1
|
Aida-Yasuoka K, Nishimura N, Fujisawa N, Endo N, Narumiya S, Tohyama C. The role of prostaglandin E 2 receptor EP1 in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced neonatal hydronephrosis in mice. Toxicology 2019; 415:10-17. [PMID: 30641090 DOI: 10.1016/j.tox.2019.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Prostaglandin E2 (PGE2) is a critical factor in the pathogenesis of dioxin-induced neonatal hydronephrosis. Since the PGE2 receptor has four subtypes, EP1 - EP4, this study was aimed to challenge the hypothesis that at least one of the four subtypes is responsible for the pathogenesis of dioxin-induced hydronephrosis. To this end, we used mouse pups, with a C57BL/6 J background, genetically lacking EP1, EP2, or EP3, and wild-type pups in whom EP4 was suppressed by administering ONO-AE3-208 (ONO), an EP4 antagonist, from postnatal day 1 (PND 1) to PND 13. To expose the pups to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via lactation, the dams were administered TCDD at an oral dose of 20 μg/kg on PND 1. The pups' urine and kidneys were collected on PND 14 for urinalysis and histological examination, respectively. We found that the incidence of hydronephrosis was 80% in the EP1+/+ group, but was markedly reduced to 28.6% in the EP1-/- group despite the fact that PGE2 concentration in the urine was similarly increased in the both groups. In contrast, the incidence of hydronephrosis was 80% and 100% in the EP2+/+ and EP2-/-groups, respectively, and 88.9% and 100% in the EP3+/+ and EP3-/- groups, respectively. With regard to EP4, the incidence of hydronephrosis in vehicle (saline)-treated groups and ONO-treated was 88.9% and 100%, respectively. Therefore, we concluded that among PGE2 receptor subtypes, EP1 plays a predominant role in the onset of TCDD-induced neonatal hydronephrosis in mouse pups.
Collapse
Affiliation(s)
- Keiko Aida-Yasuoka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noriko Nishimura
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nozomi Fujisawa
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nozomi Endo
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| |
Collapse
|
2
|
Fujisawa N, Yoshioka W, Yanagisawa H, Tohyama C. Significance of AHR nuclear translocation sequence in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cPLA 2α activation and hydronephrosis. Arch Toxicol 2019; 93:1255-1264. [PMID: 30790002 DOI: 10.1007/s00204-019-02414-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (AHR) plays a major role in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced toxicity phenotypes. TCDD bound to AHR elicits both genomic action in which target genes are transcriptionally upregulated and nongenomic action in which cytosolic phospholipase A2α (cPLA2α) is rapidly activated. However, how either of these actions, separately or in combination, induces toxicity phenotypes is largely unknown. In this study, we used AHRnls/nls mice as a model in which AHR was mutated to lack nuclear translocation sequence (NLS), and AHRd/- mice as the corresponding control. Using this model, we studied TCDD-induced alterations in cPLA2α activation and related factors because of the pivotal roles of cPLA2α both in AHR's nongenomic action and in regulation of causative genes of TCDD-induced hydronephrosis. Dams were orally administered TCDD at a dose of 300 µg/kg body weight on postnatal day 1, and pups subsequently exposed to TCDD via milk were examined for gene expression on PND 7 and for histological changes on PND 14. The activation of the AHR genomic action and hydronephrosis onset were observed in the control group but not in the AHRnls/nls group. An ex vivo experiment using peritoneal macrophages exposed to 100 nM TCDD resulted in rapid activation of cPLA2α, an indicator of the nongenomic action, only in the control group but not in the AHRnls/nls group. These results indicated that an NLS is required for the AHR's genomic and nongenomic actions.
