1
|
El Salamouni NS, Cater JH, Spenkelink LM, Yu H. Nanobody engineering: computational modelling and design for biomedical and therapeutic applications. FEBS Open Bio 2025; 15:236-253. [PMID: 38898362 PMCID: PMC11788755 DOI: 10.1002/2211-5463.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Nanobodies, the smallest functional antibody fragment derived from camelid heavy-chain-only antibodies, have emerged as powerful tools for diverse biomedical applications. In this comprehensive review, we discuss the structural characteristics, functional properties, and computational approaches driving the design and optimisation of synthetic nanobodies. We explore their unique antigen-binding domains, highlighting the critical role of complementarity-determining regions in target recognition and specificity. This review further underscores the advantages of nanobodies over conventional antibodies from a biosynthesis perspective, including their small size, stability, and solubility, which make them ideal candidates for economical antigen capture in diagnostics, therapeutics, and biosensing. We discuss the recent advancements in computational methods for nanobody modelling, epitope prediction, and affinity maturation, shedding light on their intricate antigen-binding mechanisms and conformational dynamics. Finally, we examine a direct example of how computational design strategies were implemented for improving a nanobody-based immunosensor, known as a Quenchbody. Through combining experimental findings and computational insights, this review elucidates the transformative impact of nanobodies in biotechnology and biomedical research, offering a roadmap for future advancements and applications in healthcare and diagnostics.
Collapse
Affiliation(s)
- Nehad S. El Salamouni
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
| | - Jordan H. Cater
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
| | - Lisanne M. Spenkelink
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
| | - Haibo Yu
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
- ARC Centre of Excellence in Quantum BiotechnologyUniversity of WollongongAustralia
| |
Collapse
|
2
|
Yazaki S, Komatsu M, Dong J, Ueda H, Arai R. Crystal Structures of Antigen-Binding Fragment of Anti-Osteocalcin Antibody KTM219. Int J Mol Sci 2025; 26:648. [PMID: 39859361 PMCID: PMC11765575 DOI: 10.3390/ijms26020648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Osteocalcin is a useful biomarker for bone formation and bone-related diseases. KTM219 is an anti-osteocalcin C-terminal peptide antibody. The single-chain variable region (scFv) and antigen-binding fragment (Fab) of KTM219 are applicable to the Quenchbody (Q-body) immunoassay. Q-body is a new type of fluorescent immunosensor, which is scFv or Fab labeled with a fluorescent dye. When Q-body binds to its antigen, the fluorescence intensity increases. The highly sensitive detection of antigens by changes in fluorescence intensity is performed in a single step by mixing the sample and reagent. In this study, to reveal the recognition mechanism of the KTM219 antibody and to discuss the structural basis for Q-body, we solved the crystal structures of Fab of the anti-osteocalcin antibody KTM219 and its complex with the antigen osteocalcin C-terminal peptide (BGP-C7). Also, we solved the structure of a KTM219 Fab crystal grown in the presence of a fluorescent dye, carboxytetramethylrhodamine (TAMRA); however, tightly bound TAMRA was not found in the electron density map. We predicted the binding sites of TAMRA in the antigen-binding pocket by docking simulations. These results support the proposed Q-body mechanism. The crystal structures of KTM219 Fab would be useful for further development and improvement of Q-body fluorescent immunosensors.
Collapse
Affiliation(s)
- Shuma Yazaki
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Nagano, Japan
| | - Misaki Komatsu
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Nagano, Japan
| | - Jinhua Dong
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Kanagawa, Japan; (J.D.)
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Kanagawa, Japan; (J.D.)
| | - Ryoichi Arai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda 386-8567, Nagano, Japan
| |
Collapse
|
3
|
Yang Y, Inoue A, Yasuda T, Ueda H, Zhu B, Kitaguchi T. BRET Nano Q-Body: A Nanobody-Based Ratiometric Bioluminescent Immunosensor for Point-of-Care Testing. ACS Sens 2024. [PMID: 39526666 DOI: 10.1021/acssensors.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We developed a nanobody-based homogeneous bioluminescent immunosensor to achieve a one-pot detection for point-of-care testing (POCT). This immunosensor was named BRET nano Q-body as its emission color changes via bioluminescence resonance energy transfer (BRET) upon antigen addition. NanoLuc luciferase and a cysteine-containing tag were fused to the N-terminus of the nanobody, which was labeled with a fluorescent dye via thiol-maleimide Michael addition. The nanobody employed in this proof-of-principle experiment recognizes methotrexate (MTX), a chemotherapeutic agent. After optimizing the fluorescent dye and linker, the BRET nano Q-body dose-dependently exhibited a greater than 7-fold increase in emission ratio (TAMRA/NanoLuc). Moreover, we found its superior thermostability endurance in organic solvents, reducing agents, and detergents due to the robust structure of nanobody, as well as accommodation in biological fluids, such as milk, serum, and whole blood without dilution, with limits of detection of 0.50, 1.6, and 3.7 nM, respectively. Furthermore, the BRET nano Q-body was subjected to lyophilization and fabricated into a paper device, which markedly improved its portability and enabled more than one month of storage at 25 °C. The paper device also performed appropriate functions in the biological fluids without any dilution and can be used for on-site therapeutic drug monitoring of MTX. Altogether, we developed a powerful tool, the BRET nano Q-body, for POCT, and demonstrated its applicability in several biological fluids. In addition, we confirmed the feasibility of paper devices, which are expected to be transformative for in situ detection in therapeutic, diagnostic, and environmental applications.
Collapse
Affiliation(s)
- Yinghui Yang
- Graduate School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Kanagawa 226-8501, Japan
| | - Akihito Inoue
- Graduate School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Kanagawa 226-8501, Japan
| | - Takanobu Yasuda
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Kanagawa 226-8501, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Kanagawa 226-8501, Japan
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Kanagawa 226-8501, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Kanagawa 226-8501, Japan
| |
Collapse
|
4
|
Liang YF, Yang JY, Shen YD, Xu ZL, Wang H. A breakthrough of immunoassay format for hapten: recent insights into noncompetitive immunoassays to detect small molecules. Crit Rev Food Sci Nutr 2024:1-11. [PMID: 38356229 DOI: 10.1080/10408398.2024.2315473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Immunoassay based on the antibodies specific for targets has advantages of high sensitivity, simplicity and low cost, therefore it has received more attention in recent years, especially for the rapid detection of small molecule chemicals present in foods, diagnostics and environments. However, limited by low molecular weight and only one antigenic determinant existed, immunoassays for these small molecule chemicals, namely hapten substances, were commonly performed in a competitive immunoassay format, whose sensitivities were obviously lower than the sandwich enzyme-linked immunosorbent assay generally adaptable for the protein targets. In order to break through the bottleneck of detection format, researchers have designed and established several novel noncompetitive immunoassays for the haptens in the past few years. In this review, we focused on the four representative types of noncompetitive immunoassay formats and described their characteristics and applications in rapid detection of small molecules. Meanwhile, a systematic discussion on the current technologies challenges and the possible solutions were also summarized. This review aims to provide an updated overview of the current state-of-the-art in noncompetitive immunoassay for small molecules, and inspire the development of novel designs for small molecule detection.
Collapse
Affiliation(s)
- Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jin-Yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Sasamoto K, Yasuda T, Zhu B, Ueda H, Kitaguchi T. Efficient and rapid linker optimization with heterodimeric coiled coils improves the response of fluorescent biosensors comprising antibodies and protein M. Analyst 2023; 148:5843-5850. [PMID: 37941425 DOI: 10.1039/d3an01499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
We developed a coiled Q-probe (CQ-probe), a fluorescent probe containing a coiled-coil peptide pair E4/K4, to convert antibodies into biosensors for homogeneous immunoassays. This probe consists of an antibody-binding protein, protein M (PM) with the E4 peptide and the K4 peptide with a fluorescent dye. Compared to PM Q-probes, which are generated by modifying the C-terminus of PM with a fluorescent dye, CQ-probe variants with various linkers are easy to prepare and therefore enable the establishment of biosensors with a significant fluorescence response by localizing the fluorescent dye at the optimal position for quenching and antigen-dependent release. The fluorescence changes of biosensors converted from anti-BGP, anti-cortisol, and anti-testosterone antibodies using the rhodamine 6G (or TAMRA)-labeled CQ-probe upon antigen addition were 13 (or 2.6), 9.7 (or 1.5), and 2.1 (or 1.2) times larger than that of the biosensors converted using the PM Q-probe. Furthermore, the CQ-probe converted anti-digoxin IgG into a functional biosensor, whereas the PM Q-probe/antibody complex showed an insufficient response. This technology exhibits a promising capacity to convert antibodies into high-response biosensors, which are expected to be applied in a wide range of fields, including clinical diagnosis, environmental surveys, food analysis, and biological research.
