1
|
Aizpurua O, Dunn RR, Hansen LH, Gilbert MTP, Alberdi A. Field and laboratory guidelines for reliable bioinformatic and statistical analysis of bacterial shotgun metagenomic data. Crit Rev Biotechnol 2024; 44:1164-1182. [PMID: 37731336 DOI: 10.1080/07388551.2023.2254933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 09/22/2023]
Abstract
Shotgun metagenomics is an increasingly cost-effective approach for profiling environmental and host-associated microbial communities. However, due to the complexity of both microbiomes and the molecular techniques required to analyze them, the reliability and representativeness of the results are contingent upon the field, laboratory, and bioinformatic procedures employed. Here, we consider 15 field and laboratory issues that critically impact downstream bioinformatic and statistical data processing, as well as result interpretation, in bacterial shotgun metagenomic studies. The issues we consider encompass intrinsic properties of samples, study design, and laboratory-processing strategies. We identify the links of field and laboratory steps with downstream analytical procedures, explain the means for detecting potential pitfalls, and propose mitigation measures to overcome or minimize their impact in metagenomic studies. We anticipate that our guidelines will assist data scientists in appropriately processing and interpreting their data, while aiding field and laboratory researchers to implement strategies for improving the quality of the generated results.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Lars H Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - M T P Gilbert
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Mora‐Carrera E, Stubbs RL, Potente G, Yousefi N, Keller B, de Vos JM, Szövényi P, Conti E. Genomic analyses elucidate S-locus evolution in response to intra-specific losses of distyly in Primula vulgaris. Ecol Evol 2024; 14:e10940. [PMID: 38516570 PMCID: PMC10955462 DOI: 10.1002/ece3.10940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 03/23/2024] Open
Abstract
Distyly, a floral dimorphism that promotes outcrossing, is controlled by a hemizygous genomic region known as the S-locus. Disruptions of genes within the S-locus are responsible for the loss of distyly and the emergence of homostyly, a floral monomorphism that favors selfing. Using whole-genome resequencing data of distylous and homostylous individuals from populations of Primula vulgaris and leveraging high-quality reference genomes of Primula we tested, for the first time, predictions about the evolutionary consequences of transitions to selfing on S-genes. Our results reveal a previously undetected structural rearrangement in CYPᵀ associated with the shift to homostyly and confirm previously reported, homostyle-specific, loss-of-function mutations in the exons of the S-gene CYPᵀ. We also discovered that the promoter and intronic regions of CYPᵀ in distylous and homostylous individuals are conserved, suggesting that down-regulation of CYPᵀ via mutations in its promoter and intronic regions is not a cause of the shift to homostyly. Furthermore, we found that hemizygosity is associated with reduced genetic diversity in S-genes compared with their paralogs outside the S-locus. Additionally, the shift to homostyly lowers genetic diversity in both the S-genes and their paralogs, as expected in primarily selfing plants. Finally, we tested, for the first time, long-standing theoretical models of changes in S-locus genotypes during early stages of the transition to homostyly, supporting the assumption that two copies of the S-locus might reduce homostyle fitness.
Collapse
Affiliation(s)
- E. Mora‐Carrera
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - R. L. Stubbs
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - G. Potente
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - N. Yousefi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - B. Keller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - J. M. de Vos
- Department of Environmental Sciences – BotanyUniversity of BaselBaselSwitzerland
| | - P. Szövényi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - E. Conti
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
3
|
Budassi J, Cho N, Del Valle A, Sokolov J. Microfluidic delivery of cutting enzymes for fragmentation of surface-adsorbed DNA molecules. PLoS One 2023; 18:e0250054. [PMID: 37672538 PMCID: PMC10482287 DOI: 10.1371/journal.pone.0250054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/24/2023] [Indexed: 09/08/2023] Open
Abstract
We describe a method for fragmenting, in-situ, surface-adsorbed and immobilized DNAs on polymethylmethacrylate(PMMA)-coated silicon substrates using microfluidic delivery of the cutting enzyme DNase I. Soft lithography is used to produce silicone elastomer (Sylgard 184) gratings which form microfluidic channels for delivery of the enzyme. Bovine serum albumin (BSA) is used to reduce DNase I adsorption to the walls of the microchannels and enable diffusion of the cutting enzyme to a distance of 10mm. Due to the DNAs being immobilized, the fragment order is maintained on the surface. Possible methods of preserving the order for application to sequencing are discussed.
Collapse
Affiliation(s)
- Julia Budassi
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - NaHyun Cho
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Anthony Del Valle
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, United States of America
| | - Jonathan Sokolov
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
4
|
Savina EA, Shumilina TG, Tumanyan VG, Anashkina AA, Il'icheva IA. Core Promoter Regions of Antisense and Long Intergenic Non-Coding RNAs. Int J Mol Sci 2023; 24:ijms24098199. [PMID: 37175907 PMCID: PMC10179571 DOI: 10.3390/ijms24098199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
RNA polymerase II (POL II) is responsible for the transcription of messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs). Previously, we have shown the evolutionary invariance of the structural features of DNA in the POL II core promoters of the precursors of mRNAs. In this work, we have analyzed the POL II core promoters of the precursors of lncRNAs in Homo sapiens and Mus musculus genomes. Structural analysis of nucleotide sequences in positions -50, +30 bp in relation to the TSS have shown the extremely heterogeneous 3D structure that includes two singular regions - hexanucleotide "INR" around the TSS and octanucleotide "TATA-box" at around ~-28 bp upstream. Thus, the 3D structure of core promoters of lncRNA resembles the architecture of the core promoters of mRNAs; however, textual analysis revealed differences between promoters of lncRNAs and promoters of mRNAs, which lies in their textual characteristics; namely, the informational entropy at each position of the nucleotide text of lncRNA core promoters (by the exception of singular regions) is significantly higher than that of the mRNA core promoters. Another distinguishing feature of lncRNA is the extremely rare occurrence in the TATA box of octanucleotides with the consensus sequence. These textual differences can significantly affect the efficiency of the transcription of lncRNAs.
Collapse
Affiliation(s)
- Ekaterina A Savina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow 119991, Russia
- Department of Information and Internet Technologies of the Institute of Digital Medicine, Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Tatiana G Shumilina
- Department of Information and Internet Technologies of the Institute of Digital Medicine, Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Vladimir G Tumanyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow 119991, Russia
| | - Anastasia A Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow 119991, Russia
- Department of Information and Internet Technologies of the Institute of Digital Medicine, Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Irina A Il'icheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow 119991, Russia
| |
Collapse
|
5
|
Paulose AK, Hou YJ, Huang YS, Chakkalaparambil Dileep N, Chiu CL, Pal A, Kalaimani VM, Lin ZH, Chang CR, Chen CP, Lin YC, Cheng CY, Cheng SH, Cheng CM, Wang YL. Rapid Escherichia coli Cloned DNA Detection in Serum Using an Electrical Double Layer-Gated Field-Effect Transistor-Based DNA Sensor. Anal Chem 2023; 95:6871-6878. [PMID: 37080900 DOI: 10.1021/acs.analchem.2c05719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
In this study, a rapid diagnosis platform was developed for the detection of Escherichia coli O157:H7. An electrical double layer (EDL)-gated field-effect transistor-based biosensor (BioFET) as a point-of-care testing device is demonstrated with its high sensitivity, portability, high selectivity, quick response, and ease of use. The specially designed ssDNA probe was immobilized on the extended gate electrode to bind the target complementary DNA segment of E. coli, resulting in a sharp drain current change within minutes. The limit of detection for target DNA is validated to a concentration of 1 fM in buffer solution and serum. Meanwhile, the results of a Kelvin probe force microscope were shown to have reduced surface potential of the DNA immobilized sensors before and after the cDNA detection, which is consistent with the decreased drain current of the BioFET. A 1.2 kb E. coli duplex DNA synthesized in plasmid was sonicated and detected in serum samples with the sensor array. Gel electrophoresis was used to confirm the efficiency of sonication by elucidating the length of DNA. Those results show that the EDL-gated BioFET system is a promising platform for rapid identification of pathogens for future clinical needs.
Collapse
Affiliation(s)
- Akhil K Paulose
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yueh-Ju Hou
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811726, Taiwan, ROC
| | - Yu-Shan Huang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | - Chia-Lin Chiu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Arnab Pal
- International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Vishal Mani Kalaimani
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chuang-Rung Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Cheng-Pin Chen
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 32748, Taiwan
| | - Yi-Chun Lin
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 32748, Taiwan
| | - Chien-Yu Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 32748, Taiwan
| | - Shu-Hsing Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 32748, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yu-Lin Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
6
|
Nguyen XTA, Moekotte L, Plomp AS, Bergen AA, van Genderen MM, Boon CJF. Retinitis Pigmentosa: Current Clinical Management and Emerging Therapies. Int J Mol Sci 2023; 24:ijms24087481. [PMID: 37108642 PMCID: PMC10139437 DOI: 10.3390/ijms24087481] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Retinitis pigmentosa (RP) comprises a group of inherited retinal dystrophies characterized by the degeneration of rod photoreceptors, followed by the degeneration of cone photoreceptors. As a result of photoreceptor degeneration, affected individuals experience gradual loss of visual function, with primary symptoms of progressive nyctalopia, constricted visual fields and, ultimately, central vision loss. The onset, severity and clinical course of RP shows great variability and unpredictability, with most patients already experiencing some degree of visual disability in childhood. While RP is currently untreatable for the majority of patients, significant efforts have been made in the development of genetic therapies, which offer new hope for treatment for patients affected by inherited retinal dystrophies. In this exciting era of emerging gene therapies, it remains imperative to continue supporting patients with RP using all available options to manage their condition. Patients with RP experience a wide variety of physical, mental and social-emotional difficulties during their lifetime, of which some require timely intervention. This review aims to familiarize readers with clinical management options that are currently available for patients with RP.