Collapse
Affiliation(s)
- Nozomi Fujisawa
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Wataru Yoshioka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| |
Collapse
|
3
|
Yoshioka W, Tohyama C. Mechanisms of Developmental Toxicity of Dioxins and Related Compounds. Int J Mol Sci 2019; 20:E617. [PMID: 30708991 PMCID: PMC6387164 DOI: 10.3390/ijms20030617] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
Dioxins and related compounds induce morphological abnormalities in developing animals in an aryl hydrocarbon receptor (AhR)-dependent manner. Here we review the studies in which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is used as a prototypical compound to elucidate the pathogenesis of morphological abnormalities. TCDD-induced cleft palate in fetal mice involves a delay in palatogenesis and dissociation of fused palate shelves. TCDD-induced hydronephrosis, once considered to be caused by the anatomical obstruction of the ureter, is now separated into TCDD-induced obstructive and non-obstructive hydronephrosis, which develops during fetal and neonatal periods, respectively. In the latter, a prostaglandin E₂ synthesis pathway and urine concentration system are involved. TCDD-induced abnormal development of prostate involves agenesis of the ventral lobe. A suggested mechanism is that AhR activation in the urogenital sinus mesenchyme by TCDD modulates the wingless-type MMTV integration site family (WNT)/β-catenin signaling cascade to interfere with budding from urogenital sinus epithelium. TCDD exposure to zebrafish embryos induces loss of epicardium progenitor cells and heart malformation. AHR2-dependent downregulation of Sox9b expression in cardiomyocytes is a suggested underlying mechanism. TCDD-induced craniofacial malformation in zebrafish is considered to result from the AHR2-dependent reduction in SRY-box 9b (SOX9b), probably partly via the noncoding RNA slincR, resulting in the underdevelopment of chondrocytes and cartilage.
Collapse
Affiliation(s)
- Wataru Yoshioka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
4
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
5
|
Montford JR, Lehman AMB, Bauer CD, Klawitter J, Klawitter J, Poczobutt JM, Scobey M, Weiser-Evans M, Nemenoff RA, Furgeson SB. Bone marrow-derived cPLA2α contributes to renal fibrosis progression. J Lipid Res 2017; 59:380-390. [PMID: 29229740 DOI: 10.1194/jlr.m082362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
The group IVA calcium-dependent cytosolic phospholipase A2 (cPLA2α) enzyme directs a complex "eicosanoid storm" that accompanies the tissue response to injury. cPLA2α and its downstream eicosanoid mediators are also implicated in the pathogenesis of fibrosis in many organs, including the kidney. We aimed to determine the role of cPLA2α in bone marrow-derived cells in a murine model of renal fibrosis, unilateral ureteral obstruction (UUO). WT C57BL/6J mice were irradiated and engrafted with donor bone marrow from either WT mice [WT-bone marrow transplant (BMT)] or mice deficient in cPLA2α (KO-BMT). After full engraftment, mice underwent UUO and kidneys were collected 3, 7, and 14 days after injury. Using picrosirius red, collagen-3, and smooth muscle α actin staining, we determined that renal fibrosis was significantly attenuated in KO-BMT animals as compared with WT-BMT animals. Lipidomic analysis of homogenized kidneys demonstrated a time-dependent upregulation of pro-inflammatory eicosanoids after UUO; KO-BMT animals had lower levels of many of these eicosanoids. KO-BMT animals also had fewer infiltrating pro-inflammatory CD45+CD11b+Ly6Chi macrophages and reduced message levels of pro-inflammatory cytokines. Our results indicate that cPLA2α and/or its downstream mediators, produced by bone marrow-derived cells, play a major role in eicosanoid production after renal injury and in renal fibrinogenesis.
