1
|
Moses RL, Woods EL, Dally J, Johns JP, Knäuper V, Boyle GM, Gordon V, Reddell P, Steadman R, Moseley R. Epoxytiglianes induce keratinocyte wound healing responses via classical protein kinase C activation to promote skin re-epithelialization. Biochem Pharmacol 2024:116607. [PMID: 39489221 DOI: 10.1016/j.bcp.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/12/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Epoxytiglianes are a novel class of diterpene esters. The prototype epoxytigliane, EBC-46 (tigilanol tiglate), is a potent anti-cancer agent in clinical development for local treatment of a range of human and animal tumors. EBC-46 also consistently promotes wound re-epithelialization at the treatment sites, mediated via activation of classical protein kinase C (PKC) isoforms. We have previously shown that epoxytiglianes stimulate proliferative and wound repopulation responses in immortalized human skin keratinocytes (HaCaTs) in vitro, abrogated by pan-PKC inhibitor, bisindolylmaleimide-1. In this study, we further investigate the specific PKC isoforms responsible for inducing such wound healing responses, following HaCaT treatment with 1.51 nM-15.1 µM EBC-46 or analogue, EBC-211. Classical PKC inhibition by GӦ6976 (1 μM), significantly attenuated epoxytigliane induced, HaCaT proliferation and wound repopulation at all epoxytigliane concentrations. PKC-βI/-βII isoform inhibition by enzastaurin (1 μM), significantly inhibited HaCaT proliferation and wound repopulation responses induced by both epoxytiglianes, especially at 1.51-151 nM. PKC-α inhibitor, Ro 31-8220 mesylate (10 nM), exerted lesser inhibitory effects on HaCaT responses. Epoxytigliane changes in key keratin (KRT17) and cell cycle (cyclin B1, CDKN1A) protein levels were partly attenuated by GӦ6976 and enzastaurin. GӦ6976 also inhibited increases in matrix metalloproteinase (MMP-1, MMP-7, MMP-10) activities. Phospho-PKC (p-PKC) studies confirmed that epoxytiglianes transiently activated classical PKC isoforms (p-PKCα, p-PKC-βI/-βII, p-PKCγ) in a dose- and time-dependent manner. By identifying how epoxytiglianes stimulate classical PKCs to facilitate keratinocyte healing responses and re-epithelialization, these findings support further epoxytigliane development as topical therapeutics for clinical situations involving impaired re-epithelialization, such as non-healing wounds in skin.
Collapse
Affiliation(s)
- Rachael L Moses
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK; Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Emma L Woods
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jordanna Dally
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jenny P Johns
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vera Knäuper
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Paul Reddell
- QBiotics Group, Yungaburra, Queensland, Australia
| | - Robert Steadman
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Ryan Moseley
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK.
| |
Collapse
|
2
|
Zhang E, Ji X, Ouyang F, Lei Y, Deng S, Rong H, Deng X, Shen H. A minireview of the medicinal and edible insects from the traditional Chinese medicine (TCM). Front Pharmacol 2023; 14:1125600. [PMID: 37007003 PMCID: PMC10060509 DOI: 10.3389/fphar.2023.1125600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Entomoceuticals define a subset of pharmaceuticals derived from insects. The therapeutic effect of insect-derived drugs has been empirically validated by the direct use of various folk medicines originating from three sources in particular: the glandular secretions of insects (e.g., silk, honey, venom), the body parts of the insect or the whole used live or by various processing (e.g., cooked, toasted, ground), and active ingredients extracted from insects or insect-microbe symbiosis. Insects have been widely exploited in traditional Chinese medicine (TCM) relative to other ethnomedicines, especially in the prospect of insect species for medicinal uses. It is noticeable that most of these entomoceuticals are also exploited as health food for improving immune function. In addition, some edible insects are rich in animal protein and have high nutritional value, which are used in the food field, such as insect wine, health supplements and so on. In this review, we focused on 12 insect species that have been widely used in traditional Chinese herbal formulae but have remained less investigated for their biological properties in previous studies. We also combined the entomoceutical knowledge with recent advances in insect omics. This review specifies the underexplored medicinal insects from ethnomedicine and shows their specific medicinal and nutritional roles in traditional medicine.
Collapse
Affiliation(s)
- Enming Zhang
- School of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Xin Ji
- School of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Fang Ouyang
- Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Yang Lei
- College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Shun Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
- *Correspondence: Shun Deng, ; Haibo Rong,
| | - Haibo Rong
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
- *Correspondence: Shun Deng, ; Haibo Rong,
| | - Xuangen Deng
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Hai Shen
- Sichuan Provincial Orthopedic Hospital, Chengdu, China
| |
Collapse
|
3
|
Phytochemical Profiling, Isolation, and Pharmacological Applications of Bioactive Compounds from Insects of the Family Blattidae Together with Related Drug Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248882. [PMID: 36558015 PMCID: PMC9782659 DOI: 10.3390/molecules27248882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
In traditional Chinese medicine (TCM), insects from the family Blattidae have a long history of application, and their related active compounds have excellent pharmacological properties, making them a prominent concern with significant potential for medicinal and healthcare purposes. However, the medicinal potential of the family Blattidae has not been fully exploited, and many problems must be resolved urgently. Therefore, a comprehensive review of its chemical composition, pharmacological activities, current research status, and existing problems is necessary. In order to make the review clearer and more systematic, all the contents were independently elaborated and summarized in a certain sequence. Each part started with introducing the current situation or a framework and then was illustrated with concrete examples. Several pertinent conclusions and outlooks were provided after discussing relevant key issues that emerged in each section. This review focuses on analyzing the current studies and utilization of medicinal insects in the family Blattidae, which is expected to provide meaningful and valuable relevant information for researchers, thereby promoting further exploration and development of lead compounds or bioactive fractions for new drugs from the insects.
