1
|
Alvarado YJ, Olivarez Y, Lossada C, Vera-Villalobos J, Paz JL, Vera E, Loroño M, Vivas A, Torres FJ, Jeffreys LN, Hurtado-León ML, González-Paz L. Interaction of the new inhibitor paxlovid (PF-07321332) and ivermectin with the monomer of the main protease SARS-CoV-2: A volumetric study based on molecular dynamics, elastic networks, classical thermodynamics and SPT. Comput Biol Chem 2022; 99:107692. [PMID: 35640480 PMCID: PMC9107165 DOI: 10.1016/j.compbiolchem.2022.107692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic has accelerated the study of drugs, most notably ivermectin and more recently Paxlovid (PF-07321332) which is in phase III clinical trials with experimental data showing covalent binding to the viral protease Mpro. Theoretical developments of catalytic site-directed docking support thermodynamically feasible non-covalent binding to Mpro. Here we show that Paxlovid binds non-covalently at regions other than the catalytic sites with energies stronger than reported and at the same binding site as the ivermectin B1a homologue, all through theoretical methodologies, including blind docking. We volumetrically characterize the non-covalent interaction of the ivermectin homologues (avermectins B1a and B1b) and Paxlovid with the mMpro monomer, through molecular dynamics and scaled particle theory (SPT). Using the fluctuation-dissipation theorem (FDT), we estimated the electric dipole moment fluctuations at the surface of each of complex involved in this study, with similar trends to that observed in the interaction volume. Using fluctuations of the intrinsic volume and the number of flexible fragments of proteins using anisotropic and Gaussian elastic networks (ANM+GNM) suggests the complexes with ivermectin are more dynamic and flexible than the unbound monomer. In contrast, the binding of Paxlovid to mMpro shows that the mMpro-PF complex is the least structurally dynamic of all the species measured in this investigation. The results support a differential molecular mechanism of the ivermectin and PF homologues in the mMpro monomer. Finally, the results showed that Paxlovid despite beingbound in different sites through covalent or non-covalent forms behaves similarly in terms of its structural flexibility and volumetric behaviour.
Collapse
Affiliation(s)
- Ysaias José Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| | - Yosmari Olivarez
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Eddy Vera
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Alejandro Vivas
- Universidad del Zulia (LUZ). Facultad Experimental de Ciencias (FEC), Departamento de Quimica, Laboratorio de Electronica Molecular, 4001 Maracaibo, Bolivarian Republic of Venezuela
| | - Fernando Javier Torres
- Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Grupo de Química Computacional y Teórica (QCT-USFQ), Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela
| | - Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), Maracaibo 4001, Zulia, Bolivarian Republic of Venezuela; Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botanicos y Agroforestales, (CEBA), Laboratorio de Proteccion Vegetal, 4001 Maracaibo, Bolivarian Republic of Venezuela.