Collapse
Affiliation(s)
- John R Montford
- Department of Medicine, Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO .,Denver Veterans Affairs Medical Center, Denver, CO
| | - Allison M B Lehman
- Department of Medicine, Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Colin D Bauer
- Department of Medicine, Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jelena Klawitter
- Department of Medicine, Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jost Klawitter
- Department of Medicine, Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Joanna M Poczobutt
- Department of Medicine, Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Micah Scobey
- Department of Medicine, Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mary Weiser-Evans
- Department of Medicine, Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO.,School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Raphael A Nemenoff
- Department of Medicine, Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO.,School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Seth B Furgeson
- Department of Medicine, Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO.,School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO.,Denver Health and Hospitals, Denver, CO
| |
Collapse
|
6
|
Fujisawa N, Yoshioka W, Yanagisawa H, Tohyama C. Roles of cytosolic phospholipase A 2α in reproductive and systemic toxicities in 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed mice. Arch Toxicol 2017; 92:789-801. [PMID: 29043426 PMCID: PMC5818604 DOI: 10.1007/s00204-017-2081-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/25/2017] [Indexed: 12/01/2022]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces a variety of toxicities upon binding of TCDD to aryl hydrocarbon receptor. Although this binding upregulates the synthesis of prostaglandins and their related lipid mediators via cytosolic phospholipase A2α (cPLA2α), toxicological significance of this signaling pathway remains elusive. Herein, we investigated the roles of cPLA2α in TCDD toxicities using cPLA2α-null mice. In a first set of experiments, pregnant mice were orally administered TCDD at a dose of 40 μg/kg on gestation day (GD) 12.5, and fetuses were collected on GD 18 for subsequent analyses. The number of live male fetuses of cPLA2α-null type was significantly less than that of wild-type in TCDD-exposed litters. TCDD-induced hydronephrosis was more severe in wild-type fetuses than in cPLA2α-null fetuses regardless of sex, and kidney expression levels of the inflammatory cytokines interleukin-1β and tumor necrosis factor-α were increased in a cPLA2α-dependent manner in TCDD-exposed fetuses. In a second set of experiments, following intraperitoneal administration of TCDD at 50 μg/kg, body weight of the male adult mice was decreased within 2 days in wild-type mice but was not changed in cPLA2α-null mice. In addition, TCDD-induced lipid accumulation in the livers of cPLA2α-null mice was at an intermediate level compared with TCDD-exposed wild-type and vehicle-control mice. In conclusion, the present results show that cPLA2α is involved in TCDD-induced body weight loss, lipid accumulation in the liver, fetal hydronephrosis, and cytokine gene expression, and that the molecular basis of TCDD toxicity differs considerably between target tissues and life stages.
Collapse
Affiliation(s)
- Nozomi Fujisawa
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Wataru Yoshioka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| |
Collapse
|
7
|
Yoshioka W, Kawaguchi T, Nishimura N, Akagi T, Fujisawa N, Yanagisawa H, Matsumura F, Tohyama C. Polyuria-associated hydronephrosis induced by xenobiotic chemical exposure in mice. Am J Physiol Renal Physiol 2016; 311:F752-F762. [DOI: 10.1152/ajprenal.00001.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/16/2016] [Indexed: 12/19/2022] Open
Abstract
Hydronephrosis is a commonly found disease state characterized by the dilation of renal calices and pelvis, resulting in the loss of kidney function in the severest cases. A generally accepted etiology of hydronephrosis involves the obstruction of urine flow along the urinary tract. In the recent years, we have developed a mouse model of hydronephrosis induced by lactational exposure to dioxin and demonstrated a lack of anatomical obstruction in this model. We also showed that prostaglandin E2 synthesis system plays a critical role in the onset of hydronephrosis. In the present study, we found that neonatal hydronephrosis was not likely to be associated with functional obstruction (impaired peristalsis) but was found to be associated with polyuria and low urine osmolality with the downregulation of proteins involved in the urine concentrating process. The administration of an antidiuretic hormone analog to the dioxin-exposed pups not only suppressed the increased urine output but also decreased the incidence and severity of hydronephrosis. In contrast to the case in pups, administration of dioxin to adult mice failed to induce polyuria and upregulation of prostaglandin E2 synthesis system, and the adult mice were resistant to develop hydronephrosis. These findings suggest the possibility that polyuria could induce hydronephrosis in the absence of anatomical or functional obstruction of the ureter. It is concluded that the present animal model provides a unique example of polyuria-associated type of hydronephrosis, suggesting a need to redefine this disease state.