Collapse
Affiliation(s)
- Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lude Moekotte
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arthur A Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Bartiméus, Diagnostic Center for Complex Visual Disorders, 3703 AJ Zeist, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
7
|
D’Angiolo M, Yue JX, De Chiara M, Barré BP, Giraud Panis MJ, Gilson E, Liti G. Telomeres are shorter in wild Saccharomyces cerevisiae isolates than in domesticated ones. Genetics 2023; 223:iyac186. [PMID: 36563016 PMCID: PMC9991508 DOI: 10.1093/genetics/iyac186] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Telomeres are ribonucleoproteins that cap chromosome-ends and their DNA length is controlled by counteracting elongation and shortening processes. The budding yeast Saccharomyces cerevisiae has been a leading model to study telomere DNA length control and dynamics. Its telomeric DNA is maintained at a length that slightly varies between laboratory strains, but little is known about its variation at the species level. The recent publication of the genomes of over 1,000 S. cerevisiae strains enabled us to explore telomere DNA length variation at an unprecedented scale. Here, we developed a bioinformatic pipeline (YeaISTY) to estimate telomere DNA length from whole-genome sequences and applied it to the sequenced S. cerevisiae collection. Our results revealed broad natural telomere DNA length variation among the isolates. Notably, telomere DNA length is shorter in those derived from wild rather than domesticated environments. Moreover, telomere DNA length variation is associated with mitochondrial metabolism, and this association is driven by wild strains. Overall, these findings reveal broad variation in budding yeast's telomere DNA length regulation, which might be shaped by its different ecological life-styles.
Collapse
Affiliation(s)
- Melania D’Angiolo
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Jia-Xing Yue
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center (SYSUCC), 651 Dongfeng Road East, China
| | - Matteo De Chiara
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Benjamin P Barré
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Marie-Josèphe Giraud Panis
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Eric Gilson
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
- Department of Genetics, CHU, 06107 Nice, France
| | - Gianni Liti
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| |
Collapse
|
8
|
Donovan M, Mackey CS, Lynch MDJ, Platt GN, Brown AN, Washburn BK, Trickey DJ, Curtis JT, Liu Y, Charles TC, Wang Z, Jones KM. Limosilactobacillus reuteri administration alters the gut-brain-behavior axis in a sex-dependent manner in socially monogamous prairie voles. Front Microbiol 2023; 14:1015666. [PMID: 36846764 PMCID: PMC9945313 DOI: 10.3389/fmicb.2023.1015666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023] Open
Abstract
Research on the role of gut microbiota in behavior has grown dramatically. The probiotic L. reuteri can alter social and stress-related behaviors - yet, the underlying mechanisms remain largely unknown. Although traditional laboratory rodents provide a foundation for examining the role of L. reuteri on the gut-brain axis, they do not naturally display a wide variety of social behaviors. Using the highly-social, monogamous prairie vole (Microtus ochrogaster), we examined the effects of L. reuteri administration on behaviors, neurochemical marker expression, and gut-microbiome composition. Females, but not males, treated with live L. reuteri displayed lower levels of social affiliation compared to those treated with heat-killed L. reuteri. Overall, females displayed a lower level of anxiety-like behaviors than males. Live L. reuteri-treated females had lower expression of corticotrophin releasing factor (CRF) and CRF type-2-receptor in the nucleus accumbens, and lower vasopressin 1a-receptor in the paraventricular nucleus of the hypothalamus (PVN), but increased CRF in the PVN. There were both baseline sex differences and sex-by-treatment differences in gut microbiome composition. Live L. reuteri increased the abundance of several taxa, including Enterobacteriaceae, Lachnospiraceae NK4A136, and Treponema. Interestingly, heat-killed L. reuteri increased abundance of the beneficial taxa Bifidobacteriaceae and Blautia. There were significant correlations between changes in microbiota, brain neurochemical markers, and behaviors. Our data indicate that L. reuteri impacts gut microbiota, gut-brain axis and behaviors in a sex-specific manner in socially-monogamous prairie voles. This demonstrates the utility of the prairie vole model for further examining causal impacts of microbiome on brain and behavior.
Collapse
Affiliation(s)
- Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Calvin S. Mackey
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Michael D. J. Lynch
- Metagenom Bio Life Science Inc, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Grayson N. Platt
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Amber N. Brown
- Department of Biological Science Core Facilities, Florida State University, Tallahassee, FL, United States
| | - Brian K. Washburn
- Department of Biological Science Core Facilities, Florida State University, Tallahassee, FL, United States
| | - Darryl J. Trickey
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - J. Thomas Curtis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Trevor C. Charles
- Metagenom Bio Life Science Inc, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Kathryn M. Jones
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
9
|
Cell-type specific profiling of histone post-translational modifications in the adult mouse striatum. Nat Commun 2022; 13:7720. [PMID: 36513652 PMCID: PMC9747932 DOI: 10.1038/s41467-022-35384-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Epigenetic gene regulation in the heterogeneous brain remains challenging to decipher with current strategies. Bulk tissue analysis from pooled subjects reflects the average of cell-type specific changes across cell-types and individuals, which obscures causal relationships between epigenetic modifications, regulation of gene expression, and complex pathology. To address these limitations, we optimized a hybrid protocol, ICuRuS, for the isolation of nuclei tagged in specific cell-types and histone post translational modification profiling from the striatum of a single mouse. We combined affinity-based isolation of the medium spiny neuron subtypes, Adenosine 2a Receptor or Dopamine Receptor D1, with cleavage of histone-DNA complexes using an antibody-targeted micrococcal nuclease to release DNA complexes for paired end sequencing. Unlike fluorescence activated cell sorting paired with chromatin immunoprecipitation, ICuRuS allowed for robust epigenetic profiling at cell-type specific resolution. Our analysis provides a framework to understand combinatorial relationships between neuronal-subtype-specific epigenetic modifications and gene expression.
Collapse
|
10
|
Sun L, Lehnert T, Gijs MAM, Li S. Polydimethylsiloxane microstructure-induced acoustic streaming for enhanced ultrasonic DNA fragmentation on a microfluidic chip. LAB ON A CHIP 2022; 22:4224-4237. [PMID: 36178361 DOI: 10.1039/d2lc00366j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Next-generation sequencing (NGS) is an essential technology for DNA identification in genomic research. DNA fragmentation is a critical step for NGS and doing this on-chip is of great interest for future integrated genomic solutions. Here we demonstrate fast acoustofluidic DNA fragmentation via ultrasound-actuated elastic polydimethylsiloxane (PDMS) microstructures that induce acoustic streaming and associated shear forces when placed in the field of an ultrasonic transducer. Indeed, acoustic streaming locally generates high tensile stresses that can mechanically stretch and break DNA molecule chains. The improvement in efficiency of the on-chip DNA fragmentation is due to the synergistic effect of these tensile stresses and ultrasonic cavitation phenomena. We tested these microstructure-induced effects in a DNA-containing microfluidic channel both experimentally and by simulation. The DNA fragmentation process was evaluated by measuring the change in the DNA fragment size over time. The chip works well with both long and short DNA chains; in particular, purified lambda (λ) DNA was cut from 48.5 kbp to 3 kbp in one minute with selected microstructures and further down to 300 bp within two and a half minutes. The fragment size of mouse genomic DNA was reduced from 1.4 kbp to 400 bp in one minute and then to 200 bp in two and a half minutes. The DNA fragmentation efficiency of the chip equipped with the PDMS microstructures was twice that of the chip without the microstructures. Exhaustive comparison shows that the on-chip fragmentation performance reaches the level of high-end professional standards. Recently, DNA fragmentation was shown to be enhanced using vibrating air microbubbles when the chip was placed in an acoustic field. We think the microbubble-free microstructure-based device we present is easier to operate and more reliable, as it avoids microbubble preparation and maintenance, while showing high DNA fragmentation performance.
Collapse
Affiliation(s)
- Lin Sun
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, P. R. China.
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Songjing Li
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, P. R. China.
| |
Collapse
|
11
|
Johnston AD, Lu J, Korbie D, Trau M. Modelling clinical DNA fragmentation in the development of universal PCR-based assays for bisulfite-converted, formalin-fixed and cell-free DNA sample analysis. Sci Rep 2022; 12:16051. [PMID: 36163372 PMCID: PMC9512909 DOI: 10.1038/s41598-022-18196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
In fragmented DNA, PCR-based methods quantify the number of intact regions at a specific amplicon length. However, the relationship between the population of DNA fragments within a sample and the likelihood they will amplify has not been fully described. To address this, we have derived a mathematical equation that relates the distribution profile of a stochastically fragmented DNA sample to the probability that a DNA fragment within that sample can be amplified by any PCR assay of arbitrary length. Two panels of multiplex PCR assays for quantifying fragmented DNA were then developed: a four-plex panel that can be applied to any human DNA sample and used to estimate the percentage of regions that are intact at any length; and a two-plex panel optimized for quantifying circulating cell-free DNA (cfDNA). For these assays, regions of the human genome least affected by copy number aberration were identified and selected; within these copy-neutral regions, each PCR assay was designed to amplify both genomic and bisulfite-converted DNA; and all assays were validated for use in both conventional qPCR and droplet-digital PCR. Finally, using the cfDNA-optimized assays we find evidence of universally conserved nucleosome positioning among individuals.
Collapse
Affiliation(s)
- Andrew D Johnston
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, Westmead, NSW, Australia
| | - Jennifer Lu
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Darren Korbie
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Matt Trau
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
12
|
Sun L, Liu Y, Lehnert T, Gijs MAM, Li S. The enhancement of DNA fragmentation in a bench top ultrasonic water bath with needle-induced air bubbles: Simulation and experimental investigation. BIOMICROFLUIDICS 2022; 16:044103. [PMID: 35909646 PMCID: PMC9337879 DOI: 10.1063/5.0101740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Shearing DNA to a certain size is the first step in many medical and biological applications, especially in next-generation gene sequencing technology. In this article, we introduced a highly efficient ultrasonic DNA fragmentation method enhanced by needle-induced air bubbles, which is easy to operate with high throughput. The principle of the bubble-enhanced sonication system is introduced and verified by flow field and acoustic simulations and experiments. Lambda DNA long chains and mouse genomic DNA short chains are used in the experiments for testing the performance of the bubble-enhanced ultrasonic DNA fragmentation system. Air bubbles are an effective enhancement agent for ultrasonic DNA fragmentation; they can obviously improve the sound pressure level in the whole solution, thus, achieving better absorption of ultrasound energy. Growing bubbles also have a stretched function on DNA molecule chains and form a huge pressure gradient in the solution, which is beneficial to DNA fragmentation. Purified λDNA is cut from 48.5 to 2 kbp in 5 min and cut to 300 bp in 30 min. Mouse genomic DNA (≈1400 bp) decreases to 400 bp in 5 min and then reduces to 200 bp in 30 min. This bubble-enhanced ultrasonic method enables widespread access to genomic DNA fragmentation in a standard ultrasonic water bath for many virus sequencing demands even without good medical facilities.
