1
|
Asadi M, Ghorbani SH, Mahdavian L, Aghamohammadi M. Graphene-based hybrid composites for cancer diagnostic and therapy. J Transl Med 2024; 22:611. [PMID: 38956651 PMCID: PMC11218089 DOI: 10.1186/s12967-024-05438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
The application of graphene-based nanocomposites for therapeutic and diagnostic reasons has advanced considerably in recent years due to advancements in the synthesis and design of graphene-based nanocomposites, giving rise to a new field of nano-cancer diagnosis and treatment. Nano-graphene is being utilized more often in the field of cancer therapy, where it is employed in conjunction with diagnostics and treatment to address the complex clinical obstacles and problems associated with this life-threatening illness. When compared to other nanomaterials, graphene derivatives stand out due to their remarkable structural, mechanical, electrical, optical, and thermal capabilities. The high specific surface area of these materials makes them useful as carriers in controlled release systems that respond to external stimuli; these compounds include drugs and biomolecules like nucleic acid sequences (DNA and RNA). Furthermore, the presence of distinctive sheet-like nanostructures and the capacity for photothermal conversion have rendered graphene-based nanocomposites highly favorable for optical therapeutic applications, including photothermal treatment (PTT), photodynamic therapy (PDT), and theranostics. This review highlights the current state and benefits of using graphene-based nanocomposites in cancer diagnosis and therapy and discusses the obstacles and prospects of their future development. Then we focus on graphene-based nanocomposites applications in cancer treatment, including smart drug delivery systems, PTT, and PDT. Lastly, the biocompatibility of graphene-based nanocomposites is also discussed to provide a unique overview of the topic.
Collapse
Affiliation(s)
- Mahnaz Asadi
- Department of Chemistry, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | | | - Leila Mahdavian
- Department of Chemistry, Doroud Branch, Islamic Azad University, Doroud, Iran.
| | | |
Collapse
|
2
|
Oldak L, Zelazowska-Rutkowska B, Lesniewska A, Mrozek P, Skoczylas M, Lukaszewski Z, Gorodkiewicz E. Two Biosensors for the Determination of VEGF-R2 in Plasma by Array SPRi. Molecules 2022; 28:molecules28010155. [PMID: 36615347 PMCID: PMC9822109 DOI: 10.3390/molecules28010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGF-R2) is a marker of angiogenesis and metastasis of cancer. Two biosensors for the determination of VEGF-R2 in plasma have been developed. One of them is based on a pure gold chip, and the other on a silver/gold bimetallic chip; both have the receptor, monoclonal rabbit antibody specific for human VEGF-R2, attached to the chip via a cysteamine linker. The biosensor with the gold chip exhibits linearity of the analytical signal between 0.03 and 2 ng/mL, a precision of 1.4% and recovery between 99% and 102%. The biosensor with the bimetallic chip exhibits linearity between 0.03 and 1 ng/mL, a precision of 2.2% and recovery between 99% and 103%. Both biosensors tolerate a 1:100 excess of VEGF, VEGF-R1 and VEGF-R3. Both biosensors were validated by parallel determination of VEGF-R2 in 27 different plasma samples using the ELISA immunosensor assay, with very good agreement of the results. Thermodynamic parameters of the interaction of VEGF-R2 with the antibody were determined by QCM (Quartz Crystal Microbalance) and SPRi (Surface Plasmon Resonance imaging) measurements.
Collapse
Affiliation(s)
- Lukasz Oldak
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
- Correspondence:
| | - Beata Zelazowska-Rutkowska
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland
| | - Anna Lesniewska
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Piotr Mrozek
- Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Bialystok, Poland
| | - Marcin Skoczylas
- Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
| | - Zenon Lukaszewski
- Faculty of Chemical Technology, Poznan University of Technology, pl. Sklodowskiej-Curie 5, 60-965 Poznan, Poland
| | - Ewa Gorodkiewicz
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| |
Collapse
|
3
|
|
4
|
Rathinaraj Benjamin S, de Lima F. Current and Prospective of Breast Cancer Biomarkers. Mol Biotechnol 2021. [DOI: 10.5772/intechopen.91151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biomarkers have shown great promise over the past decade the process of drug development more effective and have become an integral part of diagnosis of diseases. Biosensors were integrated with biomarker detection and point-of-care detection for signal amplification, high specificity and sensitivity, rapid response time, low cost, simplicity and multi-analytical testing. In order to detect more sensitively, these particular biomarkers have been explored with the possibility of real-time measurements in order to develop simple and compact systems which can analyze complex specimens. Various biosensors including electrochemical biosensors have recently been developed based on disease-specific biomarkers in the diagnosis of cancer disease. The main objective of the book chapter is to review research with new materials/methods in electrochemical biosensing techniques to detection of breast cancer biomarkers and evaluating latest techniques for detection of important analytes in real samples. In this book chapter, the recent development of electrochemical biosensors of breast cancer biomarkers will be reviewed. Furthermore, recent and future trend application of breast cancer biomarkers will be discussed.