Collapse
Affiliation(s)
- Kana Sasamoto
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takanobu Yasuda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
6
|
Jeong HJ. Quenchbodies That Enable One-Pot Detection of Antigens: A Structural Perspective. Bioengineering (Basel) 2023; 10:1262. [PMID: 38002387 PMCID: PMC10669387 DOI: 10.3390/bioengineering10111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Quenchbody (Q-body) is a unique, reagentless, fluorescent antibody whose fluorescent intensity increases in an antigen-concentration-dependent manner. Q-body-based homogeneous immunoassay is superior to conventional immunoassays as it does not require multiple immobilization, reaction, and washing steps. In fact, simply mixing the Q-body and the sample containing the antigen enables the detection of the target antigen. To date, various Q-bodies have been developed to detect biomarkers of interest, including haptens, peptides, proteins, and cells. This review sought to describe the principle of Q-body-based immunoassay and the use of Q-body for various immunoassays. In particular, the Q-bodies were classified from a structural perspective to provide useful information for designing Q-bodies with an appropriate objective.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong-si 30016, Republic of Korea
| |
Collapse
|
7
|
Ueda H, Jeong HJ. Generation of a Recombinant scFv against Deoxycholic Acid and Its Conversion to a Quenchbody for One-Step Immunoassay. Methods Protoc 2023; 6:90. [PMID: 37888022 PMCID: PMC10608803 DOI: 10.3390/mps6050090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Development of a rapid detection method for deoxycholic acid (DCA) is crucial for its diagnosis in the early stages of inflammation and cancer. In this study, we expressed a soluble recombinant anti-DCA single-chain variable fragment (scFv) in Escherichia coli. To convert scFv into a Quenchbody (Q-body), we labeled scFv using commercially available maleimide-linked fluorophores. The TAMRA-C5-maleimide-conjugated Q-body showed the highest response within a few minutes of DCA addition, indicating its applicability as a wash-free immunoassay probe for onsite DCA detection.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
8
|
Ito Y, Sasaki R, Asari S, Yasuda T, Ueda H, Kitaguchi T. Efficient Microfluidic Screening Method Using a Fluorescent Immunosensor for Recombinant Protein Secretions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207943. [PMID: 37093208 DOI: 10.1002/smll.202207943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Microbial secretory protein expression is widely used for biopharmaceutical protein production. However, establishing genetically modified industrial strains that secrete large amounts of a protein of interest is time-consuming. In this study, a simple and versatile high-throughput screening method for protein-secreting bacterial strains is developed. Different genotype variants induced by mutagens are encapsulated in microemulsions and cultured to secrete proteins inside the emulsions. The secreted protein of interest is detected as a fluorescence signal by the fluorescent immunosensor quenchbody (Q-body), and a cell sorter is used to select emulsions containing improved protein-secreting strains based on the fluorescence intensity. The concept of the screening method is demonstrated by culturing Corynebacterium glutamicum in emulsions and detecting the secreted proteins. Finally, productive strains of fibroblast growth factor 9 (FGF9) are screened, and the FGF9 secretion increased threefold compared to that of parent strain. This screening method can be applied to a wide range of proteins by fusing a small detection tag. This is a highly simple process that requires only the addition of a Q-body to the medium and does not require the addition of any substrates or chemical treatments. Furthermore, this method shortens the development period of industrial strains for biopharmaceutical protein production.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, 210-8681, Japan
| | - Ryuichi Sasaki
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, 210-8681, Japan
| | - Sayaka Asari
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, 210-8681, Japan
| | - Takanobu Yasuda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| |
Collapse
|
9
|
Zhao S, Zhang R, Gao Y, Cheng Y, Zhao S, Li M, Li H, Dong J. Immunosensor for Rapid and Sensitive Detection of Digoxin. ACS OMEGA 2023; 8:15341-15349. [PMID: 37151524 PMCID: PMC10157669 DOI: 10.1021/acsomega.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
Digoxin is a cardiac glycosylated steroid-like drug with a positive inotropic effect and has been widely used in treating congestive heart failure, atrial fibrillation, atrial flutter, and other heart diseases. Digoxin is also a dangerous drug, which can cause drug poisoning at a low blood drug concentration (2.73-3.9 nmol/L, i.e., 2.14-3.05 ng/mL). Therefore, the timely detection of a patient's blood drug concentration plays a significant role in controlling blood drug concentration, reducing the occurrence of drug poisoning events, and maximizing the role of drug therapy. In this study, a DNA vector for the expression of the antidigoxin antibody Fab fragment was constructed. With the vector, Fab was expressed in E. coli and purified, and 1.2 mg of antibodies was obtained from 100 mL of culture. An immunofluorescent sensor based on the mechanism of photoinduced electron transfer was constructed by labeling additional cysteines in the heavy chain variable region and light chain variable region of the antibody Fab fragment with fluorescent dyes. The assay for digoxin with the immunosensor could be finished within 5 min with a limit of detection of 0.023 ng/mL, a detectable range of 0.023 ng/mL to 100 μg/mL, and an EC50 of 0.256 ng/mL. A new approach for the rapid detection of digoxin was developed and will contribulte to therapeutic drug monitoring.
Collapse
Affiliation(s)
- Shuyang Zhao
- School
of Life Science and Technology, Weifang
Medical University, Weifang 261053, China
| | - Ruxue Zhang
- School
of Life Science and Technology, Weifang
Medical University, Weifang 261053, China
| | - Yujie Gao
- School
of Life Science and Technology, Weifang
Medical University, Weifang 261053, China
| | - Yueqing Cheng
- School
of Life Science and Technology, Weifang
Medical University, Weifang 261053, China
| | - Shouzhen Zhao
- School
of Life Science and Technology, Weifang
Medical University, Weifang 261053, China
| | - Mei Li
- School
of Life Science and Technology, Weifang
Medical University, Weifang 261053, China
| | - Haimei Li
- School
of Life Science and Technology, Weifang
Medical University, Weifang 261053, China
- E-mail:
| | - Jinhua Dong
- School
of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- International
Research Frontiers Initiative, Tokyo Institute
of Technology, Yokohama 226-8503, Japan
- E-mail:
| |
Collapse
|
10
|
Kim JP, Kim SH, Ueda H, Jeong HJ. Generation of Q-bead against bone Gla protein with simplified preparation steps. J Immunol Methods 2023; 516:113471. [PMID: 37044371 DOI: 10.1016/j.jim.2023.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Quenchbody (Q-body)-based immunoassays enable the detection of antigen within a few minutes with high sensitivity and specificity, thereby revealing their applicability as biosensors for quantifying several biomolecules of interest; however, while producing a Q-body, it is necessary to eliminate the unconjugated dye after labeling to separate the Q-body from the capturing bead and to change the buffer using ultrafiltration, which is time-consuming and leads to yield reduction. In this study, we generated a recombinant single chain variable fragment against bone Gla protein as a model antibody. We labeled the antibody with a dye to generate a Q-body and subsequently added affinity beads to the Q-body mixture. After washing, we directly added antigen without extracting the Q-body from the bead and then measured the fluorescence intensity. As a result, the antigen-dependent fluorescence response was obtained from "Q-bead", which was almost the same as that of the Q-body generated according to the conventional method. The Q-bead was generated within only 2.5 h, thus requiring an hour and two steps less than those required for the generation of the traditional Q-body. No expensive Flag peptide was required to recover the total antibody from beads. Moreover, the ultra-filtration step was eliminated in this bead-based method, leading to improved convenience and cost- and time-saving attributes. The Q-bead-based assay can be used as a standard protocol for simple and rapid analysis of antibody-based molecular detection.
Collapse
Affiliation(s)
- Jong-Pyo Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Seon-Hyung Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea.
| |
Collapse
|
11
|
Ueda H, Dai Y, Ghadessy F. Visualizing intracellular target antigens in live cells. Trends Cell Biol 2023; 33:277-279. [PMID: 36759281 DOI: 10.1016/j.tcb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
In order to further visualize intracellular dynamics, precise imaging of endogenous proteins in live cells was performed using an antigen-binding fragment (Fab)-based Quenchbody (Q-body). The transfected Q-body probe showed an antigen-dependent fluorescence response, enabling the clear visualization and sorting of cells expressing p53, a tumor suppressor biomarker.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Yancen Dai
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Farid Ghadessy
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
12
|
Dong J, Banwait B, Ueda H, Kristensen P. V H-Based Mini Q-Body: A Novel Quench-Based Immunosensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:2251. [PMID: 36850849 PMCID: PMC9960136 DOI: 10.3390/s23042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Quenchbodies (Q-bodies), a type of biosensor, are antibodies labeled with a fluorescent dye near the antigen recognition site. In the absence of an antigen, the dye is quenched by tryptophans in the antibody sequence; however, in its presence, the dye is displaced and therefore de-quenched. Although scFv and Fab are mainly used to create Q-bodies, this is the first report where a single-domain heavy chain VH from a semi-synthetic human antibody library formed the basis. To create a proof of concept "mini Q-body", a human anti-lysozyme single-domain VH antibody C3 was used. Mini Q-bodies were successfully developed using seven dyes. Different responses were observed depending on the dye and linker length; it was concluded that the optimal linker length for the TAMRA dye was C5, and rhodamine 6G was identified as the dye with the largest de-quenching response. Three single-domain antibodies with sequences similar to that of the C3 antibody were chosen, and the results confirmed the applicability of this method in developing mini Q-bodies. In summary, mini Q-bodies are an easy-to-use and time-saving method for detecting proteins.
