based nanofibers delivered the most desirable analytical response, this matrix was used for cellular studies. RESULTS Electrospun nanofiber scaffolds (NFSs) were created directly out of optode material. The resulting NFS sensors respond to pH changes with a dynamic range centered at 7.8 ± 0.1 and 9.6 ± 0.2, for PCL and PLGA respectively. NFSs exhibited multiple cycles of reversibility with a lifetime of at least 15 days with preservation of response characteristics. By comparing the two NFSs, we found PCL-NFSs are more suitable for pH sensing due to their dynamic range and superior reversibility. CONCLUSION The proposed sensing platform successfully exhibits a response to pH and compatibility with cultured cells. NSFs will be a useful tool for creating 3D cellular scaffolds that can monitor the cellular environment with applications in fields such as drug discovery and tissue engineering.
Collapse
Affiliation(s)
- Wenjun Di
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Ryan S Czarny
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401, USA
| | - Nathan A Fletcher
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401, USA
| | - Melissa D Krebs
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401, USA
| | - Heather A Clark
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
17
|
Göröcs Z, Rivenson Y, Ceylan Koydemir H, Tseng D, Troy TL, Demas V, Ozcan A. Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy. ACS NANO 2016; 10:8989-99. [PMID: 27622866 DOI: 10.1021/acsnano.6b05129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Compact and cost-effective systems for in vivo fluorescence and near-infrared imaging in combination with activatable reporters embedded inside the skin to sample interstitial fluid or blood can enable a variety of biomedical applications. However, the strong autofluorescence of human skin creates an obstacle for fluorescence-based sensing. Here we introduce a method for quantitative fluorescence sensing through highly autofluorescent, scattering, and absorbing media. For this, we created a compact and cost-effective fluorescence microscope weighing <40 g and used it to measure various concentrations of a fluorescent dye embedded inside a tissue phantom, which was designed to mimic the optical characteristics of human skin. We used an elliptical Gaussian beam excitation to digitally separate tissue autofluorescence from target fluorescence, although they severely overlap in both space and optical spectrum. Using ∼10-fold less excitation intensity than the safety limit for skin radiation exposure, we successfully quantified the density of the embedded fluorophores by imaging the skin phantom surface and achieved a detection limit of ∼5 × 10(5) and ∼2.5 × 10(7) fluorophores within ∼0.01 μL sample volume that is positioned 0.5 and 2 mm below the phantom surface, corresponding to a concentration of 105.9 pg/mL and 5.3 ng/mL, respectively. We also confirmed that this approach can track the spatial misalignments of the mobile microscope with respect to the embedded target fluorescent volume. This wearable microscopy platform might be useful for designing implantable biochemical sensors with the capability of spatial multiplexing to continuously monitor a panel of biomarkers and chronic conditions even at patients' home.
Collapse
Affiliation(s)
| | | | | | | | - Tamara L Troy
- Verily Life Sciences, LLC , Mountain View, California 94043, United States
| | - Vasiliki Demas
- Verily Life Sciences, LLC , Mountain View, California 94043, United States
| | | |
Collapse
|
18
|
Ruckh TT, Skipwith CG, Chang W, Bulovic V, Anikeeva P, Clark HA. Ion-Switchable Quantum Dot Förster Resonance Energy Transfer Rates in Ratiometric Potassium Sensors. ACS NANO 2016; 10:4020-30. [PMID: 27089024 PMCID: PMC5270641 DOI: 10.1021/acsnano.5b05396] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The tools for optically imaging cellular potassium concentrations in real-time are currently limited to a small set of molecular indicator dyes. Quantum dot-based nanosensors are more photostable and tunable than organic indicators, but previous designs have fallen short in size, sensitivity, and selectivity. Here, we introduce a small, sensitive, and selective nanosensor for potassium measurements. A dynamic quencher modulates the fluorescence emitted by two different quantum dot species to produce a ratiometric signal. We characterized the potassium-modulated sensor properties and investigated the photonic interactions within the sensors. The quencher's protonation changes in response to potassium, which modulates its Förster radiative energy transfer rate and the corresponding interaction radii with each quantum dot species. The nanosensors respond to changes in potassium concentrations typical of the cellular environment and thus provide a promising tool for imaging potassium fluxes during biological events.