Collapse
|
4
|
Fu X, Shao BH, Wei X, Wang HH, Chen X, Zhao TT, Wang CM. Tubiechong:A review on ethnomedicinal uses, bioactive chemical constituents and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115642. [PMID: 35973633 DOI: 10.1016/j.jep.2022.115642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tubiechong comprises mainly Eupolyphaga and Steleophaga is widely distributed in China. It has been used in the traditional medicine systems in Asian countries specially in China,Japan and Singapore for thousand years. AIM OF THE REVIEW The aim of this work is to review the scientific work about Tubiechong regarding their ethnomedicinal uses, bioactive chemical constituents and pharmacological activities. MATERIALS AND METHODS Relevant literature of Tubiechong was collected for its traditional uses, pharmacological activities, and bioactive compounds released from inception until May 2022. The online databases such as Web of Science, PubMed, Google Scholar, Science Direct, Scopus, SciFinder Scholar, Springer Link, China National Knowledge Infrastructure (CNKI), Wanfang Data, and VIP database were used as electronic search engines for articles with the various specific keywords. Additionally, references from ancient texts and local information such as PhD and MSc theses, books, and Chinese journals were also included. RESULTS The clinical researches have revealed that Tubiechong alone has been successfully used to treat bone disease, ache, sprain, herpes zoster, paronychia and so on. Tubichong's main clinical application is to form formulations with other herbs. The most widely used 34 kinds of Chinese patent medicine containing Tubiechong were included in Chinese Pharmacopoeia (2020 Edition) for the treatment of traumatic injury, low back pain, cardiovascular disease, tumors or mass and nodule, cervical spondylopathy, osteoarthritis and psoriasis. Its other derived formulas have been used in the clinical treatment of various diseases, such as blood stasis, hepatic cirrhosis, cyclomastopathy, chronic active hepatitis, nephropathy, gynaecopathia, cancer diseases. To date, the bioactive substances reported are limited to protein and peptides, fatty acids, polysaccharides and alkaloids from Eupolyphaga sinensis Walker. So far, the pharmacological activities of Tubiechong and its various extracts have been evaluated, including anticoagulant and antithrombotic, anticancer, bone repair, immunomodulation, analgesia, antioxidant, antihyperlipidemic, antimicrobial and protective and repair functions for damage to the liver, heart, brain and skin. As an edible insect, its safety has also been confirmed by acute toxicity tests and 30-day feeding trials. CONCLUSION Tubiechong is an important insect medicine with the effect of promoting blood circulation and removing blood stasis, which has been used in traditional Chinese medicine for thousands of years for the treatment of trauma and abdominal lumps, and has now been clinically extended to the treatment of a variety of diseases. Its multiple pharmacological activities indicate that it has great potential for development and application. However, its chemical constituents with pharmacological activity require further excavation and detailed study. In addition, the in-depth molecular pharmacological mechanisms deserve further explanation.
Collapse
Affiliation(s)
- Xiang Fu
- Department of Biopharmaceuticals, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bing-Hao Shao
- Department of Biopharmaceuticals, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xue Wei
- Department of Biopharmaceuticals, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hui-Hui Wang
- Department of Biopharmaceuticals, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xing Chen
- Department of Biopharmaceuticals, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tian-Tian Zhao
- Department of Biopharmaceuticals, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chun-Mei Wang
- Department of Biopharmaceuticals, School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
5
|
Ouango M, Romba R, Drabo SF, Ouedraogo N, Gnankiné O. Indigenous knowledge system associated with the uses of insects for therapeutic or medicinal purposes in two main provinces of Burkina Faso, West Africa. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2022; 18:50. [PMID: 35790988 PMCID: PMC9254572 DOI: 10.1186/s13002-022-00547-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/14/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Some insects are harmful to humans, plants and animals, but some of them can also be a source of proteins, fats, vitamins and minerals and be of therapeutic value. The therapeutic potential requires that medicinal insects and their derived products need to be scrutinized. This study highlights the indigenous knowledge related to their use of medicinal insects in peri-urban and urban areas of Burkina Faso. METHODS The survey was carried out among 60 traditional healers spread across two phytogeographical zones of Burkina Faso. The questionnaire focused on medicinal insects used by experienced traditional healers. Chi-square tests and principal component analysis were performed to test for significant differences regarding knowledge of how insects in phytogeographically different areas were used therapeutically in connection with different disease categories. RESULTS A total of 19 species of medicinal insects belonging to 6 orders were cited in connection with treatments of at least 78 pathologies and symptoms. Most frequently mentioned was gastroenteritis. Our study showed that 48.78% of the insects and their products were associated with 46 plant species for the treatment of pathologies. In addition, honey, beeswax and nests were the most widely insect products used. CONCLUSION The current study allows us to identify medicinal insects as well as their products used in the treatment of pathologies and symptoms, suggesting the presence of a considerable diversity of therapeutically important insect species. These insects are used alone and/or with their products but often in association with medicinal plants. The results constitute a useful database for future studies of medicinal insects in central and western parts of Burkina Faso.