Collapse
Affiliation(s)
- Jinhua Dong
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Bhagat Banwait
- Department of Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
13
|
Li H, Zhu B, Li B, Chen L, Ning X, Dong H, Liang J, Yang X, Dong J, Ueda H. Isolation of a human SARS-CoV-2 neutralizing antibody from a synthetic phage library and its conversion to fluorescent biosensors. Sci Rep 2022; 12:15496. [PMID: 36109569 PMCID: PMC9476436 DOI: 10.1038/s41598-022-19699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Since late 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resultant spread of COVID-19 have given rise to a worldwide health crisis that is posing great challenges to public health and clinical treatment, in addition to serving as a formidable threat to the global economy. To obtain an effective tool to prevent and diagnose viral infections, we attempted to obtain human antibody fragments that can effectively neutralize viral infection and be utilized for rapid virus detection. To this end, several human monoclonal antibodies were isolated by bio-panning a phage-displayed human antibody library, Tomlinson I. The selected clones were demonstrated to bind to the S1 domain of the spike glycoprotein of SARS-CoV-2. Moreover, clone A7 in Fab and IgG formats were found to effectively neutralize the binding of S protein to angiotensin-converting enzyme 2 in the low nM range. In addition, this clone was successfully converted to quench-based fluorescent immunosensors (Quenchbodies) that allowed antigen detection within a few minutes, with the help of a handy fluorometer.
Collapse
Affiliation(s)
- Haimei Li
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Baowei Li
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Limei Chen
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xuerao Ning
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hang Dong
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jingru Liang
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xueying Yang
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Jinhua Dong
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China.
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
- World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
- World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
14
|
Juengsanguanpornsuk W, Kitisripanya T, Boonsnongcheep P, Yusakul G, Srisongkram T, Sakamoto S, Putalun W. Improvement in the binding specificity of anti-isomiroestrol antibodies by expression as fragments under oxidizing conditions inside the SHuffle T7 E. coli cytoplasm. Biosci Biotechnol Biochem 2022; 86:1368-1377. [PMID: 35876636 DOI: 10.1093/bbb/zbac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 11/14/2022]
Abstract
Sensitive and specific analysis of isomiroestrol (Iso) is required for the quality control of Pueraria candollei, an herb used to treat menopausal disorders. The anti-isomiroestrol monoclonal antibody (Iso-mAb) exhibits cross-reactivity with miroestrol and deoxymiroestrol, which impacts the analytical results. Here, the active and soluble forms of the single-chain variable fragment (Iso-scFv) and fragment antigen-binding (Iso-Fab) against Iso were expressed using Escherichia coli SHuffle® T7 to alter the binding specificity. The Iso-scFv format exhibited a higher binding activity than the Iso-Fab format. The reactivity of Iso-scFv towards Iso was comparable to that of the parental Iso-mAb. Remarkably, the binding specificity of the scFv structure was improved and cross-reactivity against analogs was reduced from 13.3-21.0% to less than 1%. The structure of recombinant antibodies affects the binding characteristics. Therefore, the immunoassays should improve specificity; these findings can be useful in agricultural processes and for quality monitoring of P. candollei-related materials.
Collapse
Affiliation(s)
| | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tarapong Srisongkram
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
15
|
Chen H, Liang J, Li H, Li M, Chen L, Dong H, Wang Y, Wu Q, Li B, Jiang G, Dong J. Immunosensor for rapid detection of human cardiac troponin I, a biomarker for myocardial infarction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Liang J, Dong H, Wang H, Yi Z, Jiang G, Inagaki T, Gomez-Sanchez CE, Dong J, Ueda H. Creation of a quick and sensitive fluorescent immunosensor for detecting the mineralocorticoid steroid hormone aldosterone. J Steroid Biochem Mol Biol 2022; 221:106118. [PMID: 35487440 DOI: 10.1016/j.jsbmb.2022.106118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/15/2022]
Abstract
Aldosterone (ALD) is a steroid hormone secreted by the zona glomerulosa of the adrenal cortex that mainly acts on the kidney to regulate sodium ion and water reabsorption. Detection of ALD plays an important role in the diagnosis of primary aldosteronism in patients with hypertension. For the first time, the gene encoding the anti-ALD antibody, A2E11, was successfully cloned and analyzed using phage display technology. The antibody had an affinity of 2.5 nM against ALD, and after binding to ALD, it reached saturation within 5 s. Using this antibody, a Quenchbody (Q-body) was constructed by labeling the N-termini of heavy and light chains of the antigen-binding fragment of A2E11 with the fluorescent dye ATTO520 to detect ALD based on the principle of photoinduced electron transfer. The sensor detected ALD in 2 min, and the limit of detection was 24.1 pg/mL with a wide detection range from 24.1 pg/mL to 10 µg/mL and a half-maximal effective concentration of 42.3 ng/mL. At the highest concentration of ALD in the assay, the fluorescence intensity increased by 5.0-fold compared to the original fluorescence intensity of the Q-body solution. The Q-body could be applied to analyze 50% of human serum without a significant influence of the matrix. The recoveries of ALD in spiked serum samples with the Q-body assay were confirmed to range from 90.3% to 98.2%, suggesting their potential applications in the diagnosis of diseases, such as essential hypertension.
Collapse
Affiliation(s)
- Jingru Liang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hang Dong
- School of Clinical Medicine, Peking University, Beijing 100191, China
| | - Hongsheng Wang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Zhengjun Yi
- School of Laboratory Medicine, Weifang Medical University, Weifang 261053, China
| | - Guosheng Jiang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Takashi Inagaki
- R&D Section, Product Planning Department, Cosmic Corporation Co., Ltd., Tokyo 112-0002, Japan; TKResearch Co., Ltd., Kashiwa 277-0042, Japan
| | - Celso E Gomez-Sanchez
- G.V. (Sonny) Montgomery VA Medical Center and Department of Pharmacology and Toxicology, and Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jinhua Dong
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China; World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| | - Hiroshi Ueda
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| |
Collapse
|
17
|
Liang J, Dong H, Xu F, Li B, Li H, Chen L, Li M, Liu Y, Jiang G, Dong J. Isolation of a Monoclonal Antibody and its Derived Immunosensor for Rapid and Sensitive Detection of 17β-Estradiol. Front Bioeng Biotechnol 2022; 10:818983. [PMID: 35419351 PMCID: PMC8995505 DOI: 10.3389/fbioe.2022.818983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Estrogens are effective for stimulating several functions in living organisms and for regulating cancer development by promoting cell proliferation. Estradiol can disrupt the reproductive and endocrine systems, leading to the development of various diseases. In this study, the monoclonal antibody ESC9 was developed by immunizing mice with a 17β-estradiol (E2) conjugate, preparing an antibody phage display library, and screening monoclonal antibodies from the prepared library. An antibody with the same sequence as that of ESC9 has not been reported previously. The equilibrium dissociation constant between ESC9 and E2 was found to be 43.3 nM. Additionally, we generated an ESC9-derived immunosensor named as the ESC9 Quenchbody (Q-body), which can rapidly and sensitively detect E2. The assay can be completed within 2 min with a limit of detection of 3.9 pg/ml and half-maximal effective concentration of 154.0 ng/ml. Serum E2 levels were measured using the ESC9 Q-body without pretreatment with serum and with a high recovery rate of 83.3–126.7%. The Q-body immunosensor shows potential for clinical applications based on its excellent detection speed and sensitivity.
Collapse
Affiliation(s)
- Jingru Liang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Hang Dong
- School of Clinical Medicine, Peking University, Beijing, China
| | - Fei Xu
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Baowei Li
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Haimei Li
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Limei Chen
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Mei Li
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Yingchu Liu
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guosheng Jiang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
- College of Basic Medicine, Binzhou Medical University, Yantai, China
- *Correspondence: Guosheng Jiang, ; Jinhua Dong,
| | - Jinhua Dong
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Guosheng Jiang, ; Jinhua Dong,
| |
Collapse
|
18
|
Nielsen LDF, Hansen-Bruhn M, Nijenhuis MAD, Gothelf KV. Protein-Induced Fluorescence Enhancement and Quenching in a Homogeneous DNA-Based Assay for Rapid Detection of Small-Molecule Drugs in Human Plasma. ACS Sens 2022; 7:856-865. [PMID: 35239321 DOI: 10.1021/acssensors.1c02642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Homogeneous assays for determining the concentration of small molecules in biological fluids are of importance for monitoring blood levels of critical drugs in patients. We have developed a strand displacement competition assay for the drugs dabigatran, methotrexate, and linezolid, which allows detection and determination of the concentration of the drugs in plasma; however, a surprising kinetic behavior of the assay was observed with an initial rapid change in apparent FRET values. We found that protein-induced fluorescent enhancement or quenching (PIFE/Q) caused the initial change in fluorescence within the first minute after addition of protein, which could be exploited to construct assays for concentration determination within minutes in the low nanomolar range in plasma. A kinetic model for the assay was established, and when taking the new finding into account, the in silico simulations were in good agreement with the experimentally observed results. Utilizing these findings, a simpler assay was constructed for detection of dabigatran, which allowed for detection within minutes without any time dependencies.
