1
|
Liu X, Du F, Sun L, Li J, Chen S, Li N, Chang Y, Cui J, Chen W, Yao D. Anthocyanin metabolism in Nelumbo: translational and post-translational regulation control transcription. BMC PLANT BIOLOGY 2023; 23:61. [PMID: 36710356 PMCID: PMC9885672 DOI: 10.1186/s12870-023-04068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Lotus (Nelumbo Adans.) is used as an herbal medicine and the flowers are a source of natural flavonoids. 'Da Sajin', which was firstly found in the plateau area, is a natural mutant in flower color with red streamers dyeing around white petals. RESULTS The LC-MS-MS results showed that eight anthocyanin compounds, including cyanidin 3-O-glucoside, cyanidin 3-O-galactoside, malvidin 3-O-galactoside, and malvidin 3-O-glucoside, were differentially enriched in red-pigmented tissues of the petals, whereas most of these metabolites were undetected in white tissues of the petals. Transcriptome profiling indicated that the relative high expression levels of structural genes, such as NnPAL, NnF3H, and NnANS, was inconsistent with the low anthocyanin concentration in white tissues. Members of the NnMYB and NnbHLH transcription factor families were presumed to play a role in the metabolic flux in the anthocyanin and proanthocyanidin biosynthetic pathway. The expression model of translational initiation factor, ribosomal proteins and SKP1-CUL1-F-box protein complex related genes suggested an important role for translational and post-translational network in anthocyanin biosynthesis. In addition, pathway analysis indicated that light reaction or photo destruction might be an important external cause for floral color determination in lotus. CONCLUSIONS In this study, it is supposed that the natural lotus mutant 'Da Sajin' may have originated from a red-flowered ancestor. Partial loss of anthocyanin pigments in petals may result from metabolic disorder caused by light destruction. This disorder is mainly regulated at post translation and translation level, resulting in a non-inherited phenotype. These results contribute to an improved understanding of anthocyanin metabolism in lotus, and indicate that the translational and post-translational regulatory network determines the metabolic flux of anthocyanins and proanthocyanidins under specific environmental conditions.
Collapse
Affiliation(s)
- Xiaojing Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Linhe Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jinfeng Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Shaozhou Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Naiwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yajun Chang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jian Cui
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Wen Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
2
|
Lysenko V, Varduny T. High levels of anoxygenic photosynthesis revealed by dual-frequency Fourier photoacoustics in Ailanthus altissima leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:573-586. [PMID: 35413232 DOI: 10.1071/fp21093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
In contrast to oxygenic photosynthesis, true anoxygenic photosynthesis is not associated with O2 evolution originated from water photolysis but still converts light energy to that of the phosphoanhydride bonds of ATP. In a narrow sense, anoxygenic photosynthesis is mainly known as to be related to the purple and green sulfur bacteria, but in a broad sense, it also occurs in the vascular plants. The portion of photosynthetic water photolysis that is compensated by the processes of O2 uptake (respiration, photorespiration, Mehler cycle, etc.) may be referred to as 'quasi' anoxygenic photosynthesis. Photoacoustic method allows for the separate detection of photolytic O2 at frequencies of measuring light about 20-40Hz, whereas at 250-400Hz, it detects the photochemical energy storage. We have developed a fast-Fourier transform photoacoustic method enabling measurements of both these signals simultaneously in one sample. This method allows to calculate oxygenic coefficients, which reflect the part of photochemically stored light energy that is used for the water photolysis. We show that the true anoxygenic photosynthesis in Ailanthus altissima Mill. leaves reached very high levels under low light, under moderate light at the beginning of the 1-h period, and at the end of the 40-min period under saturating light.
Collapse
Affiliation(s)
- Vladimir Lysenko
- Academy of Biology and Biotechnology, Southern Federal University, Botanichesky spusk 7, 344041 Rostov-on-Don, Russia
| | - Tatyana Varduny
- Academy of Biology and Biotechnology, Southern Federal University, Botanichesky spusk 7, 344041 Rostov-on-Don, Russia
| |
Collapse
|
3
|
Ai P, Liu X, Li Z, Kang D, Khan MA, Li H, Shi M, Wang Z. Comparison of chrysanthemum flowers grown under hydroponic and soil-based systems: yield and transcriptome analysis. BMC PLANT BIOLOGY 2021; 21:517. [PMID: 34749661 PMCID: PMC8574001 DOI: 10.1186/s12870-021-03255-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Flowers of Chrysanthemum × morifolium Ramat. are used as tea in traditional Chinese cuisine. However, with increasing population and urbanization, water and land availability have become limiting for chrysanthemum tea production. Hydroponic culture enables effective, rapid nutrient exchange, while requiring no soil and less water than soil cultivation. Hydroponic culture can reduce pesticide residues in food and improve the quantity or size of fruits, flowers, and leaves, and the levels of active compounds important for nutrition and health. To date, studies to improve the yield and active compounds of chrysanthemum have focused on soil culture. Moreover, the molecular effects of hydroponic and soil culture on chrysanthemum tea development remain understudied. RESULTS Here, we studied the effects of soil and hydroponic culture on yield and total flavonoid and chlorogenic acid contents in chrysanthemum flowers (C. morifolium 'wuyuanhuang'). Yield and the total flavonoids and chlorogenic acid contents of chrysanthemum flowers were higher in the hydroponic culture system than in the soil system. Transcriptome profiling using RNA-seq revealed 3858 differentially expressed genes (DEGs) between chrysanthemum flowers grown in soil and hydroponic conditions. Gene Ontology (GO) enrichment annotation revealed that these differentially transcribed genes are mainly involved in "cytoplasmic part", "biosynthetic process", "organic substance biosynthetic process", "cell wall organization or biogenesis" and other processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed enrichment in "metabolic pathways", "biosynthesis of secondary metabolites", "ribosome", "carbon metabolism", "plant hormone signal transduction" and other metabolic processes. In functional annotations, pathways related to yield and formation of the main active compounds included phytohormone signaling, secondary metabolism, and cell wall metabolism. Enrichment analysis of transcription factors also showed that under the hydroponic system, bHLH, MYB, NAC, and ERF protein families were involved in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. CONCLUSIONS Hydroponic culture is a simple and effective way to cultivate chrysanthemum for tea production. A transcriptome analysis of chrysanthemum flowers grown in soil and hydroponic conditions. The large number of DEGs identified confirmed the difference of the regulatory machinery under two culture system.