Collapse
|
5
|
Wang JY, Kwon JS, Hsu SM, Chuang HS. Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform. LAB ON A CHIP 2020; 20:356-362. [PMID: 31848562 DOI: 10.1039/c9lc00975b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bead-based immunosensors have intrigued the scientific community over the past decades due to their rapid and multiplexed capabilities in the detection of various biological targets. Nevertheless, their use in the detection of low-abundance analytes remains a continuing challenge because of their limited number of active enrichment approaches. To this end, our research presents a delicate microbead enrichment technique using an optoelectrokinetic platform, followed by the detection of dual biomarkers for the sensitive screening of an eye disease termed diabetic retinopathy (DR). In this study, microbeads turned fluorescent as their surfaces formed sandwiched immunocomplexes in the presence of target antigens. The tiny fluorescent dots were then concentrated using the optoelectrokinetic platform for the enhancement of their signals. The signal rapidly escalated in 10 s, and the optimal limit of detection was nearly 100 pg mL-1. For practical DR screening, two biomarkers, lipocalin 1 (LCN1) and vascular endothelial growth factor (VEGF), were used. Approximately 20 μL of analytes were collected from the tear samples of the tested patients. The concentrations of both biomarkers showed escalating trends with the severity of DR. Two concentration thresholds of LCN1 and VEGF that indicate proliferative DR were determined out of 24 clinical samples based on the receiver operating characteristic curves. For verification, a single-blind test was conducted with additional clinical tear samples from five random subjects. The final outcome of this evaluation showed an accuracy of >80%. This non-invasive screening provides a potential means for the early diagnosis of DR and may increase the screening rate among the high-risk diabetic population in the future.
Collapse
Affiliation(s)
- Jen-Yi Wang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan
| | - Jae-Sung Kwon
- Division of Thermal and Fluids Science, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam. and Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam and Department of Mechanical Engineering, Incheon National University, Incheon, Republic of Korea.
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Taiwan and Center for Micro/Nano Science and Technology, National Cheng Kung University, Taiwan.
| |
Collapse
|
6
|
Xu M, Yadavalli VK. Flexible Biosensors for the Impedimetric Detection of Protein Targets Using Silk-Conductive Polymer Biocomposites. ACS Sens 2019; 4:1040-1047. [PMID: 30957494 DOI: 10.1021/acssensors.9b00230] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To expand the applications of flexible biosensors in point-of-care healthcare applications beyond monitoring of biophysical parameters, it is important to devise strategies for the detection of various proteins and biomarkers. Here, we demonstrate a flexible, fully organic, biodegradable, label-free impedimetric biosensor for the critical biomarker, vascular endothelial growth factor (VEGF). This biosensor was constructed by photolithographically patterning a conducting ink consisting of a photoreactive silk sericin coupled with a conducting polymer. These functional electrodes are printed on flexible fibroin substrates that are controllably thick and can be free-standing, or conform to soft surfaces. Detection was accomplished via the antibody to VEGF which was immobilized within the conducting matrix. The results indicated that the developed flexible biosensor was highly sensitive and selective to the target protein, even in challenging biofluids such as human serum. The biosensors themselves are biocompatible and degradable. Through this work, the developed flexible biosensor based on a simple and label-free strategy can find practical applications in the monitoring of wound healing or early disease diagnosis.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, Virginia 23284, United States