Collapse
Affiliation(s)
- Mamadou Ouango
- Laboratoire d'Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la vie et de la Terre (UFR-SVT), Université Joseph KI ZERBO, 03 BP, 7021, Ouagadougou, Burkina Faso
| | - Rahim Romba
- Laboratoire d'Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la vie et de la Terre (UFR-SVT), Université Joseph KI ZERBO, 03 BP, 7021, Ouagadougou, Burkina Faso
| | - Samuel Fogné Drabo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la vie et de la Terre (UFR-SVT), Université Joseph KI ZERBO, 03 BP, 7021, Ouagadougou, Burkina Faso
| | - Noufou Ouedraogo
- Institut de Recherche en Sciences de la Santé, (IRSS), 03 BP, 7192, Ouagadougou, Burkina Faso
| | - Olivier Gnankiné
- Laboratoire d'Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la vie et de la Terre (UFR-SVT), Université Joseph KI ZERBO, 03 BP, 7021, Ouagadougou, Burkina Faso.
| |
Collapse
|
6
|
Xie J, Zhang D, Liu C, Wang L. A periodic review of chemical and pharmacological profiles of Tubiechong as insect Chinese medicine. RSC Adv 2021; 11:33952-33968. [PMID: 35497279 PMCID: PMC9042404 DOI: 10.1039/d1ra05425b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Tubiechong, in Chinese medicine, denotes the dried female insects of Eupolyphaga sinensis Walker (ESW) or Polyphaga plancyi Bolivar (PPB). As a traditional insect-type, in medicine, it has been historically utilized to treat bruises, fractures, amenorrhea, postpartum blood stasis, lumps and relieving pain. We herein have performed a systematic survey involving the chemical and biological studies in the past decades to reveal the value of such insect resources for their development and clinical utilization. Chemical studies indicated that Tubiechong generated many active compounds, including proteins, amino acids, peptides, fatty acids, alkaloids, nucleosides, polysaccharides, fat-soluble vitamins and mineral elements. Tubiechong or its extract has a wide range of activities including anticoagulation and anti-thrombosis, anti-tumor, antioxidant, immune regulation, blood lipid regulation and hepatoprotection. Finally, a periodic mini-review was conducted to summarize such chemical and pharmacological profiles of Tubiechong medicine. The active peptides in Tubiechong are majorly focused in this review and introduced as one important aspect since there is much literature and huge investigative interest in it. Traditional medical use of the insect was also stressed in this review associating with its disease-eliminating actions by promoting blood circulation or eliminating tissue-swelling pains, which might play important roles in anticancer practices or investigation. In accordance with the modern pharmacological progress, Tubiechong and its extracts indeed exerted antitumor actions through multiple pathways, such as interfering with tumor biological behaviors (growth, apoptosis, invasion, metastasis and angiogenesis), and regulating host immune function. To some extent, this knowledge would provide a basis for further research and application of Tubiechong medicine.
Collapse
Affiliation(s)
- Jiayu Xie
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing City Jiangsu Province 210023 P. R. China (+86)-15050581339
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine Shanghai City 200062 P. R. China (+86)-021-22233329
| | - Dapeng Zhang
- The First Affiliated Hospital of Guangzhou Medical University Guangzhou City 510120 P. R. China
| | - Cheng Liu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine Shanghai City 200062 P. R. China (+86)-021-22233329
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing City Jiangsu Province 210023 P. R. China (+86)-15050581339
| |
Collapse
|
7
|
Toxic Animal-Based Medicinal Materials Can Be Effective in Treating Endometriosis: A Scoping Review. Toxins (Basel) 2021; 13:toxins13020145. [PMID: 33673020 PMCID: PMC7917649 DOI: 10.3390/toxins13020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Animal toxins and venoms have recently been developed as cancer treatments possessing tumor cell growth-inhibitory, antiangiogenesis, and proapoptotic effects. Endometriosis is a common benign gynecological disorder in reproductive-age women, and no definite treatment for this disorder is without severe side effects. As endometriosis and malignant tumors share similar characteristics (progressive, invasive, estrogen-dependent growth, and recurrence), animal toxins and venoms are thought to be effective against endometriosis. The objective of this study was to outline studies using toxic animal-based medicinal materials (TMM) as endometriosis treatment and to explore its clinical applicability. Preclinical and clinical studies using TMM were searched for in four databases from inception to October 2020. A total of 20 studies of TMM on endometriosis were included. In eight clinical studies, herbal medicines containing TMM were effective in relieving symptoms of endometriosis, with no side effects. In twelve experimental studies, the main therapeutic mechanisms of TMM against endometriosis were proapoptotic, antiangiogenesis, estrogen level-reducing, and possible anti-inflammatory effects. TMM are thus considered promising sources for the development of an effective treatment method for endometriosis. Further studies are needed to clarify the therapeutic mechanism of TMM against endometriosis and to provide sufficient grounds for clinical application.
Collapse
|
8
|
Fundamental insights into the interaction between telomerase/TERT and intracellular signaling pathways. Biochimie 2020; 181:12-24. [PMID: 33232793 DOI: 10.1016/j.biochi.2020.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Telomerase activity is critical for cancer cells to provide unrestricted proliferation and cellular immortality through maintaining telomeres. Telomerase enzymatic activity is regulatable at the level of DNA, mRNA, post translational modifications, cellular transport and enzyme assembly. More recent studies confirm the interaction of the telomerase with various intracellular signaling pathways including PI3K/AKT/mTOR, NF-κB and Wnt/β-catenin which mainly participating in inflammation, epithelial to mesenchymal transition (EMT) and tumor cell invasion and metastasis. Furthermore, hTERT protein has been detected in non-nuclear sites such as the mitochondria and cytoplasm in cells. Mitochondrial TERT indicates various non-telomere-related functions such as decreasing reactive oxygen species (ROS) generation, boosting the respiration rate, protecting mtDNA by direct binding, interacting with mitochondrial tRNAs and increasing mitochondrial membrane potential which can lead to higher chemoresistance rate in cancer cells during therapies. Understanding the molecular mechanisms of the TERT function and depended interactions in tumor cells can suggest novel therapeutic approaches. Hence, in this review we will explain the telomerase activity regulation in translational and post translational levels besides the established correlations with various cell signaling pathways with possible pathways for therapeutic targeting.