Collapse
Affiliation(s)
- Line D. F. Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Malthe Hansen-Bruhn
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Minke A. D. Nijenhuis
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kurt V. Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
19
|
Dai Y, Sato Y, Zhu B, Kitaguchi T, Kimura H, Ghadessy FJ, Ueda H. Intra Q-body: an antibody-based fluorogenic probe for intracellular proteins that allows live cell imaging and sorting. Chem Sci 2022; 13:9739-9748. [PMID: 36091915 PMCID: PMC9400599 DOI: 10.1039/d2sc02355e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
Although intracellular biomarkers can be imaged with fluorescent dye(s)-labeled antibodies, the use of such probes for precise imaging of intracellular biomarkers in living cells remains challenging due to background noise from unbound probes. Herein, we describe the development of a conditionally active Fab-type Quenchbody (Q-body) probe derived from a monoclonal antibody (DO-1) with the ability to both target and spatiotemporally visualize intracellular p53 in living cells with low background signal. p53 is a key tumor suppressor and validated biomarker for cancer diagnostics and therapeutics. The Q-body displayed up to 27-fold p53 level-dependent fluorescence enhancement in vitro with a limit of detection of 0.72 nM. In fixed and live cells, 8.3- and 8.4-fold enhancement was respectively observed. Furthermore, we demonstrate live-cell sorting based on p53 expression. This study provides the first evidence of the feasibility and applicability of Q-body probes for the live-cell imaging of intrinsically intracellular proteins and opens a novel avenue for research and diagnostic applications on intracellular target-based live-cell sorting. A fluorescent immunosensor that lights up tumor biomarker p53 in living cells was developed based on the Q-body technology. The technology was further applied to the live cell monitoring of p53 levels, and live cell sorting based on p53 expression.![]()
Collapse
Affiliation(s)
- Yancen Dai
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Farid J. Ghadessy
- Disease Intervention Technology Laboratory, Institute of Molecular and Cellular Biology, A*STAR, Singapore
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
20
|
Inoue A, Yasuda T, Zhu B, Kitaguchi T, Murakami A, Ueda H. Evaluation and selection of potent fluorescent immunosensors by combining fluorescent peptide and nanobodies displayed on yeast surface. Sci Rep 2021; 11:22590. [PMID: 34799644 PMCID: PMC8604967 DOI: 10.1038/s41598-021-02022-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/09/2021] [Indexed: 12/01/2022] Open
Abstract
Quenchbody (Q-body) is a quench-based fluorescent immunosensor labeled with fluorescent dye(s) near the antigen-binding site of an antibody. Q-bodies can detect a range of target molecules rapidly and directly. However, because Q-bodies show different antigen responses depending on the antibody used, time-consuming optimization of the Q-body structure is often necessary, and a high-throughput screening method for discriminating and selecting good Q-bodies is required. Here, we aimed to develop a molecular display method of nanobody-based “mini Q-bodies” by combining yeast surface display and coiled-coil forming E4/K4 peptide-based fluorescence labeling. As a result, the yeast-displayed mini Q-body recognizing the anti-cancer agent methotrexate (MTX) showed significant quenching and MTX-dependent dequenching on cells. To demonstrate the applicability of the developed method to select highly responsive mini Q-bodies, a small nanobody library consisting of 30 variants that recognize human serum albumin was used as a model. The best variant, showing a 2.4-fold signal increase, was obtained through selection by flow cytometry. Furthermore, the same nanobody prepared from Escherichia coli also worked as a mini Q-body after dye labeling. The described approach will be applied to quickly obtain well-behaved Q-bodies and other fluorescent biosensors for various targets through directed evolutionary approaches.
Collapse
Affiliation(s)
- Akihito Inoue
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4259-R1-18 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Takanobu Yasuda
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, 4259-R1-18 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa, 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa, 226-8503, Japan
| | - Akikazu Murakami
- Department of Oral Microbiology, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan.,RePHAGEN Co., Ltd., Uruma, Okinawa, 904-2234, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa, 226-8503, Japan.
| |
Collapse
|
21
|
Zhao G, Li H, Li B, Li M, Xu W, Chen L, Wang B, Dong J. Rapid conversion of IgG to biosensor using an antibody-binding protein-based probe. Analyst 2021; 146:6114-6118. [PMID: 34636369 DOI: 10.1039/d1an01171e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We successfully developed a fluorescent probe that can quickly convert full-length antibodies to Quenchbodies, which represent a type of fluorescent immunosensor with high binding affinity and specificity depending on the reaction of antigens and antibodies. An anti-testosterone IgG was successfully converted to an immunosensor that detects testosterone with a limit of detection (LOD) of 0.76 nM and concentration for 50% of maximal effect (EC50) of 61.5 nM. Another IgG-based immunosensor detected ractopamine with an LOD of 15.5 pM and EC50 of 48.6 nM.
Collapse
Affiliation(s)
- Guangwei Zhao
- Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| | - Haimei Li
- Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| | - Baowei Li
- Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| | - Mei Li
- Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| | - Wei Xu
- Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| | - Limei Chen
- Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| | - Baoqiang Wang
- Department of Clinical Laboratory, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jinhua Dong
- Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China. .,World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
22
|
Sato S, Matsumura M, Ueda H, Nakamura H. Preparation of an antigen-responsive fluorogenic immunosensor by tyrosine chemical modification of the antibody complementarity determining region. Chem Commun (Camb) 2021; 57:9760-9763. [PMID: 34477721 DOI: 10.1039/d1cc03231c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Full-length pharmaceutical antibodies, trastuzumab and rituximab, were chemically modified into Quenchbody, a fluorescent immunosensor, using a two-step reaction: (1) selective tyrosine residue modification of antibody complementarity determining regions (CDRs), and (2) introduction of fluorescent dye molecules by Cu-free click reaction. Without the need for genetic manipulation and time-consuming examination of protein expression conditions, the antibody-dye combination with good antigen response efficiency was examined in a simple two-hour operation.
Collapse
Affiliation(s)
- Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Masaki Matsumura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-13, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan. .,School of Life Science and Engineering, Tokyo Institute of Technology, 4259-R1-13, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-13, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-13, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
23
|
|
24
|
Eaglesham JB, Garcia A, Berkmen M. Production of antibodies in SHuffle Escherichia coli strains. Methods Enzymol 2021; 659:105-144. [PMID: 34752282 DOI: 10.1016/bs.mie.2021.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies are globally important macromolecules, used for research, diagnostics, and as therapeutics. The common mammalian antibody immunoglobulin G (IgG) is a complex glycosylated macromolecule, composed of two heavy chains and two light chains held together by multiple disulfide bonds. For this reason, IgG and related antibody fragments are usually produced through secretion from mammalian cell lines, such as Chinese Hamster Ovary cells. However, there is growing interest in production of antibodies in prokaryotic systems due to the potential for rapid and cheap production in a highly genetically manipulable system. Research on oxidative protein folding in prokaryotes has enabled engineering of Escherichia coli strains capable of producing IgG and other disulfide bonded proteins in the cytoplasm, known as SHuffle. In this protocol, we provide a review of research on prokaryotic antibody production, guidelines on cloning of antibody expression constructs, conditions for an initial expression and purification experiment, and parameters which may be optimized for increased purification yields. Last, we discuss the limitations of prokaryotic antibody production, and highlight potential future avenues for research on antibody expression and folding.
Collapse
|
25
|
Takahashi R, Yasuda T, Ohmuro-Matsuyama Y, Ueda H. BRET Q-Body: A Ratiometric Quench-based Bioluminescent Immunosensor Made of Luciferase-Dye-Antibody Fusion with Enhanced Response. Anal Chem 2021; 93:7571-7578. [PMID: 34013723 DOI: 10.1021/acs.analchem.0c05217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A quenchbody (Q-body) is an immunosensor comprising an antibody fragment containing an antigen-binding site that is site-specifically labeled with a fluorescent dye. The fluorescent dye of a Q-body is quenched in the absence of an antigen; however, its fluorescence recovers in the presence of an antigen, offering simple and rapid systems for antigen detection. In this study, we fused luciferase NanoLuc to a Q-body to construct a new immunosensor termed the "BRET Q-body" that can detect antigens based on the bioluminescence resonance energy transfer (BRET) principle. The resulting BRET Q-bodies for an osteocalcin peptide that emit three different emission colors could detect an antigen without the requirement of an external light source, based on ratiometric detection and color change with two wavelengths for the luciferase and fluorophore. Furthermore, the BRET Q-body produced unexpectedly higher responses up to 12-fold because of the increased BRET efficiency, probably associated with antigen-dependent dye movement. Thus, the BRET Q-body is a useful biosensor as a core of point-of-care tests.