Collapse
Affiliation(s)
- Wataru Yoshioka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tatsuya Kawaguchi
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Nishimura
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiya Akagi
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nozomi Fujisawa
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Fumio Matsumura
- Department of Environmental Toxicology and Center for Environmental Health Sciences, University of California, Davis, California; and
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Leslie CC. Cytosolic phospholipase A₂: physiological function and role in disease. J Lipid Res 2015; 56:1386-402. [PMID: 25838312 DOI: 10.1194/jlr.r057588] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Indexed: 02/06/2023] Open
Abstract
The group IV phospholipase A2 (PLA2) family is comprised of six intracellular enzymes (GIVA, -B, -C, -D, -E, and -F) commonly referred to as cytosolic PLA2 (cPLA2)α, -β, -γ, -δ, -ε, and -ζ. They contain a Ser-Asp catalytic dyad and all except cPLA2γ have a C2 domain, but differences in their catalytic activities and subcellular localization suggest unique regulation and function. With the exception of cPLA2α, the focus of this review, little is known about the in vivo function of group IV enzymes. cPLA2α catalyzes the hydrolysis of phospholipids to arachidonic acid and lysophospholipids that are precursors of numerous bioactive lipids. The regulation of cPLA2α is complex, involving transcriptional and posttranslational processes, particularly increases in calcium and phosphorylation. cPLA2α is a highly conserved widely expressed enzyme that promotes lipid mediator production in human and rodent cells from a variety of tissues. The diverse bioactive lipids produced as a result of cPLA2α activation regulate normal physiological processes and disease pathogenesis in many organ systems, as shown using cPLA2α KO mice. However, humans recently identified with cPLA2α deficiency exhibit more pronounced effects on health than observed in mice lacking cPLA2α, indicating that much remains to be learned about this interesting enzyme.
Collapse
Affiliation(s)
- Christina C Leslie
- Department of Pediatrics, National Jewish Health, Denver, CO 80206; and Departments of Pathology and Pharmacology, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
9
|
Aida-Yasuoka K, Yoshioka W, Kawaguchi T, Ohsako S, Tohyama C. A mouse strain less responsive to dioxin-induced prostaglandin E2 synthesis is resistant to the onset of neonatal hydronephrosis. Toxicol Sci 2014; 141:465-74. [PMID: 25015655 DOI: 10.1093/toxsci/kfu142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dioxin is a ubiquitous environmental pollutant that induces toxicity when bound to the aryl hydrocarbon receptor (AhR). Significant differences in susceptibility of mouse strains to dioxin toxicity are largely accounted for by the dissociation constant of binding to dioxins of AhR subtypes encoded by different alleles. We showed that cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1), components of a prostanoid synthesis pathway, play essential roles in the onset of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced hydronephrosis of neonatal mice. Although C57BL/6J and BALB/cA mice harbor AhR receptors highly responsive to TCDD, they were found by chance to differ significantly in the incidence of TCDD-induced hydronephrosis. Therefore, the goal of the present study was to determine the molecular basis of this difference in susceptibility to TCDD toxicity. For this purpose, we administered C57BL/6J and BALB/cA dams' TCDD at an oral dose of 15 or 80 μg/kg on postnatal day (PND) 1 to expose pups to TCDD via lactation, and the pups' kidneys were collected on PND 7. The incidence of hydronephrosis in C57BL/6J pups (64%) was greater than in BALB/cA pups (0%, p < 0.05), despite similarly increased levels of COX-2 mRNA. The incidence of hydronephrosis in these mouse strains paralleled the levels of renal mPGES-1 mRNA and early growth response 1 (Egr-1) that modulates mPGES-1 gene expression, as well as PGE2 concentrations in urine. Although these mouse strains possess AhR alleles tightly bound to TCDD, their difference in incidence and severity of hydronephrosis can be explained, in part, by differences in the expression of mPGES-1 and Egr-1.
Collapse
Affiliation(s)
- Keiko Aida-Yasuoka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Wataru Yoshioka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Tatsuya Kawaguchi
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|