Collapse
|
9
|
Xie X, Shen W, Zhou Y, Ma L, Xu D, Ding J, He L, Shen B, Zhou C. Characterization of a polysaccharide from Eupolyphaga sinensis walker and its effective antitumor activity via lymphocyte activation. Int J Biol Macromol 2020; 162:31-42. [DOI: 10.1016/j.ijbiomac.2020.06.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023]
|
10
|
Gan-Qing-Ning Formula Inhibits the Growth of Hepatocellular Carcinoma by Promoting Apoptosis and Inhibiting Angiogenesis in H 22 Tumor-Bearing Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6376912. [PMID: 32831873 PMCID: PMC7428871 DOI: 10.1155/2020/6376912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/24/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022]
Abstract
Objective Gang-Qing-Ning (GQN) is a traditional Chinese medicine formula that has been used in the treatment of hepatocellular carcinoma (HCC) in the folk population for decades. However, scientific validation is still necessary to lend credibility to the traditional use of GQN against HCC. This study investigates the antitumor effect of GQN on H22 tumor-bearing mice and its possible mechanism. Methods Fifty H22 tumor-bearing mice were randomly assigned to five groups. Three groups were treated with high, medium, and low dosages of GQN (27.68, 13.84, and 6.92 g/kg, respectively); the positive control group was treated with cytoxan (CTX) (20 mg/kg) and the model group was treated with normal saline. After 10 days' treatment, the tumor inhibitory rates were calculated. Pathological changes in tumor tissue were observed, and the key proteins and genes of the mitochondrial apoptosis pathway were measured, as well as the mRNA expression levels of VEGF in tumor tissue. Results The tumor inhibitory rates of high, medium, and low dosages of GQN groups were 47.39%, 38.26%, and 22.17%, respectively. The high dosage of the GQN group significantly increased the protein and mRNA expression levels of Bax, Cyt-C, and cleaved Caspase 3 (or Caspase 3) (P < 0.01) but decreased the expression levels of Bcl-2, VEGF, and microvessel density (MVD) (P < 0.01). Conclusions The high dosage of GQN can significantly inhibit the tumor growth in H22 tumor-bearing mice. It exerts the antitumor effect by enhancing proapoptotic factors and inhibiting the antiapoptotic factor of the mitochondrial apoptosis pathway and inhibiting tumor angiogenesis.
Collapse
|
11
|
Sheak JR, Yan S, Weise-Cross L, Ahmadian R, Walker BR, Jernigan NL, Resta TC. PKCβ and reactive oxygen species mediate enhanced pulmonary vasoconstrictor reactivity following chronic hypoxia in neonatal rats. Am J Physiol Heart Circ Physiol 2020; 318:H470-H483. [PMID: 31922892 DOI: 10.1152/ajpheart.00629.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS), mitochondrial dysfunction, and excessive vasoconstriction are important contributors to chronic hypoxia (CH)-induced neonatal pulmonary hypertension. On the basis of evidence that PKCβ and mitochondrial oxidative stress are involved in several cardiovascular and metabolic disorders, we hypothesized that PKCβ and mitochondrial ROS (mitoROS) signaling contribute to enhanced pulmonary vasoconstriction in neonatal rats exposed to CH. To test this hypothesis, we examined effects of the PKCβ inhibitor LY-333,531, the ROS scavenger 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL), and the mitochondrial antioxidants mitoquinone mesylate (MitoQ) and (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) on vasoconstrictor responses in saline-perfused lungs (in situ) or pressurized pulmonary arteries from 2-wk-old control and CH (12-day exposure, 0.5 atm) rats. Lungs from CH rats exhibited greater basal tone and vasoconstrictor sensitivity to 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U-46619). LY-333,531 and TEMPOL attenuated these effects of CH, while having no effect in lungs from control animals. Basal tone was similarly elevated in isolated pulmonary arteries from neonatal CH rats compared with control rats, which was inhibited by both LY-333,531 and mitochondria-targeted antioxidants. Additional experiments assessing mitoROS generation with the mitochondria-targeted ROS indicator MitoSOX revealed that a PKCβ-mitochondrial oxidant signaling pathway can be pharmacologically stimulated by the PKC activator phorbol 12-myristate 13-acetate in primary cultures of pulmonary artery smooth muscle cells (PASMCs) from control neonates. Finally, we found that neonatal CH increased mitochondrially localized PKCβ in pulmonary arteries as assessed by Western blotting of subcellular fractions. We conclude that PKCβ activation leads to mitoROS production in PASMCs from neonatal rats. Furthermore, this signaling axis may account for enhanced pulmonary vasoconstrictor sensitivity following CH exposure.NEW & NOTEWORTHY This research demonstrates a novel contribution of PKCβ and mitochondrial reactive oxygen species signaling to increased pulmonary vasoconstrictor reactivity in chronically hypoxic neonates. The results provide a potential mechanism by which chronic hypoxia increases both basal and agonist-induced pulmonary arterial smooth muscle tone, which may contribute to neonatal pulmonary hypertension.