Collapse
Affiliation(s)
- Riho Takahashi
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Takanobu Yasuda
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Yuki Ohmuro-Matsuyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
26
|
Dong J, Ueda H. Recent Advances in Quenchbody, a Fluorescent Immunosensor. SENSORS 2021; 21:s21041223. [PMID: 33572319 PMCID: PMC7916128 DOI: 10.3390/s21041223] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/29/2022]
Abstract
The detection of viruses, disease biomarkers, physiologically active substances, drugs, and chemicals is of great significance in many areas of our lives. Immunodetection technology is based on the specificity and affinity of antigen–antibody reactions. Compared with other analytical methods such as liquid chromatography coupled with mass spectrometry, which requires a large and expensive instrument, immunodetection has the advantages of simplicity and good selectivity and is thus widely used in disease diagnosis and food/environmental monitoring. Quenchbody (Q-body), a new type of fluorescent immunosensor, is an antibody fragment labeled with fluorescent dyes. When the Q-body binds to its antigen, the fluorescence intensity increases. The detection of antigens by changes in fluorescence intensity is simple, easy to operate, and highly sensitive. This review comprehensively discusses the principle, construction, application, and current progress related to Q-bodies.
Collapse
Affiliation(s)
- Jinhua Dong
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hiroshi Ueda
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Correspondence: ; Tel.: +81-45-924-5256
| |
Collapse
|
27
|
Inoue A, Ohmuro-Matsuyama Y, Kitaguchi T, Ueda H. Creation of a Nanobody-Based Fluorescent Immunosensor Mini Q-body for Rapid Signal-On Detection of Small Hapten Methotrexate. ACS Sens 2020; 5:3457-3464. [PMID: 33169966 DOI: 10.1021/acssensors.0c01404] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
"Quenchbody (Q-body)" is a quench-based fluorescent biosensor labeled with a fluorescent dye near the antigen-binding site of an antibody. Q-bodies can detect a range of target molecules quickly by simply mixing with a sample. However, the development of Q-bodies using VHH-nanobodies derived from camelid heavy-chain antibodies has not been reported despite their favorable characteristics. Here, we report a "mini Q-body" that can detect the chemotherapy agent methotrexate (MTX) by using anti-MTX nanobody. Three kinds of constructs each encoding an N-terminal Cys-tag and anti-MTX VHH gene with a different length of linker (GGGS)n (n = 0, 2, and 4) between them were prepared followed by the expression in Escherichia coli and labeling with several dye maleimides. When the fluorescence intensities in the presence of varied MTX concentrations were measured, TAMRA-labeled nanobodies showed a higher response than ATTO520- or R6G-labeled ones. Especially, TAMRA C6-labeled mini Q-body with no linker showed the highest response of ∼6-fold and a low detection limit of 0.56 nM. When each Trp residue in the mini Q-body was mutated to address the quenching mechanism, the major role of Trp34 at CDR1 in quenching was revealed. Furthermore, the mini Q-body could detect MTX in 50% human serum with a low detection limit of 1.72 nM, showing its applicability to therapeutic drug monitoring. This study is expected to become the basis of the construction of highly responsive mini Q-bodies for sensitive detection of many molecules from small haptens to larger proteins, which will lead to broader applications such as point-of-care tests.
Collapse
Affiliation(s)
- Akihito Inoue
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Yuki Ohmuro-Matsuyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
28
|
Dong J, Miyake C, Yasuda T, Oyama H, Morita I, Tsukahara T, Takahashi M, Jeong HJ, Kitaguchi T, Kobayashi N, Ueda H. PM Q-probe: A fluorescent binding protein that converts many antibodies to a fluorescent biosensor. Biosens Bioelectron 2020; 165:112425. [DOI: 10.1016/j.bios.2020.112425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
|
29
|
Lénon M, Ke N, Szady C, Sakhtah H, Ren G, Manta B, Causey B, Berkmen M. Improved production of Humira antibody in the genetically engineered Escherichia coli SHuffle, by co-expression of human PDI-GPx7 fusions. Appl Microbiol Biotechnol 2020; 104:9693-9706. [PMID: 32997203 PMCID: PMC7595990 DOI: 10.1007/s00253-020-10920-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Abstract Microbial production of antibodies offers the promise of cheap, fast, and efficient production of antibodies at an industrial scale. Limiting this capacity in prokaryotes is the absence of the post-translational machinery, present in dedicated antibody producing eukaryotic cell lines, such as B cells. There has been few and limited success in producing full-length, correctly folded, and assembled IgG in the cytoplasm of prokaryotic cell lines. One such success was achieved by utilizing the genetically engineered Escherichia coli strain SHuffle with an oxidative cytoplasm. Due to the genetic disruption of reductive pathways, SHuffle cells are under constant oxidative stress, including increased levels of hydrogen peroxide (H2O2). The oxidizing capacity of H2O2 was linked to improved disulfide bond formation, by expressing a fusion of two endoplasmic reticulum-resident proteins, the thiol peroxidase GPx7 and the protein disulfide isomerase, PDI. In concert, these proteins mediate disulfide transfer from H2O2 to target proteins via PDI-Gpx7 fusions. The potential of this new strain was tested with Humira, a blockbuster antibody usually produced in eukaryotic cells. Expression results demonstrate that the new engineered SHuffle strain (SHuffle2) could produce Humira IgG four-fold better than the parental strain, both in shake-flask and in high-density fermentation. These preliminary studies guide the field in genetically engineering eukaryotic redox pathways in prokaryotes for the production of complex macromolecules. Key points • A eukaryotic redox pathway was engineered into the E. coli strain SHuffle in order to improve the yield of the blockbuster antibody Humira. • The best peroxidase-PDI fusion was selected using bioinformatics and in vivo studies. • Improved yields of Humira were demonstrated at shake-flask and high-density fermenters. Electronic supplementary material The online version of this article (10.1007/s00253-020-10920-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marine Lénon
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
- Department of Microbiology, Stress Adaptation and Metabolism in Enterobacteria Unit, UMR CNRS 2001, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Na Ke
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Cecily Szady
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Hassan Sakhtah
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
- Boston Institute of Biotechnology, LLC., Upstream Process Development, 225 Turnpike Road, Southborough, MA, 01772, USA
| | - Guoping Ren
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Bruno Manta
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
- Facultad de Medicina, Departamento de Bioquímica and Centro de Investigaciones Biomédicas, Universidad de la República, CP 11800, Montevideo, Uruguay
| | - Bryce Causey
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Mehmet Berkmen
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
30
|
Li X, Huang X, Zhang L, Cong Y, Zhao G, Liang J, Chen H, Li H, Chen L, Dong J. Development of a fluorescent probe for the detection of hPD-L1. J Biosci Bioeng 2020; 130:431-436. [PMID: 32690363 DOI: 10.1016/j.jbiosc.2020.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 01/19/2023]
Abstract
Interaction of human programmed death factor-1 (hPD-1) of T cells and one of its ligands hPD-L1 which is expressed on cancer cells suppresses effector T cell functions. Studies showed that the hPD-1/hPD-L1 pathway is associated with killing mechanisms of tumor cells evading the immune system. Immunotherapy based on the checkpoint inhibitor on hPD-1 has been an important approach to treat cancer; however, not all cancer cells over-express hPD-L1. Detection of hPD-L1 over-expression in cancer cells may be a key factor for deciding on whether immunotherapy should be conducted. In the present study, we produced recombinant hPD-1 using Escherichia coli, and created a fluorescent probe termed quenched hPD-1 (QPD-1) for the detection of hPD-L1. We found that hPD-1 can quench fluorescence of carboxytetramethylrhodamine labeled on its N-terminal and QPD-1 is a convenient tool to rapidly detect hPD-L1 with a limit of detection of 10 nM and detectable range of 10 nM-1000 nM. QPD-1 may also function as a probe to screen for hPD-L1 over-expressing tumor cells and promote appropriate medical procedure through tumor immunotherapy.