Collapse
Affiliation(s)
| | | | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Songjing Li
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| |
Collapse
|
13
|
Bates DA, Bates CE, Earl AS, Skousen C, Fetbrandt AN, Ritchie J, Bodily PM, Johnson SM. Proximal-end bias from in-vitro reconstituted nucleosomes and the result on downstream data analysis. PLoS One 2021; 16:e0258737. [PMID: 34673804 PMCID: PMC8530345 DOI: 10.1371/journal.pone.0258737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
The most basic level of eukaryotic gene regulation is the presence or absence of nucleosomes on DNA regulatory elements. In an effort to elucidate in vivo nucleosome patterns, in vitro studies are frequently used. In vitro, short DNA fragments are more favorable for nucleosome formation, increasing the likelihood of nucleosome occupancy. This may in part result from the fact that nucleosomes prefer to form on the terminal ends of linear DNA. This phenomenon has the potential to bias in vitro reconstituted nucleosomes and skew results. If the ends of DNA fragments are known, the reads falling close to the ends are typically discarded. In this study we confirm the phenomenon of end bias of in vitro nucleosomes. We describe a method in which nearly identical libraries, with different known ends, are used to recover nucleosomes which form towards the terminal ends of fragmented DNA. Finally, we illustrate that although nucleosomes prefer to form on DNA ends, it does not appear to skew results or the interpretation thereof.
Collapse
Affiliation(s)
- David A. Bates
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Charles E. Bates
- Qubit Software LLC, Spanish Fork, Utah, United States of America
| | - Andrew S. Earl
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Colin Skousen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Ashley N. Fetbrandt
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Jordon Ritchie
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Paul M. Bodily
- Computer Science Department, Idaho State University, Pocatello, Idaho, United States of America
| | - Steven M. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
14
|
Kechin A, Boldyreva D, Borobova V, Boyarskikh U, Scherbak S, Apalko S, Makarova M, Mosyakin N, Kaftyreva L, Filipenko M. An inexpensive, simple, and effective method of genome DNA fragmentation for NGS libraries. J Biochem 2021; 170:675-681. [PMID: 34382083 DOI: 10.1093/jb/mvab089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/29/2021] [Indexed: 11/12/2022] Open
Abstract
NGS-library preparation for whole-genome sequencing (WGS) starts with DNA fragmentation, and sonication is a physical approach used most often due to its simplicity and reproducibility. However, the commercially available Covaris instrument has a high price for both the device and consumables. Here we describe our in-house method of DNA shearing by sonication with small (100-600 µm) glass beads and an ultrasonic bath. The fragmentation conditions were optimized for the bacterial WGS with ∼550 bp fragment size (the ultrasonic bath water temperature 5-10 °C, glass beads 0.06 g, the fragmentation time 50 seconds), and for human DNA with ∼250 bp (fragmentation with the same parameters for 4 minutes). Fragmentation results were compared with the Covaris instrument for preparing several bacterial NGS libraries for Illumina NGS platforms by several characteristics. We obtained close mean fragment lengths (523-623 vs 480-646), similar mono- and dinucleotide specificity of shearing, and comparable indicators of read alignment and de novo assembly for both methods. Thus, the described method is a new fast, and effective DNA fragmentation approach that can be used in different WGS applications.
Collapse
Affiliation(s)
- Andrey Kechin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Darya Boldyreva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Viktoriya Borobova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Ulyana Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Sergey Scherbak
- Saint-Petersburg State University, Saint-Petersburg, 199034, Russia.,Saint-Petersburg State Medical Academy "City Hospital No, 40 of the Resort Administrative District", Saint-Petersburg, 195067, Russia
| | - Svetlana Apalko
- Saint-Petersburg State Medical Academy "City Hospital No, 40 of the Resort Administrative District", Saint-Petersburg, 195067, Russia
| | - Maria Makarova
- Saint-Petersburg Pasteur Institute, St Petersburg, 197101, Russia
| | - Nikolay Mosyakin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Lidia Kaftyreva
- Saint-Petersburg Pasteur Institute, St Petersburg, 197101, Russia
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| |
Collapse
|
15
|
A simple approach for effective shearing and reliable concentration measurement of ultra-high-molecular-weight DNA. Biotechniques 2021; 71:439-444. [PMID: 34232102 DOI: 10.2144/btn-2021-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pipetting and concentration measurement of viscous ultra-high-molecular-weight (UHMW) DNA samples is challenging and often highly imprecise. Effective guidelines for handling UHMW samples are missing in the field. Herein, a simple and low-cost workflow is presented that enables accurate pipetting and reliable concentration measurement. Central to the workflow is the shearing of representative small aliquots of UHMW DNA samples to a fragment size <150 kb by vortexing them for 1 min with a glass bead in a round-bottomed 2-ml tube. Additionally, a solution is provided for accurate quantitation of high-molecular-weight DNA with fluorometric (Qubit [Thermo Fisher Scientific, MA, USA]) methods by using an appropriate genomic DNA standard, resulting in values that match spectrophotometric (Nanodrop [Thermo Fisher Scientific]) optical density readings.
Collapse
|
16
|
Nearing JT, Comeau AM, Langille MGI. Identifying biases and their potential solutions in human microbiome studies. MICROBIOME 2021; 9:113. [PMID: 34006335 PMCID: PMC8132403 DOI: 10.1186/s40168-021-01059-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 03/24/2021] [Indexed: 05/13/2023]
Abstract
Advances in DNA sequencing technology have vastly improved the ability of researchers to explore the microbial inhabitants of the human body. Unfortunately, while these studies have uncovered the importance of these microbial communities to our health, they often do not result in similar findings. One possible reason for the disagreement in these results is due to the multitude of systemic biases that are introduced during sequence-based microbiome studies. These biases begin with sample collection and continue to be introduced throughout the entire experiment leading to an observed community that is significantly altered from the true underlying microbial composition. In this review, we will highlight the various steps in typical sequence-based human microbiome studies where significant bias can be introduced, and we will review the current efforts within the field that aim to reduce the impact of these biases. Video abstract.
Collapse
Affiliation(s)
- Jacob T Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - André M Comeau
- Integrated Microbiome Resource, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G I Langille
- Integrated Microbiome Resource, Dalhousie University, Halifax, Nova Scotia, Canada.
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
17
|
Bias in RNA-seq Library Preparation: Current Challenges and Solutions. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6647597. [PMID: 33987443 PMCID: PMC8079181 DOI: 10.1155/2021/6647597] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/09/2021] [Indexed: 12/26/2022]
Abstract
Although RNA sequencing (RNA-seq) has become the most advanced technology for transcriptome analysis, it also confronts various challenges. As we all know, the workflow of RNA-seq is extremely complicated and it is easy to produce bias. This may damage the quality of RNA-seq dataset and lead to an incorrect interpretation for sequencing result. Thus, our detailed understanding of the source and nature of these biases is essential for the interpretation of RNA-seq data, finding methods to improve the quality of RNA-seq experimental, or development bioinformatics tools to compensate for these biases. Here, we discuss the sources of experimental bias in RNA-seq. And for each type of bias, we discussed the method for improvement, in order to provide some useful suggestions for researcher in RNA-seq experimental.
Collapse
|
18
|
Kim YS, Johnson GD, Seo J, Barrera A, Cowart TN, Majoros WH, Ochoa A, Allen AS, Reddy TE. Correcting signal biases and detecting regulatory elements in STARR-seq data. Genome Res 2021; 31:877-889. [PMID: 33722938 PMCID: PMC8092017 DOI: 10.1101/gr.269209.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
High-throughput reporter assays such as self-transcribing active regulatory region sequencing (STARR-seq) have made it possible to measure regulatory element activity across the entire human genome at once. The resulting data, however, present substantial analytical challenges. Here, we identify technical biases that explain most of the variance in STARR-seq data. We then develop a statistical model to correct those biases and to improve detection of regulatory elements. This approach substantially improves precision and recall over current methods, improves detection of both activating and repressive regulatory elements, and controls for false discoveries despite strong local correlations in signal.