Collapse
Affiliation(s)
- Joshua R Sheak
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Simin Yan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Rosstin Ahmadian
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
12
|
Lu WL, Yang T, Song QJ, Fang ZQ, Pan ZQ, Liang C, Jia DW, Peng PK. Akebia trifoliata (Thunb.) Koidz Seed Extract inhibits human hepatocellular carcinoma cell migration and invasion in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2019; 234:204-215. [PMID: 30528882 DOI: 10.1016/j.jep.2018.11.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The high recurrence rate postoperative and extensive metastases have become the obstacle of Hepatocellular Carcinoma (HCC) efficacy improvements, which contribute to most of the patient mortality. Akebia trifoliata (Thunb.) Koidz has been shown pharmacological activities in clinical and anti-HCC biological activity in previous research, but its potential function of anti-metastasis remains unknown. AIM OF THIS STUDY To make sure whether ATKSE inhibits migration and invasion in HCC cell lines in vitro and the potential mechanism. MATERIALS AND METHODS A UHPLC-HRMS analysis was adopted to identify and control the quality of the ethanol extract of Akebia trifoliata (Thunb.) Koidz Seed (abbreviated ATKSE). Cell viability of three kinds of HCC cell lines (HEPG2, HUH7, and SMMC7721) was detected using MTT assay and Flow cytometry. Adhesion capacity was measured by cell-matrigel adhesion assay. Wounded healing and Matrigel-transwell invasion assays were performed to assess cell migration and invasion, respectively. Western blot assay was used to detect several metastasis-related protein molecules, including FAK adhesion signaling, cadherin molecules, and MMPs. ELISA assay was used to evaluate the secreted MMP9 level. RESULTS ATKSE significantly suppressed HCC cells viability and proliferation (from 0.9 up to 3.0 mg/ml); then under sub-lethal concentration (from 0.25 up to 1.0 mg/ml), ATKSE inhibited cell adhesion, migration, and invasion in a way of dose-dependent. Several metastatic-related molecules or pathway, including FAK adhesion signaling, cadherin molecules, and MMPs, took part in this process. There are both differences and commonalities in various cell lines: typically such as p-FAK was down-regulated by ATKSE in both HEPG2 and SMMC7721, while was raised in HUH7; Further attempts on the combination of ATKSE and FAK inhibitors, provide us with the enhanced inhibitory effects of invasion and migration in HEPG2 and HUH7 cells, as well as antagonistic effects in SMMC7721. As a target or potential mechanism, it may be more valuable to concern FAK inhibition by ATKSE in HEPG2 cells than in the other two cells. CONCLUSIONS These results suggest that ATKSE has anti-metastasis potency in HCC cells.
Collapse
Affiliation(s)
- Wen-Li Lu
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| | - Tao Yang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528, Zhangheng Road, Shanghai 201203, China
| | - Qiu-Jia Song
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Zhao-Qin Fang
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| | - Zhi-Qiang Pan
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Cao Liang
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Dong-Wei Jia
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Pei-Ke Peng
- College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China.
| |
Collapse
|
13
|
Liu H, Yan Y, Zhang F, Wu Q. The Immuno-Enhancement Effects of Tubiechong (Eupolyphaga sinensis) Lyophilized Powder in Cyclophosphamide-Induced Immunosuppressed Mice. Immunol Invest 2019; 48:844-859. [PMID: 30917711 DOI: 10.1080/08820139.2019.1588291] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tubiechong (Eupolyphaga sinensis) is an important material used in traditional Chinese medicine (TCM). However, the immunoregulation effects of E. sinensis Lyophilized Powder (ESL) are unclear. The in vivo study thus designed to elucidate the immuno-enhancement effects of ESL in immunosuppressed mice induced by cyclophosphamide (CTX). Mice were treated with three doses of ESL (0.5, 1.0 and 2.0 g/kg). Compared with model group, ESL notably increased the immune organ index, mononuclear macrophages function and the level of nature killer cell (NK) (p < 0.05 or p < 0.01), delayed type hypersensitivity (DTH) was also improved (p < 0.05). The level of superoxide dismutase (SOD) and catalase (CAT) were enhanced (p < 0.05), while malonyldialdehyde (MDA) and nitrogen monoxide (NO) were reduced (p < 0.05 or p < 0.01). Meanwhile, cluster determinant (CD)3+ T cell, CD4+ T cell and CD4+/CD8+ ratio were increased (p < 0.01). The cytokines secretion such as interleukin (IL)-2 and tumor necrosis factor alpha (TNF-α) were notably increased (p < 0.05 or p < 0.01), and IL-6 and IL-16 were also enhanced (p < 0.05). Furthermore, ESL significantly inhibited the phosphorylation of c-Jun N-terminal kinase (JNK), down-regulated the expression of Bcl-2 associated X protein (Bax), up-regulated the B cell lymphoma-2 protein (Bcl-2) expression and decreased the Bax/Bcl-2 ratio in spleen tissues (p < 0.05). In brief, all these findings suggest that ESL could effectively improve immune functions via modulating oxidative systems and innate immune cells. Abbreviations: TCM: Traditional Chinese Medicine; ESL: Eupolyphaga sinensis Lyophilized Powder; CCl4: Carbon tetrachloride; ERK: Extracellular regulated protein kinases; CTX: Cyclophosphamide; DTH: Delayed type hypersensitivity; SOD: Superoxide dismutase; CAT: Catalase; MDA: Malonyldialdehyde; NO: Nitrogen monoxide; NK: Nature killer cell; CD: Cluster determinant interleukin; TNF-α: Tumor Necrosis Factor alpha; JNK: c-Jun N-terminal kinase; Bax: Bcl-2 associated X protein; Bcl-2: B cell lymphoma-2 protein; Th1: Type-1 helper; Th2: Type-2 helper; FAMEs: Fatty acid methyl esters; DNFB: 2,4 - Dinitrofluorobenzene; ELISA: Enzyme-linked immuno sorbent assay; MAPK: Mitogen activated protein kinase; Cyt-c: Cytochrome c; SCFAs: Short-chain fatty acids; SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Huiyun Liu
- College of Pharmaceutical science, Zhejiang Chinese Medical University , Hangzhou , China
| | - Yunliang Yan
- College of Pharmaceutical science, Zhejiang Chinese Medical University , Hangzhou , China
| | - Fengling Zhang
- College of Pharmaceutical science, Zhejiang Chinese Medical University , Hangzhou , China
| | - Qiaofeng Wu
- College of Pharmaceutical science, Zhejiang Chinese Medical University , Hangzhou , China
| |
Collapse
|
14
|
Wu W, Cao J, Ji Z, Wang J, Jiang T, Ding H. Co-expression of Lgr5 and CXCR4 characterizes cancer stem-like cells of colorectal cancer. Oncotarget 2018; 7:81144-81155. [PMID: 27835894 PMCID: PMC5348382 DOI: 10.18632/oncotarget.13214] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
Therapies designed to target cancer stem cells (CSCs) in colorectal cancer (CRC) may improve treatment outcomes. Different markers have been used to identify CSCs or CSC-like cells in CRC, but the enrichment of CSCs using these markers has yet to be optimized. We recently reported the importance of Lgr5-positive CRC cells in cancer growth. Here, we studied the possibility of using Lgr5 and CXCR4 as CSC markers for CRC. We detected high Lgr5 and CXCR4 levels in stage IV CRC specimens. Both high Lgr5 and CXCR4 levels were associated with poor prognosis in stage IV CRC patients. In vitro, Lgr5+CXCR4-, CXCR4+Lgr5- and Lgr5+CXCR4+ cells were purified in human CRC cell lines and examined for their CSC properties. We found that compared to the unsorted cells, CXCR4+Lgr5-, Lgr5+CXCR4-, and Lgr5+/CXCR4+ cells showed significantly greater cancer mass after subcutaneous transplantation, greater tumor sphere formation, higher resistance to chemotherapy, and higher incidence of tumor formation after serial adoptive transplantation into NOD/SCID mice. Taken together, our data suggest that the combined use of Lgr5 and CXCR4 may facilitate the enrichment of CSCs in CRC, and that treating Lgr5+/CXCR4+ CRC cells may improve the outcome of CRC therapy.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun Cao
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhengyi Ji
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jingjue Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tao Jiang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Honghua Ding
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
15
|
Ma W, Zhu M, Yang L, Yang T, Zhang Y. Synergistic Effect of TPD7 and Berberine against Leukemia Jurkat Cell Growth through Regulating Ephrin-B2 Signaling. Phytother Res 2017; 31:1392-1399. [PMID: 28703366 DOI: 10.1002/ptr.5866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Weina Ma
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; No. 76, Yanta West Street, #54 Xi'an Shaanxi China
| | - Man Zhu
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; No. 76, Yanta West Street, #54 Xi'an Shaanxi China
| | - Liu Yang
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; No. 76, Yanta West Street, #54 Xi'an Shaanxi China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; No. 76, Yanta West Street, #54 Xi'an Shaanxi China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; No. 76, Yanta West Street, #54 Xi'an Shaanxi China
| |
Collapse
|
16
|
Seabrooks L, Hu L. Insects: an underrepresented resource for the discovery of biologically active natural products. Acta Pharm Sin B 2017; 7:409-426. [PMID: 28752026 PMCID: PMC5518667 DOI: 10.1016/j.apsb.2017.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
Nature has been the source of life-changing and -saving medications for centuries. Aspirin, penicillin and morphine are prime examples of Nature׳s gifts to medicine. These discoveries catalyzed the field of natural product drug discovery which has mostly focused on plants. However, insects have more than twice the number of species and entomotherapy has been in practice for as long as and often in conjunction with medicinal plants and is an important alternative to modern medicine in many parts of the world. Herein, an overview of current traditional medicinal applications of insects and characterization of isolated biologically active molecules starting from approximately 2010 is presented. Insect natural products reviewed were isolated from ants, bees, wasps, beetles, cockroaches, termites, flies, true bugs, moths and more. Biological activities of these natural products from insects include antimicrobial, antifungal, antiviral, anticancer, antioxidant, anti-inflammatory and immunomodulatory effects.