Collapse
Affiliation(s)
- Xinyu Li
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xiaoming Huang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Liqian Zhang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Yang Cong
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Guangwei Zhao
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Jingru Liang
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hao Chen
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Haimei Li
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Limei Chen
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Jinhua Dong
- Key Laboratory for Biological Medicine in Shandong Universities, Weifang Key Laboratory for Antibody Medicine, School of Life Science and Technology, Weifang Medical University, Weifang 261053, China; World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| |
Collapse
|
31
|
Synthesis of Quenchbodies for One-Pot Detection of Stimulant Drug Methamphetamine. Methods Protoc 2020; 3:mps3020043. [PMID: 32545237 PMCID: PMC7359713 DOI: 10.3390/mps3020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
The problem of illicit drug use and addiction is an escalating issue worldwide. As such, fast and precise detection methods are needed to help combat the problem. Herein, the synthesis method for an anti-methamphetamine Quenchbody (Q-body), a promising sensor for use in simple and convenient assays, has been described. The fluorescence intensity of the Q-body generated by two-site labeling of Escherichia coli produced anti-methamphetamine antigen-binding fragment (Fab) with TAMRA-C2-maleimide dyes increased 5.1-fold over background in the presence of a hydroxyl methamphetamine derivative, 3-[(2S)-2-(methylamino)propyl]phenol. This derivative has the closest structure to methamphetamine of the chemicals available for use in a laboratory. Our results indicate the potential use of this Q-body as a novel sensor for the on-site detection of methamphetamine, in such occasions as drug screening at workplace, suspicious substance identification, and monitoring patients during drug rehabilitation.
Collapse
|
32
|
Dong J, Oka Y, Jeong HJ, Ohmuro-Matsuyama Y, Ueda H. Detection and destruction of HER2-positive cancer cells by Ultra Quenchbody-siRNA complex. Biotechnol Bioeng 2020; 117:1259-1269. [PMID: 32039472 DOI: 10.1002/bit.27302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Ultra Quenchbody (UQ-body) is a biosensor that utilizes the quenching behavior of the fluorescent dye linked to the antibody V region. When the corresponding antigen is bound to the UQ-body, the fluorescence is restored and allows the detection of target molecules easily and sensitively. In this paper, we constructed UQ-bodies to sensitively detect the human epidermal growth factor receptor 2 (HER2) cancer marker in solution or on cancer cells, which was further used to kill the cancer cells. A synthetic Fab fragment of anti-HER2 antibody Fab37 with many Trp residues at hypervariable region was prepared and labeled with fluorescent dyes to obtain the UQ-bodies. The UQ-body could detect HER2 in solution at concentrations as low as 20 pM with an EC50 of 0.3 nM with a fourfold response. Fluorescence imaging of HER2-positive cells was successfully performed without any washing steps. To deliver small interfering RNA (siRNA) to cancer cells, a modified UQ-body with C-terminal 9R sequence was also prepared. HER2-positive cancer cells were effectively killed by polo-like kinase 1 siRNA intracellularly delivered by the UQ-body-9R. The novel approach employing siRNA-empowered UQ-body could detect and image the HER2 antigen easily and sensitively, and effectively kill the HER2-positive cancer cells.
Collapse
Affiliation(s)
- Jinhua Dong
- Tokyo Tech World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Key Laboratory of Antibody Medicines, School of Bioscience and Technology, Weifang Medical University, Shandong, China
| | - Yuya Oka
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, College of Science and Technology, Hongik University, Sejong, Korea
| | - Yuki Ohmuro-Matsuyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Ueda
- Tokyo Tech World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
33
|
Islam J, Riley BT, Fercher C, Jones ML, Buckle AM, Howard CB, Cox RP, Bell TDM, Mahler S, Corrie SR. Wavelength-Dependent Fluorescent Immunosensors via Incorporation of Polarity Indicators near the Binding Interface of Antibody Fragments. Anal Chem 2019; 91:7631-7638. [DOI: 10.1021/acs.analchem.9b00445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiaul Islam
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent BioNano Science and Technology, Monash University, Clayton VIC 3800, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
| | - Blake T. Riley
- Dept. of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
| | - Christian Fercher
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent BioNano Science and Technology, Monash University, Clayton VIC 3800, Australia
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
| | - Martina L. Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
| | - Ashley M. Buckle
- Dept. of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
| | - Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
| | - Rosalind P. Cox
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Stephen Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
| | - Simon R. Corrie
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent BioNano Science and Technology, Monash University, Clayton VIC 3800, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
34
|
Single-Step Detection of the Influenza Virus Hemagglutinin Using Bacterially-Produced Quenchbodies. SENSORS 2018; 19:s19010052. [PMID: 30583603 PMCID: PMC6338965 DOI: 10.3390/s19010052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023]
Abstract
We have successfully generated a Quenchbody that enables the detection of the influenza virus hemagglutinin (HA), in a simple and convenient manner. By two-site labeling of the bacterially-produced anti-HA Fab with ATTO520, its fluorescence intensity was increased to 4.4-fold, in the presence of a nanomolar concentration of H1N1 HA. Our results indicate the potential use of this Quenchbody, as a sensor for the simple in situ detection of influenza A virus.
Collapse
|
35
|
Sasao A, Takaki M, Jeong HJ, Yonemitsu K, Ohtsu Y, Tsutsumi H, Furukawa S, Morioka H, Ueda H, Nishitani Y. Development of a fluvoxamine detection system using a Quenchbody, a novel fluorescent biosensor. Drug Test Anal 2018; 11:601-609. [PMID: 30328685 DOI: 10.1002/dta.2520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 11/05/2022]
Abstract
The misuse of psychotropic drugs intended for medical treatment represents a recent worldwide public health concern. Quenchbody (Q-body) is a novel fluoroimmunosensor that can detect an antigen immediately without additional reagents or washing steps. Here, we describe creating Q-bodies for the detection of the antidepressant fluvoxamine (FLV) and determining optimal conditions to achieve the highest fluorescence intensity (FI). We prepared five Q-bodies with the fluorophore labeled at either the N- or C- terminus and with different linker lengths. Fluorescence was measurable within minutes, indicating the interaction of Q-bodies with FLV. The normalized FI (FI ratio) of the N-terminus labeled Q-body increased approximately 1.5-fold upon FLV addition; Q-bodies labeled at the C-terminus did not significantly increase FI. Among the fluorescence dyes used in this study, Rhodamine 6G labeled Q-body showed the best FI ratio. EC50 values of the N-terminus labeled Q-bodies were similar (23.2-224nM) regardless of linker length or labeling dye. We examined whether the Q-body could be applicable to serum matrix instead of phosphate-buffered saline. The intact serum interfered strongly with the Q-body fluorescence. However, the FI ratios of the Q-body for FLV-spiked serum filtrate, for which proteins were removed by filtration, showed a dose-dependency for detecting FLV levels. Deproteinization, which does not interfere with Q-body fluorescence measurements, is likely necessary to detect serum FLV with high sensitivity. This study demonstrates the potential of Q-body probes as a tool towards developing creative immunoassay applications.
Collapse
Affiliation(s)
- Ako Sasao
- Department of Forensic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Michiyo Takaki
- Department of Forensic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong-si, South Korea
| | - Kosei Yonemitsu
- Department of Forensic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Ohtsu
- Department of Forensic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Tsutsumi
- Department of Forensic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shota Furukawa
- Department of Forensic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yoko Nishitani
- Department of Forensic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
36
|
Hansen-Bruhn M, Nielsen LDF, Gothelf KV. Rapid Detection of Drugs in Human Plasma Using a Small-Molecule-Linked Hybridization Chain Reaction. ACS Sens 2018; 3:1706-1711. [PMID: 30105911 DOI: 10.1021/acssensors.8b00439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rapid detection and quantification of pharmaceutical drugs directly in human plasma is of major importance for the development of relevant point-of-care testing devices. Here, we report a method for detection and quantification of small molecules in human plasma. An assay employing a small molecule-linked hybridization chain reaction (HCR) has been devised for the detection of the pharmaceutically relevant drugs digoxin (Dig) and methotrexate (MTX). Double modification by small molecule ligands on the initiator strand act as sites to control the rate of the HCR. Upon protein binding to the modified initiator strand, the HCR is greatly inhibited. If the protein is preincubated with a sample containing the small molecule analyte, the protein binding site is occupied by the analyte and the initiator strand will initiate the HCR. This enables efficient detection and quantification of small-molecule analytes in nanomolar concentration even in 50% human plasma within 4 min. Thus, the rapidity and simplicity of this assay has potential for point-of-care testing.