Collapse
Affiliation(s)
- Young-Sook Kim
- Department of Biostatistics and Bioinformatics, Division of Integrative Genomics, Duke University Medical School, Durham, North Carolina 27710, USA.,Center for Genomic and Computational Biology, Duke University Medical School, Durham, North Carolina 27710, USA.,Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA.,Duke Center for Statistical Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA.,Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27710, USA
| | - Graham D Johnson
- Department of Biostatistics and Bioinformatics, Division of Integrative Genomics, Duke University Medical School, Durham, North Carolina 27710, USA.,Center for Genomic and Computational Biology, Duke University Medical School, Durham, North Carolina 27710, USA.,Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA.,Duke Center for Statistical Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA
| | - Jungkyun Seo
- Department of Biostatistics and Bioinformatics, Division of Integrative Genomics, Duke University Medical School, Durham, North Carolina 27710, USA.,Center for Genomic and Computational Biology, Duke University Medical School, Durham, North Carolina 27710, USA.,Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA.,Duke Center for Statistical Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA.,Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27710, USA
| | - Alejandro Barrera
- Department of Biostatistics and Bioinformatics, Division of Integrative Genomics, Duke University Medical School, Durham, North Carolina 27710, USA.,Center for Genomic and Computational Biology, Duke University Medical School, Durham, North Carolina 27710, USA.,Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA.,Duke Center for Statistical Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA
| | - Thomas N Cowart
- Department of Biostatistics and Bioinformatics, Division of Integrative Genomics, Duke University Medical School, Durham, North Carolina 27710, USA.,Duke Center for Statistical Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA
| | - William H Majoros
- Department of Biostatistics and Bioinformatics, Division of Integrative Genomics, Duke University Medical School, Durham, North Carolina 27710, USA.,Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA.,Duke Center for Statistical Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA.,Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27710, USA
| | - Alejandro Ochoa
- Department of Biostatistics and Bioinformatics, Division of Integrative Genomics, Duke University Medical School, Durham, North Carolina 27710, USA.,Duke Center for Statistical Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA.,Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27710, USA
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Division of Integrative Genomics, Duke University Medical School, Durham, North Carolina 27710, USA.,Center for Genomic and Computational Biology, Duke University Medical School, Durham, North Carolina 27710, USA.,Duke Center for Statistical Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA.,Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27710, USA
| | - Timothy E Reddy
- Department of Biostatistics and Bioinformatics, Division of Integrative Genomics, Duke University Medical School, Durham, North Carolina 27710, USA.,Center for Genomic and Computational Biology, Duke University Medical School, Durham, North Carolina 27710, USA.,Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA.,Duke Center for Statistical Genetics and Genomics, Duke University, Durham, North Carolina 27710, USA.,Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
19
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
20
|
Sielemann K, Weisshaar B, Pucker B. Reference-based QUantification Of gene Dispensability (QUOD). PLANT METHODS 2021; 17:18. [PMID: 33563309 PMCID: PMC7871624 DOI: 10.1186/s13007-021-00718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/03/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Dispensability of genes in a phylogenetic lineage, e.g. a species, genus, or higher-level clade, is gaining relevance as most genome sequencing projects move to a pangenome level. Most analyses classify genes as core genes, which are present in all investigated individual genomes, and dispensable genes, which only occur in a single or a few investigated genomes. The binary classification as 'core' or 'dispensable' is often based on arbitrary cutoffs of presence/absence in the analysed genomes. Even when extended to 'conditionally dispensable', this concept still requires the assignment of genes to distinct groups. RESULTS Here, we present a new method which overcomes this distinct classification by quantifying gene dispensability and present a dedicated tool for reference-based QUantification Of gene Dispensability (QUOD). As a proof of concept, sequence data of 966 Arabidopsis thaliana accessions (Ath-966) were processed to calculate a gene-specific dispensability score for each gene based on normalised coverage in read mappings. We validated this score by comparison of highly conserved Benchmarking Universal Single Copy Orthologs (BUSCOs) to all other genes. The average scores of BUSCOs were significantly lower than the scores of non-BUSCOs. Analysis of variation demonstrated lower variation values between replicates of a single accession than between iteratively, randomly selected accessions from the whole dataset Ath-966. Functional investigations revealed defense and antimicrobial response genes among the genes with high-dispensability scores. CONCLUSIONS Instead of classifying a gene as core or dispensable, QUOD assigns a dispensability score to each gene. Hence, QUOD facilitates the identification of candidate dispensable genes, associated with high dispensability scores, which often underlie lineage-specific adaptation to varying environmental conditions.
Collapse
Affiliation(s)
- Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615 Bielefeld, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Boas Pucker
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Lee D, Shi M, Moran J, Wall M, Zhang J, Liu J, Fitzgerald D, Kyono Y, Ma L, White KP, Gerstein M. STARRPeaker: uniform processing and accurate identification of STARR-seq active regions. Genome Biol 2020; 21:298. [PMID: 33292397 PMCID: PMC7722316 DOI: 10.1186/s13059-020-02194-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
STARR-seq technology has employed progressively more complex genomic libraries and increased sequencing depths. An issue with the increased complexity and depth is that the coverage in STARR-seq experiments is non-uniform, overdispersed, and often confounded by sequencing biases, such as GC content. Furthermore, STARR-seq readout is confounded by RNA secondary structure and thermodynamic stability. To address these potential confounders, we developed a negative binomial regression framework for uniformly processing STARR-seq data, called STARRPeaker. Moreover, to aid our effort, we generated whole-genome STARR-seq data from the HepG2 and K562 human cell lines and applied STARRPeaker to comprehensively and unbiasedly call enhancers in them.
Collapse
Affiliation(s)
- Donghoon Lee
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Manman Shi
- Institute for Genomics and System Biology, University of Chicago, Chicago, IL, 60637, USA.,Tempus Labs, Inc., Chicago, IL, 60654, USA
| | - Jennifer Moran
- Institute for Genomics and System Biology, University of Chicago, Chicago, IL, 60637, USA.,Tempus Labs, Inc., Chicago, IL, 60654, USA
| | - Martha Wall
- Institute for Genomics and System Biology, University of Chicago, Chicago, IL, 60637, USA.,Tempus Labs, Inc., Chicago, IL, 60654, USA
| | - Jing Zhang
- School of Information and Computer Sciences, University of California, Irvine, CA, 92697, USA
| | - Jason Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Dominic Fitzgerald
- Institute for Genomics and System Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yasuhiro Kyono
- Institute for Genomics and System Biology, University of Chicago, Chicago, IL, 60637, USA.,Tempus Labs, Inc., Chicago, IL, 60654, USA
| | - Lijia Ma
- Institute for Genomics and System Biology, University of Chicago, Chicago, IL, 60637, USA.,School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Kevin P White
- Institute for Genomics and System Biology, University of Chicago, Chicago, IL, 60637, USA. .,Tempus Labs, Inc., Chicago, IL, 60654, USA.
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA. .,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA. .,Department of Computer Science, Yale University, New Haven, CT, 06520, USA. .,Department of Statistics and Data Science, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
22
|
Lomov N, Zerkalenkova E, Lebedeva S, Viushkov V, Rubtsov MA. Cytogenetic and molecular genetic methods for chromosomal translocations detection with reference to the KMT2A/MLL gene. Crit Rev Clin Lab Sci 2020; 58:180-206. [PMID: 33205680 DOI: 10.1080/10408363.2020.1844135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute leukemias (ALs) are often associated with chromosomal translocations, in particular, KMT2A/MLL gene rearrangements. Identification or confirmation of these translocations is carried out by a number of genetic and molecular methods, some of which are routinely used in clinical practice, while others are primarily used for research purposes. In the clinic, these methods serve to clarify diagnoses and monitor the course of disease and therapy. On the other hand, the identification of new translocations and the confirmation of known translocations are of key importance in the study of disease mechanisms and further molecular classification. There are multiple methods for the detection of rearrangements that differ in their principle of operation, the type of problem being solved, and the cost-result ratio. This review is intended to help researchers and clinicians studying AL and related chromosomal translocations to navigate this variety of methods. All methods considered in the review are grouped by their principle of action and include karyotyping, fluorescence in situ hybridization (FISH) with probes for whole chromosomes or individual loci, PCR and reverse transcription-based methods, and high-throughput sequencing. Another characteristic of the described methods is the type of problem being solved. This can be the discovery of new rearrangements, the determination of unknown partner genes participating in the rearrangement, or the confirmation of the proposed rearrangement between the two genes. We consider the specifics of the application, the basic principle of each method, and its pros and cons. To illustrate the application, examples of studying the rearrangements of the KMT2A/MLL gene, one of the genes that are often rearranged in AL, are mentioned.
Collapse
Affiliation(s)
- Nikolai Lomov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Elena Zerkalenkova
- Laboratory of Cytogenetics and Molecular Genetics Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Svetlana Lebedeva
- Laboratory of Cytogenetics and Molecular Genetics Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Vladimir Viushkov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Biochemistry, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
23
|
Torkamaneh D, Laroche J, Boyle B, Belzile F. DepthFinder: a tool to determine the optimal read depth for reduced-representation sequencing. Bioinformatics 2020; 36:26-32. [PMID: 31173057 DOI: 10.1093/bioinformatics/btz473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/27/2022] Open
Abstract
MOTIVATION Identification of DNA sequence variations such as single nucleotide polymorphisms (SNPs) is a fundamental step toward genetic studies. Reduced-representation sequencing methods have been developed as alternatives to whole genome sequencing to reduce costs and enable the analysis of many more individual. Amongst these methods, restriction site associated sequencing (RSAS) methodologies have been widely used for rapid and cost-effective discovery of SNPs and for high-throughput genotyping in a wide range of species. Despite the extensive improvements of the RSAS methods in the last decade, the estimation of the number of reads (i.e. read depth) required per sample for an efficient and effective genotyping remains mostly based on trial and error. RESULTS Herein we describe a bioinformatics tool, DepthFinder, designed to estimate the required read counts for RSAS methods. To illustrate its performance, we estimated required read counts in six different species (human, cattle, spruce budworm, salmon, barley and soybean) that cover a range of different biological (genome size, level of genome complexity, level of DNA methylation and ploidy) and technical (library preparation protocol and sequencing platform) factors. To assess the prediction accuracy of DepthFinder, we compared DepthFinder-derived results with independent datasets obtained from an RSAS experiment. This analysis yielded estimated accuracies of nearly 94%. Moreover, we present DepthFinder as a powerful tool to predict the most effective size selection interval in RSAS work. We conclude that DepthFinder constitutes an efficient, reliable and useful tool for a broad array of users in different research communities. AVAILABILITY AND IMPLEMENTATION https://bitbucket.org/jerlar73/DepthFinder. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Davoud Torkamaneh
- Département de Phytologie, Québec City, QC G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada.,Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Brian Boyle
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| | - François Belzile
- Département de Phytologie, Québec City, QC G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
24
|
Semyonov DA, Eltsov IV, Nechipurenko YD. A New Bias Site for Epigenetic Modifications: How Non-Canonical GC Base Pairs Favor Mechanochemical Cleavage of DNA. Bioessays 2020; 42:e2000051. [PMID: 32830350 DOI: 10.1002/bies.202000051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/23/2020] [Indexed: 11/11/2022]
Abstract
Properties of non-canonical GC base pairs and their relations with mechanochemical cleavage of DNA are analyzed. A hypothesis of the involvement of the transient GC wobble base pairs both in the mechanisms of the mechanochemical cleavage of DNA and epigenetic mechanisms involving of 5-methylcytosine, is proposed. The hypothesis explains the increase in the frequency of the breaks of the sugar-phosphate backbone of DNA after cytosines, the asymmetric character of these breaks, and an increase in break frequency in CpG after cytosine methylation. As an alternative hypothesis, probable implication of GC+ Hoogsteen base pairs is considered, which now exemplify the best-studied non-canonical GC base pairs in the DNA double helix. Also see the video abstract here https://youtu.be/EUunVWL0ptw.