Collapse
|
17
|
Li CY, Pang YY, Yang H, Li J, Lu HX, Wang HL, Mo WJ, Huang LS, Feng ZB, Chen G. Identification of miR-101-3p targets and functional features based on bioinformatics, meta-analysis and experimental verification in hepatocellular carcinoma. Am J Transl Res 2017; 9:2088-2105. [PMID: 28559963 PMCID: PMC5446495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND MiR-101-3p has been reported to suppress invasion and metastasis in hepatocellular carcinoma (HCC) cells. However, the relevant mechanisms are still unclear. The research seeks to determine systematic value of miR-101-3p in HCC, and comprehensively summarize the predicted target genes as well as their potential function, pathways and networks in HCC. METHODS The miR-101-1 profiles in 353 HCC patients from The Cancer Genome Atlas (TCGA) were analyzed. Meta-analysis was performed to estimate relationship of miR-101 (including precursor and mature miR-101) with clinical features and prognosis in HCC. Further, the promising targets of miR-101-3p were predicted and followed with Gene Ontology (GO), pathway and network analysis. In addition, the functional impact of miR-101-3p was confirmed with in vitro experiments in HCC cells. RESULTS In TCGA data, low-expression of miR-101-1 might be a diagnostic (AUC: 0.924, 95% CI: 0.894-0.953) and prognostic (HR=1.55) marker for HCC. Down-regulated miR-101-1 also correlated with poor differentiation, advanced TNM stage, lymph node metastasis and high AFP level of HCC. Meta-analysis revealed that miR-101 down-regulation were associated with poor prognosis, high AFP level and advanced TNM stage of HCC. Moreover, 343 hub genes were filtered and miR-101-3p may be involved in intracellular signaling cascade, transcription, metabolism and cell proliferation. Focal adhesion and pathways in cancer were also significantly enriched. In vitro experiments demonstrated that miR-101-3p inhibited proliferation and promoted apoptosis in HCC cells. CONCLUSIONS MiR-101-1 may be a prospective biomarker for diagnosis and prognosis of HCC. Potential targets of miR-101-3p could regulate genesis and development of HCC. The data offers insights into biological significances and promising targets of miR-101-3p for further investigation and potential therapies in HCC.
Collapse
Affiliation(s)
- Chun-Yao Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hong Yang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jia Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Xia Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Department of Histology and Embryology Teaching-Research, Hainan Medical College3 West Xueyuan Road, Haikou 571191, Hainan, China
| | - Han-Lin Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei-Jia Mo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lan-Shan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
18
|
Li Y, Yang X, Wu Y, Zhao K, Ye Z, Zhu J, Xu X, Zhao X, Xing C. B7-H3 promotes gastric cancer cell migration and invasion. Oncotarget 2017; 8:71725-71735. [PMID: 29069741 PMCID: PMC5641084 DOI: 10.18632/oncotarget.17847] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
B7-H3 (B7 homologue 3, CD276) is a member of the B7 immunoregulatory family and promotes tumor progression. The present study demonstrated that B7-H3 promotes gastric cancer cell migration and invasion. shRNA-mediated B7-H3 silencing in the N87 gastric cancer cell line suppressed cell migration and invasion in vitro and in vivo; downregulated metastasis-associated CXCR4; and inhibited AKT, ERK, and Jak2/Stat3 phosphorylation. B7-H3-silenced cells injected into the tail veins of 4-week-old female BALB/c nude mice produced fewer metastases than control cells, and resulted in longer survival times. Immunofluorescence analyses confirmed B7-H3/CXCR4 colocalization in N87 cells, and co-immunoprecipitation assays showed a direct interaction between the two proteins. Our analysis of 120 tissue samples from gastric cancer patients showed that increased B7-H3 expression correlated positively with both tumor infiltration depth and CXCR4 expression. These findings suggest that B7-H3 and CXCR4 may be novel targets for anti-gastric cancer therapeutics.
Collapse
Affiliation(s)
- Yecheng Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Xiaodong Yang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Yong Wu
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Kui Zhao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Zhenyu Ye
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Junjia Zhu
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Xiaohui Xu
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| | - Xin Zhao
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Chungen Xing
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, P. R. China
| |
Collapse
|
19
|
Chen Y, Zhang Y. Functional and mechanistic analysis of telomerase: An antitumor drug target. Pharmacol Ther 2016; 163:24-47. [DOI: 10.1016/j.pharmthera.2016.03.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/29/2016] [Indexed: 01/26/2023]
|
20
|
Liu Z, Yuan K, Zhang R, Ren X, Liu X, Zhao S, Wang D. Cloning and purification of the first termicin-like peptide from the cockroach Eupolyphaga sinensis. J Venom Anim Toxins Incl Trop Dis 2016; 22:5. [PMID: 26823660 PMCID: PMC4730610 DOI: 10.1186/s40409-016-0058-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/13/2016] [Indexed: 11/16/2022] Open
Abstract
Background Termicin is an antimicrobial peptide with six cysteines forming three disulfide bridges that was firstly isolated from the salivary glands and hemocytes of the termite Pseudacanthotermes spiniger. In contrast to many broad-spectrum antimicrobial peptides, termicin is most active against filamentous fungi. Although more than one hundred complementary DNAs (cDNAs) encoding termicin-like peptides have been reported to date, all these termicin-like peptides were obtained from Isoptera insects. Methods The cDNA was cloned by combination of cDNA library construction kit and DNA sequencing. The polypeptide was purified by gel filtration and reversed-phase high performance liquid chromatography (RP-HPLC). Its amino acid sequence was determined by Edman degradation and mass spectrometry. Antimicrobial activity was tested against several bacterial and fungal strains. The minimum inhibitory concentration (MIC) was determined by microdilution tests. Results A novel termicin-like peptide with primary structure ACDFQQCWVTCQRQYSINFISARCNGDSCVCTFRT was purified from extracts of the cockroach Eupolyphaga sinensis (Insecta: Blattodea). The cDNA encoding Es-termicin was cloned by cDNA library screening. This cDNA encoded a 60 amino acid precursor which included a 25 amino acid signal peptide. Amino acid sequence deduced from the cDNA matched well with the result of protein Edman degradation. Susceptibility test indicated that Es-termicin showed strong ability to kill fungi with a MIC of 25 μg/mL against Candida albicans ATCC 90028. It only showed limited potency to affect the growth of Gram-positive bacteria with a MIC of 200 μg/mL against Enterococcus faecalis ATCC 29212. It was inactive against gram-negative bacteria at the highest concentration tested (400 μg/mL). Es-termicin showed high sequence similarity with termicins from many species of termites (Insecta: Isoptera). Conclusions This is the first report of a termicin-like peptide isolated from E. sinensis that belongs to the insect order Blattodea. Our results demonstrate the diversity of termicin-like peptides, as well as antimicrobial peptides in insects.