Collapse
Affiliation(s)
- Malthe Hansen-Bruhn
- Center for DNA Nanotechnology (CDNA) at the Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Line D. F. Nielsen
- Center for DNA Nanotechnology (CDNA) at the Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kurt V. Gothelf
- Center for DNA Nanotechnology (CDNA) at the Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
37
|
Lee JS, Kim J, Im SP, Kim SW, Jung JW, Lazarte JMS, Lee JH, Thompson KD, Jung TS. Expression and characterization of monomeric variable lymphocyte receptor B specific to the glycoprotein of viral hemorrhagic septicemia virus (VHSV). J Immunol Methods 2018; 462:48-53. [PMID: 30121197 DOI: 10.1016/j.jim.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
Monomeric variable lymphocyte receptor B (VLRB) is one of the smallest binding scaffold (20-25 kDa) from jawless vertebrates, hagfish and lamprey. This relatively new class of binding scaffold has various advantages: i) it has a single peptide composition, amenable to molecular engineering for enhancing its stability and affinity; ii) it has a small size, contributing better tissue penetration and easier production using microorganism expression system. Monomeric arVLRB142, which can specifically bind to the glycoprotein of viral hemorrhagic septicemia virus (VHSV), was expressed in Pichia pastoris. High quantity recombinant monomeric arVLRB142 (rVLR142mono) was purified from 100 ml of culture with a resulting yield of 2.6 ±1.3 mg of target protein. Functional studies revealed that the purified rVLR142mono can specifically recognize low levels of the target antigen (recombinant glycoprotein) (i.e. as low as 0.1 nM), but also the native glycoprotein of VHSV. The expressed rVLR142mono exhibited high levels of stability and it retained it binding capacity over broad temperature (4 °C ~ 60 °C) and pH ranges (pH 1.5-12.5). We developed an effective expression system for mass production of monomeric VLRB based on P. pastoris. The recombinant protein that was obtained offers promising binding avidity and biophysical stability and its potential use in various biotechnological applications.
Collapse
Affiliation(s)
- Jung Seok Lee
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University, 900 Gajwadong, Jinju 660-701, South Korea
| | - Jaesung Kim
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University, 900 Gajwadong, Jinju 660-701, South Korea
| | - Se Pyeong Im
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University, 900 Gajwadong, Jinju 660-701, South Korea
| | - Si Won Kim
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University, 900 Gajwadong, Jinju 660-701, South Korea
| | - Jae Wook Jung
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University, 900 Gajwadong, Jinju 660-701, South Korea
| | - Jassy Mary S Lazarte
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University, 900 Gajwadong, Jinju 660-701, South Korea
| | - Jeong-Ho Lee
- NIFS, Inland Aquaculture Research Center, Changwon 645-806, South Korea
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, College of Veterinary Medicine, Gyeongsang National University, 900 Gajwadong, Jinju 660-701, South Korea.
| |
Collapse
|
38
|
Kurumida Y, Hayashi N. Development of a Novel Q-body Using an In Vivo Site-Specific Unnatural Amino Acid Incorporation System. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2519. [PMID: 30071687 PMCID: PMC6111544 DOI: 10.3390/s18082519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 11/28/2022]
Abstract
A Q-body capable of detecting target molecules in solutions could serve as a simple molecular detection tool. The position of the fluorescent dye in a Q-body affects sensitivity and therefore must be optimized. This report describes the development of Nef Q-bodies that recognize Nef protein, one of the human immunodeficiency virus (HIV)'s gene products, in which fluorescent dye molecules were placed at various positions using an in vivo unnatural amino acid incorporation system. A maximum change in fluorescence intensity of 2-fold was observed after optimization of the dye position. During the process, some tryptophan residues of the antibody were found to quench the fluorescence. Moreover, analysis of the epitope indicated that some amino acid residues of the antigen located near the epitope affected the fluorescence intensity.
Collapse
Affiliation(s)
- Yoichi Kurumida
- Department of Life Science, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.
| | - Nobuhiro Hayashi
- Department of Life Science, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
39
|
Rapid detection of the neonicotinoid insecticide imidacloprid using a quenchbody assay. Anal Bioanal Chem 2018; 410:4219-4226. [DOI: 10.1007/s00216-018-1074-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
40
|
Dong J, Fujita R, Zako T, Ueda H. Construction of Quenchbodies to detect and image amyloid β oligomers. Anal Biochem 2018; 550:61-67. [PMID: 29678763 DOI: 10.1016/j.ab.2018.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/04/2023]
Abstract
A quenchbody (Q-body) is an antibody-based biosensor that employs fluorescence quenching of the dye(s) attached to the antibody fragment, which are de-quenched upon antigen binding. In this study, we aimed to develop Fab type Q-bodies (UQ-bodies) to aid the diagnosis of Alzheimer's disease (AD). Characteristic senile plaques in AD consist of amyloid-β peptide (Aβ) generated from the amyloid precursor protein. Aβ42, one of the major peptide forms, aggregates fast and manifests higher neurotoxicity. Recent studies showed that Aβ oligomers, such as Aβ-derived diffusible ligand (ADDL), are more toxic than fibrils. Thus, detection of Aβ and its oligomers in body fluid might help detect deterioration caused by the disease. To this end, the Fab fragment of the anti-Aβ antibody h12A11, which binds preferentially to ADDL, was expressed in Escherichia coli, and labeled with a fluorescent dye at the N terminus of either the heavy chain, or the heavy and light chains, via Cys-containing tag(s) to prepare UQ-bodies. As a result, the double-labeled UQ-bodies detected ADDL with higher sensitivity than that for the Aβ peptide. In addition, the UQ-body could be used to image aggregated Aβ with a low background, which suggested the potential of UQ-bodies as a fast bioimaging tool.
Collapse
Affiliation(s)
- Jinhua Dong
- Key Laboratory of Biological Medicine in Universities of Shandong Province, School of Bioscience and Technology, Weifang Medical University, 7166 Baotongxi, Weifang, Shandong 261053, PR China; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan
| | - Richi Fujita
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan
| | - Tamotsu Zako
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, 2-5, Bunkyo-cho, Matsuyama, Ehime 790-8577 Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan.
| |
Collapse
|
41
|
Jeong HJ, Matsumoto K, Itayama S, Kodama K, Abe R, Dong J, Shindo M, Ueda H. Construction of dye-stapled Quenchbodies by photochemical crosslinking to antibody nucleotide-binding sites. Chem Commun (Camb) 2018; 53:10200-10203. [PMID: 28856370 DOI: 10.1039/c7cc03043f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We successfully converted an antibody single-chain variable fragment and a full-sized antibody to Quenchbodies, which are a type of powerful fluorescent immunosensor, through ultraviolet-based photochemical crosslinking of an indole-3-butyric acid-conjugated fluorescent dye to the nucleotide-binding sites near the antigen-binding sites.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Laboratory for Chemistry and Life Science, Institute for Innovative Research, Tokyo Institute of Technology, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sugiyama A, Umetsu M, Nakazawa H, Niide T, Asano R, Hattori T, Kumagai I. High-throughput cytotoxicity and antigen-binding assay for screening small bispecific antibodies without purification. J Biosci Bioeng 2018; 126:153-161. [PMID: 29548844 DOI: 10.1016/j.jbiosc.2018.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/01/2018] [Accepted: 02/11/2018] [Indexed: 12/12/2022]
Abstract
The cytotoxicity of T cell-recruiting antibodies with their potential to damage late-stage tumor masses is critically dependent on their structural and functional properties. Recently, we reported a semi-high-throughput process for screening highly cytotoxic small bispecific antibodies (i.e., diabodies). In the present study, we improved the high-throughput performance of this screening process by removing the protein purification stage and adding a stage for determining the concentrations of the diabodies in culture supernatant. The diabodies were constructed by using an Escherichia coli expression system, and each diabody contained tandemly arranged peptide tags at the C-terminus, which allowed the concentration of diabodies in the culture supernatant to be quantified by using a tag-sandwich enzyme-linked immunosorbent assay. When estimated diabody concentrations were used to determine the cytotoxicity of unpurified antibodies, results comparable to those of purified antibodies were obtained. In a surface plasmon resonance spectroscopy-based target-binding assay, contaminants in the culture supernatant prevented us from conducting a quantitative binding analysis; however, this approach did allow relative binding affinity to be determined, and the relative binding affinities of the unpurified diabodies were comparable to those of the purified antibodies. Thus, we present here an improved high-throughput process for the simultaneous screening and determination of the binding parameters of highly cytotoxic bispecific antibodies.
Collapse
Affiliation(s)
- Aruto Sugiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Teppei Niide
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Ryutaro Asano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takamitsu Hattori
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
43
|
Kjelstrup MV, Nielsen LDF, Hansen-Bruhn M, Gothelf KV. A DNA-Based Assay for Digoxin Detection. BIOSENSORS 2018; 8:bios8010019. [PMID: 29509662 PMCID: PMC5872067 DOI: 10.3390/bios8010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 11/16/2022]
Abstract
The most common method for quantifying small-molecule drugs in blood samples is by liquid chromatography in combination with mass spectrometry. Few immuno-based assays are available for the detection of small-molecule drugs in blood. Here we report on a homogeneous assay that enables detection of the concentration of digoxin spiked into in a plasma sample. The assay is based on a shift in the equilibrium of a DNA strand displacement competition reaction, and can be performed in 30 min for concentrations above 10 nM. The equilibrium shift occurs upon binding of anti-digoxigenin antibody. As a model, the assay provides a potential alternative to current small-molecule detection methods used for therapeutic drug monitoring.