| | - Vamsi K. Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
7
|
Chavan SG, Yagati AK, Mohammadniaei M, Min J, Lee MH. Robust Bioengineered Apoferritin Nanoprobes for Ultrasensitive Detection of Infectious Pancreatic Necrosis Virus. Anal Chem 2019; 91:5841-5849. [PMID: 30938982 DOI: 10.1021/acs.analchem.9b00187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) has been identified as a viral pathogen for many fish diseases that have become a huge hurdle for the growing fishing industry. Thus, in this work, we report a label-free impedance biosensor to quantify IPNV in real fish samples at point-of-care (POC) level. High specificity IPNV sensor with a detection limit of 2.69 TCID50/mL was achieved by conjugating IPNV antibodies to portable Au disk electrode chips using human heavy chain apoferritin (H-AFN) nanoprobes as a binding agent. H-AFN probes were bioengineered through PCR by incorporating pET-28b(+) resulting in 24 subunits of 6 × his-tag and protein-G units on its outer surface to increase the sensitivity of the IPNV detection. The biosensor surface modifications were characterized by differential pulse voltammetry (DPV) and EIS methods for each modification step. The proposed nanoprobe based sensor showed three-fold enhancement in charge transfer resistance toward IPNV detection in comparison with the traditional linker approach when measured in a group of similar virus molecules. The portable sensor exhibited a linear range of 100-10000 TCID50/mL and sensitivity of 5.40 × 10-4 TCID50/mL in real-fish samples. The performance of the proposed IPNV sensor was fully validated using an enzyme-linked immunosorbent assay (ELISA) technique with a sensitivity of 3.02 × 10-4 TCID50/mL. Results from H-AFN nanoprobe based IPNV sensor indicated high selectivity, sensitivity, and stability could be a promising platform for the detection of similar fish viruses and other biological molecules of interest.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| | - Ajay Kumar Yagati
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| | - Mohsen Mohammadniaei
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| | - Junhong Min
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| | - Min-Ho Lee
- School of Integrative Engineering , Chung-Ang University , Heuseok-dong , Dongjak-Gu, Seoul 06974 , South Korea
| |
Collapse
|
8
|
Novel multitarget inhibitors with antiangiogenic and immunomodulator properties. Eur J Med Chem 2019; 170:87-98. [PMID: 30878834 DOI: 10.1016/j.ejmech.2019.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023]
Abstract
By means of docking studies, seventeen compounds T.1-T17 have been designed and evaluated as multitarget inhibitors of VEGFR-2 and PD-L1 proteins in order to overcome resistance phenomena offered by cancer. All these designed molecules display a urea moiety as a common structural feature and eight of them (T.1-T8) further contain a 1,2,3-triazol moiety. The antiproliferative activity of these molecules on several tumor cell lines (HT-29, MCF-7, HeLa, A549, HL-60), on the endothelial cell line HMEC-1 and on the non-tumor cell line HEK-293 has been determined. The urea derivatives were also evaluated for their antiangiogenic properties, whereby their ability to inhibit tubulogenesis and kinase activity employing flow cytometry, ELISA, immunofluorescence and western blot techniques was measured. In addition, these techniques were also employed to investigate the immunomodulator action of the synthetic compounds on the inhibition of PD-L1 and c-Myc proteins. Compound T.2, 1-(3-chlorophenyl)-3-(2-(4-(4-methoxybenzyl)-1H-1,2,3-triazol-1-yl)ethyl)urea, has shown similar results to sorafenib in both down-regulation of VEGFR-2 and inhibition of the kinase activity of this receptor. Furthermore, compound T.14, (E)-1-(4-chlorophenyl)-3-(3-(4-methoxystyryl)phenyl)urea, improves the effect of T.2 as regards tube formation of endothelial cells and inhibition of VEGFR-2 tyrosine kinase activity. In addition, T.14 improves the effect of the experimental drug BMS-8 in the inhibition of PD-L1 and c-Myc proteins.