Collapse
Affiliation(s)
- Denis A Semyonov
- Institute of Biophysics, Institute of Biophysics, Siberian Branch of Russian Academy of Science., Akademgorodok 50, Krasnoyarsk, 660036, Russia
| | | | - Yury D Nechipurenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Basov A, Drobotenko M, Svidlov A, Gerasimenko E, Malyshko V, Elkina A, Baryshev M, Dzhimak S. Inequality in the Frequency of the Open States Occurrence Depends on Single 2H/ 1H Replacement in DNA. Molecules 2020; 25:E3753. [PMID: 32824686 PMCID: PMC7463606 DOI: 10.3390/molecules25163753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/15/2020] [Indexed: 12/15/2022] Open
Abstract
In the present study, the effect of 2H/1H isotopic exchange in hydrogen bonds between nitrogenous base pairs on occurrence and open states zones dynamics is investigated. These processes are studied using mathematical modeling, taking into account the number of open states between base pairs. The calculations of the probability of occurrence of open states in different parts of the gene were done depending on the localization of the deuterium atom. The mathematical modeling study demonstrated significant inequality (dependent on single 2H/1H replacement in DNA) among three parts of the gene similar in length of the frequency of occurrence of the open states. In this paper, the new convenient approach of the analysis of the abnormal frequency of open states in different parts of the gene encoding interferon alpha 17 was presented, which took into account both rising and decreasing of them that allowed to make a prediction of the functional instability of the specific DNA regions. One advantage of the new algorithm is diminishing the number of both false positive and false negative results in data filtered by this approach compared to the pure fractile methods, such as deciles or quartiles.
Collapse
Affiliation(s)
- Alexander Basov
- Kuban State Medical University, 350063 Krasnodar, Russia; (A.B.); (V.M.)
- Kuban State University, 350040 Krasnodar, Russia; (M.D.); (A.S.); (M.B.); (S.D.)
| | - Mikhail Drobotenko
- Kuban State University, 350040 Krasnodar, Russia; (M.D.); (A.S.); (M.B.); (S.D.)
| | - Alexandr Svidlov
- Kuban State University, 350040 Krasnodar, Russia; (M.D.); (A.S.); (M.B.); (S.D.)
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia
| | | | - Vadim Malyshko
- Kuban State Medical University, 350063 Krasnodar, Russia; (A.B.); (V.M.)
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia
| | - Anna Elkina
- Kuban State University, 350040 Krasnodar, Russia; (M.D.); (A.S.); (M.B.); (S.D.)
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia
| | - Mikhail Baryshev
- Kuban State University, 350040 Krasnodar, Russia; (M.D.); (A.S.); (M.B.); (S.D.)
- Kuban State Technological University, 350042 Krasnodar, Russia;
| | - Stepan Dzhimak
- Kuban State University, 350040 Krasnodar, Russia; (M.D.); (A.S.); (M.B.); (S.D.)
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia
| |
Collapse
|
26
|
Ishii T, Tamura A, Shibata T, Kuroda K, Kanda T, Sugiyama M, Mizokami M, Moriyama M. Analysis of HBV Genomes Integrated into the Genomes of Human Hepatoma PLC/PRF/5 Cells by HBV Sequence Capture-Based Next-Generation Sequencing. Genes (Basel) 2020; 11:genes11060661. [PMID: 32570699 PMCID: PMC7348787 DOI: 10.3390/genes11060661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma (HCC) worldwide. The integration of HBV genomic DNA into the host genome occurs randomly, early after infection, and is associated with hepatocarcinogenesis in HBV-infected patients. Therefore, it is important to analyze HBV genome integration. We analyzed HBV genome integration in human hepatoma PLC/PRF/5 cells by HBV sequence capture-based next-generation sequencing (NGS) methods. We confirmed the results by using Sanger sequencing methods. We observed that HBV genotype A is integrated into the genome of PLC/PRF/5 cells. HBV sequence capture-based NGS is useful for the analysis of HBV genome integrants and their locations in the human genome. Among the HBV genome integrants, we performed functional analysis and demonstrated the automatic expression of some HBV proteins encoded by HBV integrants from chromosomes 3 and 11 in Huh7 cells transfected with these DNA sequences. HBV sequence capture-based NGS may be a useful tool for the assessment of HBV genome integration into the human genome in clinical samples and suggests new strategies for hepatocarcinogenesis in HBV infection.
Collapse
Affiliation(s)
- Tomotaka Ishii
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.I.); (A.T.); (T.S.); (K.K.); (M.M.)
| | - Akinori Tamura
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.I.); (A.T.); (T.S.); (K.K.); (M.M.)
| | - Toshikatsu Shibata
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.I.); (A.T.); (T.S.); (K.K.); (M.M.)
| | - Kazumichi Kuroda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.I.); (A.T.); (T.S.); (K.K.); (M.M.)
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.I.); (A.T.); (T.S.); (K.K.); (M.M.)
- Correspondence: ; Tel.: +81-3-3972-8111; Fax: +81-3-3956-8496
| | - Masaya Sugiyama
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan; (M.S.); (M.M.)
| | - Masashi Mizokami
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan; (M.S.); (M.M.)
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.I.); (A.T.); (T.S.); (K.K.); (M.M.)
| |
Collapse
|
27
|
Uroshlev LA, Abdullaev ET, Umarova IR, Il'icheva IA, Panchenko LA, Polozov RV, Kondrashov FA, Nechipurenko YD, Grokhovsky SL. A Method for Identification of the Methylation Level of CpG Islands From NGS Data. Sci Rep 2020; 10:8635. [PMID: 32451390 PMCID: PMC7248081 DOI: 10.1038/s41598-020-65406-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
In the course of sample preparation for Next Generation Sequencing (NGS), DNA is fragmented by various methods. Fragmentation shows a persistent bias with regard to the cleavage rates of various dinucleotides. With the exception of CpG dinucleotides the previously described biases were consistent with results of the DNA cleavage in solution. Here we computed cleavage rates of all dinucleotides including the methylated CpG and unmethylated CpG dinucleotides using data of the Whole Genome Sequencing datasets of the 1000 Genomes project. We found that the cleavage rate of CpG is significantly higher for the methylated CpG dinucleotides. Using this information, we developed a classifier for distinguishing cancer and healthy tissues based on their CpG islands statuses of the fragmentation. A simple Support Vector Machine classifier based on this algorithm shows an accuracy of 84%. The proposed method allows the detection of epigenetic markers purely based on mechanochemical DNA fragmentation, which can be detected by a simple analysis of the NGS sequencing data.
Collapse
Affiliation(s)
- Leonid A Uroshlev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
| | | | - Iren R Umarova
- Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russia
| | - Irina A Il'icheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Larisa A Panchenko
- Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russia
| | - Robert V Polozov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Puschino, Russia
| | | | - Yury D Nechipurenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Sergei L Grokhovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
28
|
Maynard LH, Smith O, Tilmans NP, Tham E, Hosseinzadeh S, Tan W, Leenay R, May AP, Paulk NK. Fast-Seq: A Simple Method for Rapid and Inexpensive Validation of Packaged Single-Stranded Adeno-Associated Viral Genomes in Academic Settings. Hum Gene Ther Methods 2020; 30:195-205. [PMID: 31855083 PMCID: PMC6919253 DOI: 10.1089/hgtb.2019.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Adeno-associated viral (AAV) vectors have shown great promise in gene delivery as evidenced by recent FDA approvals. Despite efforts to optimize manufacturing for good manufacturing practice (GMP) productions, few academic laboratories have the resources to assess vector composition. One critical component of vector quality is packaged genome fidelity. Errors in viral genome replication and packaging can result in the incorporation of faulty genomes with mutations, truncations, or rearrangements, compromising vector potency. Thus, sequence validation of packaged genome composition is an important quality control (QC), even in academic settings. We developed Fast-Seq, an end-to-end method for extraction, purification, sequencing, and data analysis of packaged single-stranded AAV (ssAAV) genomes intended for non-GMP preclinical environments. We validated Fast-Seq on ssAAV vectors with three different genome compositions (CAG-GFP, CAG-tdTomato, EF1α-FLuc), three different genome sizes (2.9, 3.6, 4.4 kb), packaged in four different capsid serotypes (AAV1, AAV2, AAV5, and AAV8), and produced using the two most common production methods (Baculovirus-Sf9 and human HEK293), from both common commercial vendors and academic core facilities supplying academic laboratories. We achieved an average genome coverage of >1,400 × and an average inverted terminal repeat coverage of >280 × , despite the many differences in composition of each ssAAV sample. When compared with other ssAAV next-generation sequencing (NGS) methods for GMP settings, Fast-Seq has several unique advantages: Tn5 transposase-based fragmentation rather than sonication, 125 × less input DNA, simpler adapter ligation, compatibility with commonly available inexpensive sequencing instruments, and free open-source data analysis code in a preassembled customizable Docker container designed for novices. Fast-Seq can be completed in 18 h, is more cost-effective than other NGS methods, and is more accurate than Sanger sequencing, which is generally only applied at 1-2 × sequencing depth. Fast-Seq is a rapid, simple, and inexpensive methodology to validate packaged ssAAV genomes in academic settings.