Collapse
Affiliation(s)
- Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Xiaoqi Liu
- Zhengzhou A Boluo Fertilizer Company, Zhiji Road, Zhengzhou, 450121, Henan, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Dongru Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Han Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Mengkang Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng, 475004, Henan, China.
| |
Collapse
|
4
|
Sensitivity of Hydrangea paniculata Plants to Residual Herbicides in Recycled Irrigation Varies with Plant Growth Stage. WATER 2020. [DOI: 10.3390/w12051402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recycling irrigation return flow is a viable option to achieve sustainability in horticultural production systems, but residual herbicides present in recycled water may be phytotoxic. The sensitivity of plants to residual herbicides may vary depending on the growth stage of the plant. If sensitive growth stages are avoided, the risk associated with using recycled water can be reduced. Here, we quantified the effect of residual oryzalin and oxyfluorfen exposure at various growth stages of Hydrangea paniculata. Exposure to both herbicides reduced plant growth, leaf visual rating, soil plant analysis development (SPAD) chlorophyll index, net photosynthesis, and light-adapted fluorescence of H. paniculata. Herbicide injury was greater for plants exposed to herbicides at early growth stages, however, the recovery rate of those plants was also rapid. For oxyfluorfen, plants produced healthy new growth immediately after the end of exposure, but for oryzalin, even newly formed leaves developed herbicide injury after the end of exposure, therefore leaf damage continued to progress before recovering. However, damage caused by residual herbicide exposure at all growth stages recovered over time. Physiological measurements such as the SPAD index, net photosynthesis, and light-adapted fluorescence responded quickly to herbicides exposure hence provided an early indicator of herbicide damage and recovery.
Collapse
|
5
|
Calogero G, Bartolotta A, Di Marco G, Di Carlo A, Bonaccorso F. Vegetable-based dye-sensitized solar cells. Chem Soc Rev 2015; 44:3244-94. [DOI: 10.1039/c4cs00309h] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review we provide an overview of vegetable pigments in dye-sensitized solar cells, starting from main limitations of cell performance to cost analysis and scaling-up prospects.
Collapse
Affiliation(s)
| | | | - Gaetano Di Marco
- CNR-IPCF
- Istituto per i Processi Chimico-Fisici
- 98158 Messina
- Italy
| | - Aldo Di Carlo
- CHOSE – Centre for Hybrid and Organic Solar Energy – University of Rome “Tor Vergata”
- 00133 Roma
- Italy
| | | |
Collapse
|
6
|
Ohmiya A, Hirashima M, Yagi M, Tanase K, Yamamizo C. Identification of genes associated with chlorophyll accumulation in flower petals. PLoS One 2014; 9:e113738. [PMID: 25470367 PMCID: PMC4254739 DOI: 10.1371/journal.pone.0113738] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022] Open
Abstract
Plants have an ability to prevent chlorophyll accumulation, which would mask the bright flower color, in their petals. In contrast, leaves contain substantial amounts of chlorophyll, as it is essential for photosynthesis. The mechanisms of organ-specific chlorophyll accumulation are unknown. To identify factors that determine the chlorophyll content in petals, we compared the expression of genes related to chlorophyll metabolism in different stages of non-green (red and white) petals (very low chlorophyll content), pale-green petals (low chlorophyll content), and leaves (high chlorophyll content) of carnation (Dianthus caryophyllus L.). The expression of many genes encoding chlorophyll biosynthesis enzymes, in particular Mg-chelatase, was lower in non-green petals than in leaves. Non-green petals also showed higher expression of genes involved in chlorophyll degradation, including STAY-GREEN gene and pheophytinase. These data suggest that the absence of chlorophylls in carnation petals may be caused by the low rate of chlorophyll biosynthesis and high rate of degradation. Similar results were obtained by the analysis of Arabidopsis microarray data. In carnation, most genes related to chlorophyll biosynthesis were expressed at similar levels in pale-green petals and leaves, whereas the expression of chlorophyll catabolic genes was higher in pale-green petals than in leaves. Therefore, we hypothesize that the difference in chlorophyll content between non-green and pale-green petals is due to different levels of chlorophyll biosynthesis. Our study provides a basis for future molecular and genetic studies on organ-specific chlorophyll accumulation.
Collapse
Affiliation(s)
- Akemi Ohmiya
- National Institute of Floricultural Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-8519, Japan
- * E-mail:
| | - Masumi Hirashima
- National Institute of Floricultural Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-8519, Japan
| | - Masafumi Yagi
- National Institute of Floricultural Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-8519, Japan
| | - Koji Tanase
- National Institute of Floricultural Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-8519, Japan
| | - Chihiro Yamamizo
- National Institute of Floricultural Science, National Agriculture and Food Research Organization, Fujimoto 2-1, Tsukuba, Ibaraki 305-8519, Japan
| |
Collapse
|