Collapse
|
9
|
A highly sensitive electrochemical detection of human chorionic gonadotropin on a carbon nano-onions/gold nanoparticles/polyethylene glycol nanocomposite modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Vlăsceanu GM, Amărandi RM, Ioniță M, Tite T, Iovu H, Pilan L, Burns JS. Versatile graphene biosensors for enhancing human cell therapy. Biosens Bioelectron 2018; 117:283-302. [DOI: 10.1016/j.bios.2018.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
|
11
|
Berchmans S, Venkatesan M, Vusa CSR, Arumugam P. PAMAM Dendrimer Modified Reduced Graphene Oxide Postfunctionalized by Horseradish Peroxidase for Biosensing H 2O 2. Methods Enzymol 2018; 609:143-170. [PMID: 30244788 DOI: 10.1016/bs.mie.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this chapter, we describe the tethering of horseradish peroxidase (HRP) to reduced graphene oxide (RGO) for sensing H2O2 in serum. To accomplish this, RGO was synthesized through a green route by reducing graphene oxide (GO) prepared by Hummers method with carrot extract. The RGO was then covalently functionalized by electrochemical amination using fourth generation, amine-terminated PAMAM dendrimers. Subsequently, HRP was postfunctionalized through glutaraldehyde linkage. The synthesized RGO and the functionalization steps were well characterized by spectroscopic, microscopic, and electrochemical techniques. The application of HRP tethered RGO was demonstrated for H2O2 sensing in blood serum. This work provides scope for extending this functionalization strategy for other carbonaceous materials as well.
Collapse
Affiliation(s)
- Sheela Berchmans
- CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India.
| | - Manju Venkatesan
- CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
| | | | | |
Collapse
|
12
|
Hasanzadeh M, Shadjou N, de la Guardia M. Early stage screening of breast cancer using electrochemical biomarker detection. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Detection of low-abundance biomarker lipocalin 1 for diabetic retinopathy using optoelectrokinetic bead-based immunosensing. Biosens Bioelectron 2017; 89:701-709. [DOI: 10.1016/j.bios.2016.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022]
|
14
|
Zhu Z. An Overview of Carbon Nanotubes and Graphene for Biosensing Applications. NANO-MICRO LETTERS 2017; 9:25. [PMID: 30393720 PMCID: PMC6199032 DOI: 10.1007/s40820-017-0128-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/04/2017] [Indexed: 05/15/2023]
Abstract
With the development of carbon nanomaterials in recent years, there has been an explosion of interests in using carbon nanotubes (CNTs) and graphene for developing new biosensors. It is believed that employing CNTs and graphene as sensor components can make sensors more reliable, accurate, and fast due to their remarkable properties. Depending on the types of target molecular, different strategies can be applied to design sensor device. This review article summarized the important progress in developing CNT- and graphene-based electrochemical biosensors, field-effect transistor biosensors, and optical biosensors. Although CNTs and graphene have led to some groundbreaking discoveries, challenges are still remained and the state-of-the-art sensors are far from a practical application. As a conclusion, future effort has to be made through an interdisciplinary platform, including materials science, biology, and electric engineering.
Collapse
Affiliation(s)
- Zanzan Zhu
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| |
Collapse
|
15
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
16
|
|
17
|
Gao T, Liu F, Yang D, Yu Y, Wang Z, Li G. Assembly of Selective Biomimetic Surface on an Electrode Surface: A Design of Nano–Bio Interface for Biosensing. Anal Chem 2015; 87:5683-9. [PMID: 25925724 DOI: 10.1021/acs.analchem.5b00816] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tao Gao
- State
Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Fengzhen Liu
- Department
of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People’s Republic of China
| | - Dawei Yang
- State
Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Yue Yu
- Department
of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University, Nanjing 210008, People’s Republic of China
| | - Zhaoxia Wang
- Department
of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People’s Republic of China
| | - Genxi Li
- State
Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, People’s Republic of China
- Laboratory
of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| |
Collapse
|
18
|
Wang Z, Dai Z. Carbon nanomaterial-based electrochemical biosensors: an overview. NANOSCALE 2015; 7:6420-31. [PMID: 25805626 DOI: 10.1039/c5nr00585j] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Carbon materials on the nanoscale exhibit diverse outstanding properties, rendering them extremely suitable for the fabrication of electrochemical biosensors. Over the past two decades, advances in this area have continuously emerged. In this review, we attempt to survey the recent developments of electrochemical biosensors based on six types of carbon nanomaterials (CNs), i.e., graphene, carbon nanotubes, carbon dots, carbon nanofibers, nanodiamonds and buckminsterfullerene. For each material, representative samples are introduced to expound the different roles of the CNs in electrochemical bioanalytical strategies. In addition, remaining challenges and perspectives for future developments are also briefly discussed.
Collapse
Affiliation(s)
- Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | | |
Collapse
|
19
|
A rapid, sensitive and selective electrochemical biosensor with concanavalin A for the preemptive detection of norovirus. Biosens Bioelectron 2015; 64:338-44. [DOI: 10.1016/j.bios.2014.09.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 01/28/2023]
|