Collapse
Affiliation(s)
- Lucy H Maynard
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Olivia Smith
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | | | - Eleonore Tham
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Shayan Hosseinzadeh
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Weilun Tan
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Ryan Leenay
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Andrew P May
- Chan Zuckerberg Biohub, Department of Genome Engineering, San Francisco, California
| | - Nicole K Paulk
- Genome Engineering, Chan Zuckerberg Biohub, San Francisco, California.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California
| |
Collapse
|
29
|
Wilson-Sánchez D, Lup SD, Sarmiento-Mañús R, Ponce MR, Micol JL. Next-generation forward genetic screens: using simulated data to improve the design of mapping-by-sequencing experiments in Arabidopsis. Nucleic Acids Res 2020; 47:e140. [PMID: 31544937 PMCID: PMC6868388 DOI: 10.1093/nar/gkz806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
Forward genetic screens have successfully identified many genes and continue to be powerful tools for dissecting biological processes in Arabidopsis and other model species. Next-generation sequencing technologies have revolutionized the time-consuming process of identifying the mutations that cause a phenotype of interest. However, due to the cost of such mapping-by-sequencing experiments, special attention should be paid to experimental design and technical decisions so that the read data allows to map the desired mutation. Here, we simulated different mapping-by-sequencing scenarios. We first evaluated which short-read technology was best suited for analyzing gene-rich genomic regions in Arabidopsis and determined the minimum sequencing depth required to confidently call single nucleotide variants. We also designed ways to discriminate mutagenesis-induced mutations from background Single Nucleotide Polymorphisms in mutants isolated in Arabidopsis non-reference lines. In addition, we simulated bulked segregant mapping populations for identifying point mutations and monitored how the size of the mapping population and the sequencing depth affect mapping precision. Finally, we provide the computational basis of a protocol that we already used to map T-DNA insertions with paired-end Illumina-like reads, using very low sequencing depths and pooling several mutants together; this approach can also be used with single-end reads as well as to map any other insertional mutagen. All these simulations proved useful for designing experiments that allowed us to map several mutations in Arabidopsis.
Collapse
Affiliation(s)
- David Wilson-Sánchez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Samuel Daniel Lup
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
30
|
Il’icheva IA, Khodikov MV, Panchenko LA, Polozov RV, Nechipurenko YD. Ultrasonic DNA Cleavage: An Analysis of the Conformational-Dynamic Features of Regulatory Genome Regions and Sequencing Errors. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920030082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Comparison of Mendeliome exome capture kits for use in clinical diagnostics. Sci Rep 2020; 10:3235. [PMID: 32094380 PMCID: PMC7039898 DOI: 10.1038/s41598-020-60215-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Next generation sequencing has disrupted genetic testing, allowing far more scope in the tests applied. The appropriate sections of the genome to be tested can now be readily selected, from single mutations to whole-genome sequencing. One product offering within this spectrum are focused exomes, targeting ~5,000 genes know to be implicated in human disease. These are designed to offer a flexible platform offering high diagnostic yield with a reduction in sequencing requirement compared to whole exome sequencing. Here, we have undertaken sequencing of control DNA samples and compare two kits, the Illumina TruSight One and the Agilent SureSelect Focused Exome. Characteristics of the kits are comprehensively evaluated. Despite the larger design region of the Agilent kit, we find that the Illumina kit performs better in terms of gene coverage, as well as coverage of clinically relevant loci. We provide exhaustive coverage statistics for each kit to aid the assessment of their suitability and provide read data for control DNA samples to allow for bioinformatic benchmarking by users developing pipelines for these data.
Collapse
|
32
|
O’Donnell ST, Ross RP, Stanton C. The Progress of Multi-Omics Technologies: Determining Function in Lactic Acid Bacteria Using a Systems Level Approach. Front Microbiol 2020; 10:3084. [PMID: 32047482 PMCID: PMC6997344 DOI: 10.3389/fmicb.2019.03084] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic Acid Bacteria (LAB) have long been recognized as having a significant impact ranging from commercial to health domains. A vast amount of research has been carried out on these microbes, deciphering many of the pathways and components responsible for these desirable effects. However, a large proportion of this functional information has been derived from a reductionist approach working with pure culture strains. This provides limited insight into understanding the impact of LAB within intricate systems such as the gut microbiome or multi strain starter cultures. Whole genome sequencing of strains and shotgun metagenomics of entire systems are powerful techniques that are currently widely used to decipher function in microbes, but they also have their limitations. An available genome or metagenome can provide an image of what a strain or microbiome, respectively, is potentially capable of and the functions that they may carry out. A top-down, multi-omics approach has the power to resolve the functional potential of an ecosystem into an image of what is being expressed, translated and produced. With this image, it is possible to see the real functions that members of a system are performing and allow more accurate and impactful predictions of the effects of these microorganisms. This review will discuss how technological advances have the potential to increase the yield of information from genomics, transcriptomics, proteomics and metabolomics. The potential for integrated omics to resolve the role of LAB in complex systems will also be assessed. Finally, the current software approaches for managing these omics data sets will be discussed.
Collapse
Affiliation(s)
- Shane Thomas O’Donnell
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
33
|
Chan AWY, Naphtali J, Schellhorn HE. High-throughput DNA sequencing technologies for water and wastewater analysis. Sci Prog 2019; 102:351-376. [PMID: 31818206 PMCID: PMC10424514 DOI: 10.1177/0036850419881855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conventional microbiological water monitoring uses culture-dependent techniques to screen indicator microbial species such as Escherichia coli and fecal coliforms. With high-throughput, second-generation sequencing technologies becoming less expensive, water quality monitoring programs can now leverage the massively parallel nature of second-generation sequencing technologies for batch sample processing to simultaneously obtain compositional and functional information of culturable and as yet uncultured microbial organisms. This review provides an introduction to the technical capabilities and considerations necessary for the use of second-generation sequencing technologies, specifically 16S rDNA amplicon and whole-metagenome sequencing, to investigate the composition and functional potential of microbiomes found in water and wastewater systems.
Collapse
Affiliation(s)
| | - James Naphtali
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
34
|
Li J, Jew B, Zhan L, Hwang S, Coppola G, Freimer NB, Sul JH. ForestQC: Quality control on genetic variants from next-generation sequencing data using random forest. PLoS Comput Biol 2019; 15:e1007556. [PMID: 31851693 PMCID: PMC6938691 DOI: 10.1371/journal.pcbi.1007556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/01/2020] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
Next-generation sequencing technology (NGS) enables the discovery of nearly all genetic variants present in a genome. A subset of these variants, however, may have poor sequencing quality due to limitations in NGS or variant callers. In genetic studies that analyze a large number of sequenced individuals, it is critical to detect and remove those variants with poor quality as they may cause spurious findings. In this paper, we present ForestQC, a statistical tool for performing quality control on variants identified from NGS data by combining a traditional filtering approach and a machine learning approach. Our software uses the information on sequencing quality, such as sequencing depth, genotyping quality, and GC contents, to predict whether a particular variant is likely to be false-positive. To evaluate ForestQC, we applied it to two whole-genome sequencing datasets where one dataset consists of related individuals from families while the other consists of unrelated individuals. Results indicate that ForestQC outperforms widely used methods for performing quality control on variants such as VQSR of GATK by considerably improving the quality of variants to be included in the analysis. ForestQC is also very efficient, and hence can be applied to large sequencing datasets. We conclude that combining a machine learning algorithm trained with sequencing quality information and the filtering approach is a practical approach to perform quality control on genetic variants from sequencing data.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Brandon Jew
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Lingyu Zhan
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Sungoo Hwang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Nelson B. Freimer
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Jae Hoon Sul
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
35
|
Intragenomic variability and extended sequence patterns in the mutational signature of ultraviolet light. Proc Natl Acad Sci U S A 2019; 116:20411-20417. [PMID: 31548379 PMCID: PMC6789905 DOI: 10.1073/pnas.1909021116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutational signatures have emerged as essential tools in cancer genomics, providing clinically relevant insights as well as accurate background models needed when assessing signals of selection in cancer. Here, we observe that the mutational signature of ultraviolet (UV) light varies across chromatin states, highlighting a previously unappreciated aspect of mutational signatures. Our results imply that locally derived, rather than genome-wide or exome-wide, signatures are more accurate, which is of relevance in situations such as cancer driver gene detection, where correct modelling of signatures and expected mutation rates is critical. We also show that incorporation of longer contextual patterns into the signature further improves modeling of UV mutations. Mutational signatures can reveal properties of underlying mutational processes and are important when assessing signals of selection in cancer. Here, we describe the sequence characteristics of mutations induced by ultraviolet (UV) light, a major mutagen in several human cancers, in terms of extended (longer than trinucleotide) patterns as well as variability of the signature across chromatin states. Promoter regions display a distinct UV signature with reduced TCG > TTG transitions, and genome-wide mapping of UVB-induced DNA photoproducts (pyrimidine dimers) showed that this may be explained by decreased damage formation at hypomethylated promoter CpG sites. Further, an extended signature model encompassing additional information from longer contextual patterns improves modeling of UV mutations, which may enhance discrimination between drivers and passenger events. Our study presents a refined picture of the UV signature and underscores that the characteristics of a single mutational process may vary across the genome.
Collapse
|
36
|
Marín de Evsikova C, Raplee ID, Lockhart J, Jaimes G, Evsikov AV. The Transcriptomic Toolbox: Resources for Interpreting Large Gene Expression Data within a Precision Medicine Context for Metabolic Disease Atherosclerosis. J Pers Med 2019; 9:E21. [PMID: 31032818 PMCID: PMC6617151 DOI: 10.3390/jpm9020021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022] Open
Abstract
As one of the most widespread metabolic diseases, atherosclerosis affects nearly everyone as they age; arteries gradually narrow from plaque accumulation over time reducing oxygenated blood flow to central and periphery causing heart disease, stroke, kidney problems, and even pulmonary disease. Personalized medicine promises to bring treatments based on individual genome sequencing that precisely target the molecular pathways underlying atherosclerosis and its symptoms, but to date only a few genotypes have been identified. A promising alternative to this genetic approach is the identification of pathways altered in atherosclerosis by transcriptome analysis of atherosclerotic tissues to target specific aspects of disease. Transcriptomics is a potentially useful tool for both diagnostics and discovery science, exposing novel cellular and molecular mechanisms in clinical and translational models, and depending on experimental design to identify and test novel therapeutics. The cost and time required for transcriptome analysis has been greatly reduced by the development of next generation sequencing. The goal of this resource article is to provide background and a guide to appropriate technologies and downstream analyses in transcriptomics experiments generating ever-increasing amounts of gene expression data.