Collapse
Affiliation(s)
- Michael V Kjelstrup
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| | - Line D F Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| | - Malthe Hansen-Bruhn
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| |
Collapse
|
44
|
Su J, Dong J, Kitaguchi T, Ohmuro-Matsuyama Y, Ueda H. Noncompetitive homogeneous immunodetection of small molecules based on beta-glucuronidase complementation. Analyst 2018; 143:2096-2101. [DOI: 10.1039/c8an00074c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecules can be sensitively detected with a positive signal by just mixing and measuring the β-glucuronidase activity within 20 min.
Collapse
Affiliation(s)
- Jiulong Su
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
| | - Jinhua Dong
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
- Key Laboratory of Biological Medicine in Universities of Shandong Province
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
| | - Yuki Ohmuro-Matsuyama
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Japan
| |
Collapse
|
45
|
Fukunaga K, Watanabe T, Novitasari D, Ohashi H, Abe R, Hohsaka T. Antigen-responsive fluorescent antibody probes generated by selective N-terminal modification of IgGs. Chem Commun (Camb) 2018; 54:12734-12737. [DOI: 10.1039/c8cc07827k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescent antibody probes showing antigen-dependent fluorescence responses were developed by N-terminal-selective reductive alkylation of IgGs.
Collapse
Affiliation(s)
- Keisuke Fukunaga
- School of Materials Science
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa 923-1292
- Japan
| | - Takayoshi Watanabe
- School of Materials Science
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa 923-1292
- Japan
| | - Dian Novitasari
- School of Materials Science
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa 923-1292
- Japan
| | | | - Ryoji Abe
- Ushio Incorporated
- Yokohama 225-0004
- Japan
| | - Takahiro Hohsaka
- School of Materials Science
- Japan Advanced Institute of Science and Technology (JAIST)
- Ishikawa 923-1292
- Japan
| |
Collapse
|
46
|
Jeong HJ, Kawamura T, Iida M, Kawahigashi Y, Takigawa M, Ohmuro-Matsuyama Y, Chung CI, Dong J, Kondoh M, Ueda H. Development of a Quenchbody for the Detection and Imaging of the Cancer-Related Tight-Junction-Associated Membrane Protein Claudin. Anal Chem 2017; 89:10783-10789. [PMID: 28972746 DOI: 10.1021/acs.analchem.7b02047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Claudins (CLs) are membrane proteins found in tight junctions and play a major role in establishing the intercellular barrier. However, some CLs are abnormally overexpressed on tumor cells and are valid clinical biomarkers for cancer diagnosis. Here, we constructed antibody Fab fragment-based Quenchbodies (Q-bodies) as effective and reliable fluorescent sensors for detecting and visualizing CLs on live tumor cells. The variable region genes for anti-CL1 and anti-CL4 antibodies were used to express recombinant Fab fragments, and clones recognizing CL4 with high affinity were selected for making Q-bodies. When two fluorescent dyes were conjugated to the N-terminal tags attached to the Fab, the fluorescent signal was significantly increased after adding nanomolar-levels of purified CL4. Moreover, addition of the Q-body to CL4-expressing cells including CL4-positive cancer cells led to a clear fluorescence signal with low background, even without washing steps. Our findings suggested that such Q-bodies would serve as a potent tool for specifically illuminating membrane targets expressed on cancer cells, both in vitro and in vivo.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takuya Kawamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Manami Iida
- Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka 565-0871, Japan
| | - Yumi Kawahigashi
- Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka 565-0871, Japan
| | - Mutsumi Takigawa
- Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka 565-0871, Japan
| | - Yuki Ohmuro-Matsuyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Chan-I Chung
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Jinhua Dong
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.,Key Laboratory of Biological Medicine in Universities of Shandong Province, School of Bioscience and Technology, Weifang Medical University , Weifang, Shandong 261053, P.R. China
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University , Suita, Osaka 565-0871, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
47
|
Rezaie F, Davami F, Mansouri K, Agha Amiri S, Fazel R, Mahdian R, Davoudi N, Enayati S, Azizi M, Khalaj V. Cytosolic expression of functional Fab fragments in Escherichia coli
using a novel combination of dual SUMO expression cassette and EnBase®
cultivation mode. J Appl Microbiol 2017; 123:134-144. [DOI: 10.1111/jam.13483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/19/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Affiliation(s)
- F. Rezaie
- Medical Biotechnology Department; Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - F. Davami
- Medical Biotechnology Department; Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - K. Mansouri
- Medical Biology Research Center; Kermanshah University of Medical Sciences; Kermanshah Iran
| | - S. Agha Amiri
- Medical Biotechnology Department; Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - R. Fazel
- Medical Biotechnology Department; Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - R. Mahdian
- Molecular Medicine Department; Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - N. Davoudi
- Medical Biotechnology Department; Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - S. Enayati
- Medical Biotechnology Department; Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - M. Azizi
- Medical Biotechnology Department; Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| | - V. Khalaj
- Medical Biotechnology Department; Biotechnology Research Center; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|
48
|
Wongso D, Dong J, Ueda H, Kitaguchi T. Flashbody: A Next Generation Fluobody with Fluorescence Intensity Enhanced by Antigen Binding. Anal Chem 2017; 89:6719-6725. [PMID: 28534613 DOI: 10.1021/acs.analchem.7b00959] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fluorescent probes are valuable tools for visualizing the spatiotemporal dynamics of molecules in living cells. Here we developed a genetically encoded antibody probe with antigen-dependent fluorescence intensity called "Flashbody". We first created a fusion of EGFP to the single chain variable region fragment (scFv) of antibody against seven amino acids of the bone Gla protein C-terminus (BGPC7) called BGP Fluobody, which successfully showed the intracellular localization of BGPC7-tagged protein. To generate BGP Flashbody, circularly permuted GFP was inserted in between two variable region fragments, and the linkers were optimized, resulting in fluorescence intensity increase of 300% upon binding with BGPC7 in a dose-dependent manner. Live-cell imaging using BGP Flashbody showed that BGPC7 fused with cell penetrating peptide was able to enter through the plasma membrane by forming a nucleation zone, while it penetrated the nuclear membrane with different mechanism. The construction of Flashbody will be possible for a range of antibody fragments and opens up new possibilities for visualizing a myriad of molecules of interest.
Collapse
Affiliation(s)
- Devina Wongso
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS) , 11 Biopolis Way #05-02 Helios, Singapore 138667, Singapore
| | - Jinhua Dong
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , 4259-R1-18, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Tetsuya Kitaguchi
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS) , 11 Biopolis Way #05-02 Helios, Singapore 138667, Singapore.,Comprehensive Research Organization, Waseda University , #304, Block 120-4, 513 Wasedatsurumaki-cho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
49
|
Dong J, Ueda H. ELISA-type assays of trace biomarkers using microfluidic methods. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/15/2016] [Accepted: 12/17/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Jinhua Dong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering, Linyi University; Linyi P.R. China
- Laboratory for Chemistry and Life Science, Institute of Innovative Research; Tokyo Institute of Technology; Yokohama Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research; Tokyo Institute of Technology; Yokohama Japan
| |
Collapse
|
50
|
Morita I, Oyama H, Yasuo M, Matsuda K, Katagi K, Ito A, Tatsuda H, Tanaka H, Morimoto S, Kobayashi N. Antibody Fragments for On-Site Testing of Cannabinoids Generated via in Vitro Affinity Maturation. Biol Pharm Bull 2017; 40:174-181. [PMID: 28154257 DOI: 10.1248/bpb.b16-00669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Law enforcement against illicit use of cannabis and related substances requires rapid, feasible, and reliable tools for on-site testing of cannabinoids. Notably, methods based on cannabinoid-specific antibodies enable efficient screening of multiple specimens. Antibody engineering may accelerate development of modern and robust testing systems. Here, we used in vitro affinity maturation to generate a single-chain Fv fragment (scFv) that recognizes with high affinity the psychoactive cannabinoid, Δ9-tetrahydrocannabinol (THC). A mouse monoclonal antibody against THC, Ab-THC#33, with Ka 6.2×107 M-1 (as Fab fragment) was established by the hybridoma technique. Then, a "wild-type" scFv (wt-scFv) with Ka, 1.1×107 M-1 was prepared by bacterial expression of a fusion gene combining the VH and VL genes for Ab-THC#33. Subsequently, random point mutations in VH and VL were generated separately, and the resulting products were assembled into mutant scFv genes, which were then phage-displayed. Repeated panning identified a mutant scFv (scFv#m1-36) with 10-fold enhanced affinity (Ka 1.1×108 M-1) for THC, in which only a single conservative substitution (Ser50Thr) was present at the N-terminus of the VH-complementarity-determining region 2 (CDR2) sequence. In competitive enzyme-linked immunosorbent assay (ELISA), the mutant scFv generated dose-response curves with midpoint 0.27 ng/assay THC, which was 3-fold lower than that of wt-scFv. Even higher reactivity with a major THC metabolite, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol, indicated that the mutant scFv will be useful for testing not only THC in confiscated materials, but also the metabolite in urine. Indeed, the antibody fragment is potentially suitable for use in advanced on-site testing platforms for cannabinoids.
Collapse
|