| |
Collapse
|
2
|
Watanabe M, Kanai Y, Nakamura S, Nishimura R, Shibata T, Momotake A, Yanagisawa S, Ogura T, Matsuo T, Hirota S, Neya S, Suzuki A, Yamamoto Y. Synergistic Effect of Distal Polar Interactions in Myoglobin and Their Structural Consequences. Inorg Chem 2018; 57:14269-14279. [DOI: 10.1021/acs.inorgchem.8b02302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Sachiko Yanagisawa
- Department of Life Science, Graduate School of Life Science, University of Hyogo,
Sayo-cho, Sayo-gun, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Department of Life Science, Graduate School of Life Science, University of Hyogo,
Sayo-cho, Sayo-gun, Hyogo 678-1297, Japan
| | - Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Saburo Neya
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chuoh-Inohana, Chiba 260-8675, Japan
| | - Akihiro Suzuki
- Department of Materials Engineering, National Institute of Technology, Nagaoka College, Nagaoka 940-8532, Japan
| | - Yasuhiko Yamamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
3
|
Mosa IM, Pattammattel A, Kadimisetty K, Pande P, El-Kady MF, Bishop GW, Novak M, Kaner RB, Basu AK, Kumar CV, Rusling JF. Ultrathin Graphene-Protein Supercapacitors for Miniaturized Bioelectronics. ADVANCED ENERGY MATERIALS 2017; 7:1700358. [PMID: 29104523 PMCID: PMC5667682 DOI: 10.1002/aenm.201700358] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nearly all implantable bioelectronics are powered by bulky batteries which limit device miniaturization and lifespan. Moreover, batteries contain toxic materials and electrolytes that can be dangerous if leakage occurs. Herein, an approach to fabricate implantable protein-based bioelectrochemical capacitors (bECs) employing new nanocomposite heterostructures in which 2D reduced graphene oxide sheets are interlayered with chemically modified mammalian proteins, while utilizing biological fluids as electrolytes is described. This protein-modified reduced graphene oxide nanocomposite material shows no toxicity to mouse embryo fibroblasts and COS-7 cell cultures at a high concentration of 1600 μg mL-1 which is 160 times higher than those used in bECs, unlike the unmodified graphene oxide which caused toxic cell damage even at low doses of 10 μg mL-1. The bEC devices are 1 μm thick, fully flexible, and have high energy density comparable to that of lithium thin film batteries. COS-7 cell culture is not affected by long-term exposure to encapsulated bECs over 4 d of continuous charge/discharge cycles. These bECs are unique, protein-based devices, use serum as electrolyte, and have the potential to power a new generation of long-life, miniaturized implantable devices.
Collapse
Affiliation(s)
- Islam M Mosa
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Ajith Pattammattel
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | | | - Paritosh Pande
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Maher F El-Kady
- Department of Chemistry and Biochemistry and California, NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Gregory W Bishop
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Marc Novak
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California, NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Benner SW, Hall CK. Effect of Monomer Sequence and Degree of Acetylation on the Self-Assembly and Porosity of Chitosan Networks in Solution. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven W. Benner
- Department
of Chemical and
Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Carol K. Hall
- Department
of Chemical and
Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
5
|
Mahinthichaichan P, Gennis RB, Tajkhorshid E. All the O2 Consumed by Thermus thermophilus Cytochrome ba3 Is Delivered to the Active Site through a Long, Open Hydrophobic Tunnel with Entrances within the Lipid Bilayer. Biochemistry 2016; 55:1265-78. [PMID: 26845082 DOI: 10.1021/acs.biochem.5b01255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytochrome ba3 is a proton-pumping heme-copper oxygen reductase from the extreme thermophile Thermus thermophilus. Despite the fact that the enzyme's active site is buried deep within the protein, the apparent second order rate constant for the initial binding of O2 to the active-site heme has been experimentally found to be 10(9) M(-1) s(-1) at 298 K, at or near the diffusion limit, and 2 orders of magnitude faster than for O2 binding to myoglobin. To provide quantitative and microscopic descriptions of the O2 delivery pathway and mechanism in cytochrome ba3, extensive molecular dynamics simulations of the enzyme in its membrane-embedded form have been performed, including different protocols of explicit ligand sampling (flooding) simulations with O2, implicit ligand sampling analysis, and in silico mutagenesis. The results show that O2 diffuses to the active site exclusively via a Y-shaped hydrophobic tunnel with two 25-Å long membrane-accessible branches that coincide with the pathway previously suggested by the crystallographically identified xenon binding sites. The two entrances of the bifurcated tunnel of cytochrome ba3 are located within the lipid bilayer, where O2 is preferentially partitioned from the aqueous phase. The largest barrier to O2 migration within the tunnel is estimated to be only 1.5 kcal/mol, allowing O2 to reach the enzyme active site virtually impeded by one-dimensional diffusion once it reaches a tunnel entrance at the protein surface. Unlike other O2-utilizing proteins, the tunnel is "open" with no transient barriers observed due to protein dynamics. This unique low-barrier passage through the protein ensures that O2 transit through the protein is never rate-limiting.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Robert B Gennis
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|