Collapse
Affiliation(s)
- Caralina Marín de Evsikova
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Epigenetics & Functional Genomics Laboratories, Department of Research and Development, Bay Pines Veteran Administration Healthcare System, Bay Pines, FL 33744, USA.
| | - Isaac D Raplee
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - John Lockhart
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Gilberto Jaimes
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Alexei V Evsikov
- Epigenetics & Functional Genomics Laboratories, Department of Research and Development, Bay Pines Veteran Administration Healthcare System, Bay Pines, FL 33744, USA.
| |
Collapse
|
37
|
Marranci A, D'Aurizio R, Vencken S, Mero S, Guzzolino E, Rizzo M, Pitto L, Pellegrini M, Chiorino G, Greene CM, Poliseno L. Systematic evaluation of the microRNAome through miR-CATCHv2.0 identifies positive and negative regulators of BRAF-X1 mRNA. RNA Biol 2019; 16:865-878. [PMID: 30929607 DOI: 10.1080/15476286.2019.1600934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Here we present miR-CATCHv2.0, an implemented experimental method that allows the identification of the microRNA species directly bound to an RNA of interest. After cross-linking of microRNA::RNA::Ago2 complexes using formaldehyde, the RNA is fragmented using sonication and then subjected to affinity purification using two sets of biotinylated tiling probes (ODD and EVEN). Finally, enriched microRNA species are retrieved by means of small RNA sequencing coupled with an ad hoc analytical workflow. In BRAFV600E mutant A375 melanoma cells, miR-CATCHv2.0 allowed us to identify 20 microRNAs that target X1, the most abundant isoform of BRAF mRNA. These microRNAs fall into different functional classes, according to the effect that they exert (decrease/increase in BRAFV600E mRNA and protein levels) and to the mechanism they use to achieve it (destabilization/stabilization of X1 mRNA or decrease/increase in its translation). microRNA-induced variations in BRAFV600E protein levels are most of the times coupled to consistent variations in pMEK levels, in melanoma cell proliferation in vitro and in sensitivity to the BRAF inhibitor vemurafenib in a xenograft model in zebrafish. However, microRNAs exist that uncouple the degree of activation of the ERK pathway from the levels of BRAFV600E protein. Our study proposes miR-CATCHv2.0 as an effective tool for the identification of direct microRNA-target interactions and, by using such a tool, unveils the complexity of the post-transcriptional regulation to which BRAFV600E and the ERK pathway are subjected in melanoma cells.
Collapse
Affiliation(s)
- Andrea Marranci
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy.,c Signal Transduction Unit, Core Research Laboratory , ISPRO , Siena , Italy
| | | | - Sebastian Vencken
- e Department of Clinical Microbiology , Royal College of Surgeon in Ireland , Dublin , Ireland
| | - Serena Mero
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy
| | | | - Milena Rizzo
- a Institute of Clinical Physiology , CNR , Pisa , Italy
| | - Letizia Pitto
- a Institute of Clinical Physiology , CNR , Pisa , Italy
| | | | - Giovanna Chiorino
- f Cancer Genomics Lab , Fondazione Edo ed Elvo Tempia , Biella , Italy
| | - Catherine M Greene
- e Department of Clinical Microbiology , Royal College of Surgeon in Ireland , Dublin , Ireland
| | - Laura Poliseno
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy
| |
Collapse
|
38
|
Ignatov KB, Blagodatskikh KA, Shcherbo DS, Kramarova TV, Monakhova YA, Kramarov VM. Fragmentation Through Polymerization (FTP): A new method to fragment DNA for next-generation sequencing. PLoS One 2019; 14:e0210374. [PMID: 30933980 PMCID: PMC6443234 DOI: 10.1371/journal.pone.0210374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/16/2019] [Indexed: 01/23/2023] Open
Abstract
Fragmentation of DNA is the very important first step in preparing nucleic acids for next-generation sequencing. Here we report a novel Fragmentation Through Polymerization (FTP) technique, which is a simple, robust, and low-cost enzymatic method of fragmentation. This method generates double-stranded DNA fragments that are suitable for direct use in NGS library construction and allows the elimination of the additional step of reparation of DNA ends.
Collapse
Affiliation(s)
- Konstantin B. Ignatov
- All-Russia Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| | | | | | - Tatiana V. Kramarova
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Yulia A. Monakhova
- All-Russia Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Syntol JSC, Moscow, Russia
| | - Vladimir M. Kramarov
- All-Russia Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
39
|
Networks of mRNA Processing and Alternative Splicing Regulation in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:1-27. [PMID: 31342435 DOI: 10.1007/978-3-030-19966-1_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
mRNA processing events introduce an intricate layer of complexity into gene expression processes, supporting a tremendous level of diversification of the genome's coding and regulatory potential, particularly in vertebrate species. The recent development of massive parallel sequencing methods and their adaptation to the identification and quantification of different RNA species and the dynamics of mRNA metabolism and processing has generated an unprecedented view over the regulatory networks that are established at this level, which contribute to sustain developmental, tissue specific or disease specific gene expression programs. In this chapter, we provide an overview of the recent evolution of transcriptome profiling methods and the surprising insights that have emerged in recent years regarding distinct mRNA processing events - from the 5' end to the 3' end of the molecule.
Collapse
|
40
|
Garafutdinov RR, Galimova AA, Sakhabutdinova AR. The influence of CpG (5'-d(CpG)-3' dinucleotides) methylation on ultrasonic DNA fragmentation. J Biomol Struct Dyn 2018; 37:3877-3886. [PMID: 30351231 DOI: 10.1080/07391102.2018.1533888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
DNA methylation is an important way of gene regulation. The variety of methods for DNA methylation analysis based on chemical modification or enzyme digestion has been proposed. However, DNA is able to undergo transformations under physical power. Here, we report that the cytosine methylation in CpG dinucleotides determines the difference in fragmentation rate of methylated and unmethylated DNA under sonication. We found that at the beginning of sonication, methylated DNAs are degraded faster than unmethylated one, and the difference in fragmentation degree can be evaluated with high reliability by quantitative polymerase chain reaction (qPCR). The optimal parameters that provide the greatest difference in amount of amplifiable DNA targets corresponding to fragmentation degree are the following: moderate amplicon size (about 150-250 bp), medium CpG sparseness (one CpG dinucleotide per ∼12-14 nucleotides of the chain), and short sonication time (less than 5 min). Along with CpG, the CpA and CpT contents of amplified regions should be taken into account for proper DNA fragmentation by ultrasound as well. The obtained data could be used for elaboration of a method for comparative methylation testing, when there is no need to detect methylation of certain CpG dinucleotides. This method will be simple (can be used by any technician familiar with PCR), low cost (no need to use an expensive reagents), and fast (only brief DNA sonication and conventional qPCR are carried out). Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravil R Garafutdinov
- a Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences , Ufa , Bashkortostan , Russia
| | - Aizilya A Galimova
- a Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences , Ufa , Bashkortostan , Russia
| | - Assol R Sakhabutdinova
- a Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences , Ufa , Bashkortostan , Russia
| |
Collapse
|
41
|
Alberdi A, Aizpurua O, Bohmann K, Gopalakrishnan S, Lynggaard C, Nielsen M, Gilbert MTP. Promises and pitfalls of using high‐throughput sequencing for diet analysis. Mol Ecol Resour 2018; 19:327-348. [DOI: 10.1111/1755-0998.12960] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Antton Alberdi
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Ostaizka Aizpurua
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Kristine Bohmann
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- School of Biological Sciences University of East Anglia Norwich Norfolk UK
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Christina Lynggaard
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Martin Nielsen
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Marcus Thomas Pius Gilbert
- Section for Evolutionary Genomics, Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
- NTNU University Museum Trondheim Norway
| |
Collapse
|
42
|
Nanotechnology Enabled Inhalation of Bio-therapeutics for Pulmonary Diseases: Design Considerations and Challenges. CURRENT PATHOBIOLOGY REPORTS 2018. [DOI: 10.1007/s40139-018-0183-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Biasco L. Integration Site Analysis in Gene Therapy Patients: Expectations and Reality. Hum Gene Ther 2018; 28:1122-1129. [PMID: 29160103 DOI: 10.1089/hum.2017.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Integration site (IS) analysis is one of the major tools for addressing the safety of gene therapy clinical protocols based on the use of integrating vectors. Over the past years, the study of viral insertions in gene therapy-treated patients has allowed identifying insertional mutagenesis events, evaluating the safety of new viral vector platforms and tracking the in vivo clonal dynamics of genetically engineered cell products. While gene therapy is progressively expanding its impact on a broader area of clinical applications, increasingly more accessible, faster, and more reliable safety readouts are required from IS analysis. Several actors, from researchers to clinicians, from regulatory agencies to private companies, have to interface to different degrees with the results of IS analysis while developing and evaluating gene therapy products based on retroviral vectors. This review is aimed at providing a brief overview of what the current state and the future is of these studies with a particular focus on what are the main analytical constraints that should be considered upon conducting IS analysis in clinical gene therapy.