Collapse
Affiliation(s)
- Timothy T. Ruckh
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, Boston, MA 02115
| | - Christopher G. Skipwith
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, Boston, MA 02115
| | - Wendi Chang
- Department of Electrical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Vladimir Bulovic
- Department of Electrical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Heather A. Clark
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, Boston, MA 02115
| |
Collapse
|
19
|
Emmons-Bell M, Durant F, Hammelman J, Bessonov N, Volpert V, Morokuma J, Pinet K, Adams DS, Pietak A, Lobo D, Levin M. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms. Int J Mol Sci 2015; 16:27865-96. [PMID: 26610482 PMCID: PMC4661923 DOI: 10.3390/ijms161126065] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022] Open
Abstract
The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together, these data and analyses shed light on important physiological modifiers of morphological information in dictating species-specific shape, and reveal them to be a novel instructive input into head patterning in regenerating planaria.
Collapse
Affiliation(s)
- Maya Emmons-Bell
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Fallon Durant
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Jennifer Hammelman
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Nicholas Bessonov
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg 199178, Russia;
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne 69622, France;
| | - Junji Morokuma
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Kaylinnette Pinet
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | | | - Daniel Lobo
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA;
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
- Correspondence: ; Tel.: +1-617-627-6161; Fax: +1-617-627-6121
| |
Collapse
|
20
|
Sahari A, Ruckh T, Hutchings R, Clark H. Development of an Optical Nanosensor Incorporating a pH-Sensitive Quencher Dye for Potassium Imaging. Anal Chem 2015; 87:10684-7. [PMID: 26444247 PMCID: PMC5241046 DOI: 10.1021/acs.analchem.5b03080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
One of the key challenges in the design of a sensor for measuring extracellular changes in potassium concentration is selectivity against the competing cation, sodium. Here, we present an optode-based nanosensor selective to potassium ions, owing to the addition of a pH-sensitive quencher molecule paired with a static fluorophore. The nanosensor was fabricated using emulsification and characterized in solution by absorbance and fluorescence spectroscopy. The resulting nanosensor detected potassium with nearly 1 order of magnitude higher selectivity compared to our chromoionophore-based optode nanosensors. In addition to the improved selectivity, the nanosensor has the following properties required for measurements in a biological environment: (1) a physiologically relevant dynamic range, (2) response to potassium ions at a physiological ionic strength, and (3) response to serum potassium in the presence of fouling biological components. The potassium nanosensor described in this study is envisioned to have application in cellular imaging and drug screening.
Collapse
Affiliation(s)
- Ali Sahari
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| | - Tim Ruckh
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| | | | - Heather Clark
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| |
Collapse
|
21
|
Mikhelson KN, Peshkova MA. Advances and trends in ionophore-based chemical sensors. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4506] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Cash KJ, Li C, Xia J, Wang LV, Clark HA. Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo. ACS NANO 2015; 9:1692-8. [PMID: 25588028 PMCID: PMC4364417 DOI: 10.1021/nn5064858] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Personalized medicine could revolutionize how primary care physicians treat chronic disease and how researchers study fundamental biological questions. To realize this goal, we need to develop more robust, modular tools and imaging approaches for in vivo monitoring of analytes. In this report, we demonstrate that synthetic nanosensors can measure physiologic parameters with photoacoustic contrast, and we apply that platform to continuously track lithium levels in vivo. Photoacoustic imaging achieves imaging depths that are unattainable with fluorescence or multiphoton microscopy. We validated the photoacoustic results that illustrate the superior imaging depth and quality of photoacoustic imaging with optical measurements. This powerful combination of techniques will unlock the ability to measure analyte changes in deep tissue and will open up photoacoustic imaging as a diagnostic tool for continuous physiological tracking of a wide range of analytes.
Collapse
Affiliation(s)
- Kevin J. Cash
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Chiye Li
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jun Xia
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Heather A. Clark
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Corresponding Author Correspondence to:
| |
Collapse
|
23
|
Ion selective optodes: from the bulk to the nanoscale. Anal Bioanal Chem 2015; 407:3899-910. [DOI: 10.1007/s00216-014-8413-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/08/2014] [Accepted: 12/13/2014] [Indexed: 01/06/2023]
|