Collapse
Affiliation(s)
- Luca Biasco
- 1 Harvard Medical School, Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts.,2 University College London , Great Ormond Street Institute of Child Health, Faculty of Population Health Sciences, London, United Kingdom
| |
Collapse
|
44
|
Pavlaki I, Docquier F, Chernukhin I, Kita G, Gretton S, Clarkson CT, Teif VB, Klenova E. Poly(ADP-ribosyl)ation associated changes in CTCF-chromatin binding and gene expression in breast cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:718-730. [PMID: 29981477 PMCID: PMC6074063 DOI: 10.1016/j.bbagrm.2018.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/23/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
CTCF is an evolutionarily conserved and ubiquitously expressed architectural protein regulating a plethora of cellular functions via different molecular mechanisms. CTCF can undergo a number of post-translational modifications which change its properties and functions. One such modifications linked to cancer is poly(ADP-ribosyl)ation (PARylation). The highly PARylated CTCF form has an apparent molecular mass of 180 kDa (referred to as CTCF180), which can be distinguished from hypo- and non-PARylated CTCF with the apparent molecular mass of 130 kDa (referred to as CTCF130). The existing data accumulated so far have been mainly related to CTCF130. However, the properties of CTCF180 are not well understood despite its abundance in a number of primary tissues. In this study we performed ChIP-seq and RNA-seq analyses in human breast cells 226LDM, which display predominantly CTCF130 when proliferating, but CTCF180 upon cell cycle arrest. We observed that in the arrested cells the majority of sites lost CTCF, whereas fewer sites gained CTCF or remain bound (i.e. common sites). The classical CTCF binding motif was found in the lost and common, but not in the gained sites. The changes in CTCF occupancies in the lost and common sites were associated with increased chromatin densities and altered expression from the neighboring genes. Based on these results we propose a model integrating the CTCF130/180 transition with CTCF-DNA binding and gene expression changes. This study also issues an important cautionary note concerning the design and interpretation of any experiments using cells and tissues where CTCF180 may be present.
Collapse
Affiliation(s)
- Ioanna Pavlaki
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - France Docquier
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Igor Chernukhin
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Georgia Kita
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Svetlana Gretton
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Christopher T Clarkson
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Vladimir B Teif
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | - Elena Klenova
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| |
Collapse
|
45
|
Dennin RH. Overlooked: Extrachromosomal DNA and Their Possible Impact on Whole Genome Sequencing. Malays J Med Sci 2018; 25:20-26. [PMID: 30918452 PMCID: PMC6422590 DOI: 10.21315/mjms2018.25.2.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/05/2018] [Indexed: 02/08/2023] Open
Abstract
Extrachromosomal (ec) DNA in eukaryotic cells has been known for decades. The structures described range from linear double stranded (ds) DNA to circular dsDNA, distinct from mitochondrial (mt) DNA. The sizes of circular forms are described from some hundred base pairs (bp) up to more than 150 kbp. The number of molecules per cell ranges from several hundred to a thousand. Semi-quantitative determinations of circular dsDNA show proportions as high as several percentages of the total DNA per cell. These ecDNA fractions harbor sequences that are known to be present in chromosomal DNA (chrDNA) too. Sequencing projects on, for example the human genome, have to take into account the ecDNA sequences which are simultaneously ascertained; corrections cannot be performed retrospectively. Concerning the results of sequencings derived from extracted whole DNA: if the ecDNA fractions contained therein are not taken into account, erroneous conclusions at the chromosomal level may result.
Collapse
Affiliation(s)
- Reinhard H Dennin
- Department of Infectious Diseases and Microbiology, University of Luebeck, UKSH, Campus Luebeck, D-23538 Luebeck, Germany
| |
Collapse
|
46
|
Micheletti SJ, Narum SR. Utility of pooled sequencing for association mapping in nonmodel organisms. Mol Ecol Resour 2018; 18:825-837. [PMID: 29633534 DOI: 10.1111/1755-0998.12784] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/30/2022]
Abstract
High-density genome-wide sequencing increases the likelihood of discovering genes of major effect and genomic structural variation in organisms. While there is an increasing availability of reference genomes across broad taxa, the greatest limitation to whole-genome sequencing of multiple individuals continues to be the costs associated with sequencing. To alleviate excessive costs, pooling multiple individuals with similar phenotypes and sequencing the homogenized DNA (Pool-Seq) can achieve high genome coverage, but at the loss of individual genotypes. Although Pool-Seq has been an effective method for association mapping in model organisms, it has not been frequently utilized in natural populations. To extend bioinformatic tools for rapid implementation of Pool-Seq data in nonmodel organisms, we developed a pipeline called PoolParty and illustrate its effectiveness in genetic association mapping. Alignment expectations based on five pooled Chinook salmon (Oncorhynchus tshawytscha) libraries showed that approximately 48% genome coverage per library could be achieved with reasonable sequencing effort. We additionally examined male and female O. tshawytscha libraries to illustrate how Pool-Seq techniques can successfully map known genes associated with functional differences among sexes such as growth hormone 2. Finally, we compared pools of individuals of different spawning ages for each sex to discover novel genes involved with age at maturity in O. tshawytscha such as opsin4 and transmembrane protein19. While not appropriate for every system, Pool-Seq data processed by the PoolParty pipeline is a practical method for identifying genes of major effect in nonmodel organisms when high genome coverage is necessary and cost is a limiting factor.
Collapse
Affiliation(s)
- Steven J Micheletti
- Columbia River Inter-Tribal Fish Commission, Hagerman Fish Culture Experiment Station, Hagerman, Idaho
| | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission, Hagerman Fish Culture Experiment Station, Hagerman, Idaho
| |
Collapse
|
47
|
Leigh DM, Lischer HEL, Grossen C, Keller LF. Batch effects in a multiyear sequencing study: False biological trends due to changes in read lengths. Mol Ecol Resour 2018; 18:778-788. [DOI: 10.1111/1755-0998.12779] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- D. M. Leigh
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Swiss Institute of Bioinformatics Quartier Sorge ‐ Batiment Genopode Lausanne Switzerland
- Department of Biology Queen's University Kingston ON Canada
| | - H. E. L. Lischer
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Swiss Institute of Bioinformatics Quartier Sorge ‐ Batiment Genopode Lausanne Switzerland
| | - C. Grossen
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - L. F. Keller
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
- Zoological Museum University of Zurich Zurich Switzerland
| |
Collapse
|
48
|
Boone M, De Koker A, Callewaert N. Capturing the 'ome': the expanding molecular toolbox for RNA and DNA library construction. Nucleic Acids Res 2018; 46:2701-2721. [PMID: 29514322 PMCID: PMC5888575 DOI: 10.1093/nar/gky167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/05/2018] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
All sequencing experiments and most functional genomics screens rely on the generation of libraries to comprehensively capture pools of targeted sequences. In the past decade especially, driven by the progress in the field of massively parallel sequencing, numerous studies have comprehensively assessed the impact of particular manipulations on library complexity and quality, and characterized the activities and specificities of several key enzymes used in library construction. Fortunately, careful protocol design and reagent choice can substantially mitigate many of these biases, and enable reliable representation of sequences in libraries. This review aims to guide the reader through the vast expanse of literature on the subject to promote informed library generation, independent of the application.
Collapse
Affiliation(s)
- Morgane Boone
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Andries De Koker
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
49
|
Shen N, Zhao J, Schipper JL, Zhang Y, Bepler T, Leehr D, Bradley J, Horton J, Lapp H, Gordan R. Divergence in DNA Specificity among Paralogous Transcription Factors Contributes to Their Differential In Vivo Binding. Cell Syst 2018; 6:470-483.e8. [PMID: 29605182 DOI: 10.1016/j.cels.2018.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/29/2022]
Abstract
Paralogous transcription factors (TFs) are oftentimes reported to have identical DNA-binding motifs, despite the fact that they perform distinct regulatory functions. Differential genomic targeting by paralogous TFs is generally assumed to be due to interactions with protein co-factors or the chromatin environment. Using a computational-experimental framework called iMADS (integrative modeling and analysis of differential specificity), we show that, contrary to previous assumptions, paralogous TFs bind differently to genomic target sites even in vitro. We used iMADS to quantify, model, and analyze specificity differences between 11 TFs from 4 protein families. We found that paralogous TFs have diverged mainly at medium- and low-affinity sites, which are poorly captured by current motif models. We identify sequence and shape features differentially preferred by paralogous TFs, and we show that the intrinsic differences in specificity among paralogous TFs contribute to their differential in vivo binding. Thus, our study represents a step forward in deciphering the molecular mechanisms of differential specificity in TF families.
Collapse
Affiliation(s)
- Ning Shen
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Jingkang Zhao
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Joshua L Schipper
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Tristan Bepler
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Dan Leehr
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - John Bradley
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - John Horton
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Hilmar Lapp
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Raluca Gordan
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA; Department of Computer Science, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
50
|
Liang WS, Stephenson K, Adkins J, Christofferson A, Helland A, Cuyugan L, Keats JJ. Whole Exome Library Construction for Next Generation Sequencing. Methods Mol Biol 2018; 1706:163-174. [PMID: 29423798 DOI: 10.1007/978-1-4939-7471-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Whole exome sequencing (WES) is a DNA sequencing strategy that provides a survey of base substitutions across coding genomic locations and other regions of interest. As the coding portion of the genome encompasses only 1-2% of the entire genome, this approach represents a more cost-effective strategy to detect DNA alterations that may alter protein function, compared to whole genome sequencing. Although the research community has and is currently delineating the functional implications of sequence changes in noncoding regions of the genome, WES is a currently available assay that provides valuable information for both discovery research and precision medicine applications. In this chapter, we present a WES library preparation protocol using the KAPA Hyper Prep Kit with Agilent SureSelect Human All Exon V5+UTR probes that demonstrates high DNA-to-library conversion efficiency for sequencing on the Illumina HiSeq platform.
Collapse
Affiliation(s)
- Winnie S Liang
- Translational Genomics Research Institute (TGen), 445 N. Fifth Street, Phoenix, AZ, 85004, USA.
| | - Kristi Stephenson
- Translational Genomics Research Institute (TGen), 445 N. Fifth Street, Phoenix, AZ, 85004, USA
| | - Jonathan Adkins
- Translational Genomics Research Institute (TGen), 445 N. Fifth Street, Phoenix, AZ, 85004, USA
| | - Austin Christofferson
- Translational Genomics Research Institute (TGen), 445 N. Fifth Street, Phoenix, AZ, 85004, USA
| | - Adrienne Helland
- Translational Genomics Research Institute (TGen), 445 N. Fifth Street, Phoenix, AZ, 85004, USA
| | - Lori Cuyugan
- Translational Genomics Research Institute (TGen), 445 N. Fifth Street, Phoenix, AZ, 85004, USA
| | - Jonathan J Keats
- Translational Genomics Research Institute (TGen), 445 N. Fifth Street, Phoenix, AZ, 85004, USA
| |
Collapse
|