Collapse
Affiliation(s)
- Zichao Liu
- Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province, Key Lab of Aquatic Ecological Restoration of Dianchi Lake in Kunming, Department of Biological Science and Technology, Kunming University, Kunming, 650214 China
| | - Kehua Yuan
- Department of Oncology, Yan'an Hospital of Kunming City; Yunnan, Cardiovascular Hospital; and Yan'an Hospital of Kunming Medical University, Kunming, 650051 China
| | - Ruopeng Zhang
- Department of Obstetrics and Gynecology, Shenzhen Maternal and Child Health Care Hospital, Affiliated to Southern Medical University, Shenzhen, 518028 China
| | - Xuchen Ren
- Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province, Key Lab of Aquatic Ecological Restoration of Dianchi Lake in Kunming, Department of Biological Science and Technology, Kunming University, Kunming, 650214 China
| | - Xiaolong Liu
- Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province, Key Lab of Aquatic Ecological Restoration of Dianchi Lake in Kunming, Department of Biological Science and Technology, Kunming University, Kunming, 650214 China
| | - Shuhua Zhao
- Yunnan Key Laboratory of Fertility Regulation and Minority Eugenics, Yunnan Population and Family Planning Research Institute, Kunming, 650021 China.,First Affiliated Hospital of Kunming Medical University, Xichang Road 295#, Kunming, Yunnan 650032 China
| | - Dingkang Wang
- Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province, Key Lab of Aquatic Ecological Restoration of Dianchi Lake in Kunming, Department of Biological Science and Technology, Kunming University, Kunming, 650214 China.,Kunming University, Puxin Road 2#, Kunming, Yunnan 650214 China
| |
Collapse
|
21
|
Zhan Y, Zhang H, Liu R, Wang W, Qi J, Zhang Y. Eupolyphaga sinensis Walker Ethanol Extract Suppresses Cell Growth and Invasion in Human Breast Cancer Cells. Integr Cancer Ther 2015; 15:102-12. [PMID: 26242891 DOI: 10.1177/1534735415598224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
AIM OF THE STUDY To examine the antiproliferation and anti-invasion of Eupolyphaga sinensis Walker 70% ethanol extract (ESWE) on breast cancer and elucidate the underlying signaling mechanisms. METHODS MTT and colony formation assays were used to investigate the effect of ESWE on proliferation of breast cancer cells in vitro. The xenograft mouse tumor model was used to determine the effect of ESWE on breast cancer in vivo. To investigate the underlying molecular mechanisms, we used western blotting to analyze the expression of ERK1/2, CXCR4, matrix metalloproteinase 2 (MMP2), and MMP9 pretreated with ESWE. The stromal cell-derived factor (SDF)-1α-induced migration and invasion potential of breast cancer cells were examined by wound-healing assays and Matrigel invasion chamber assays. RESULTS ESWE effectively inhibited the proliferation of MDA-MB-435s and MDA-MB-231 cells and exhibited antitumor effects in an MDA-MB-231 xenograft mice model. Furthermore, ESWE suppressed the activity of ERK1/2, a key molecule of MAPK signaling. We also observed that ESWE treatment led to downregulation of CXCR4 expression as well as greatly reduced MMP2 and MMP9. ESWE affected CXCR4 expression partially through the modulation of autocrine vascular endothelial growth factor. However, suppression of CXCR4 expression was the result of downregulation of mRNA expression. Inhibition of CXCR4 expression by ESWE further correlated with the suppression of SDF-1α-induced migration and invasion in breast cancer cells. CONCLUSION ESWE exerted its antiproliferation and antiinvasion by regulating MAPK signaling and related metastasis factorsand thus could be a useful therapeutic candidate for breast cancer intervention.
Collapse
Affiliation(s)
- Yingzhuan Zhan
- Xi'an Jiaotong University, Xi'an, Shaanxi Province, P R China
| | - Han Zhang
- Xi'an Jiaotong University, Xi'an, Shaanxi Province, P R China
| | - Rui Liu
- Xi'an Jiaotong University, Xi'an, Shaanxi Province, P R China
| | - Wenjie Wang
- Xi'an Jiaotong University, Xi'an, Shaanxi Province, P R China
| | - Junpeng Qi
- Xi'an Jiaotong University, Xi'an, Shaanxi Province, P R China
| | - Yanmin Zhang
- Xi'an Jiaotong University, Xi'an, Shaanxi Province, P R China
| |
Collapse
|
22
|
Wang WD, Wen Z, Ji W, Ma Y. RACK1 expression contributes to JNK activity, but JNK activity does not enhance RACK1 expression in hepatocellular carcinoma SMMC-7721 cells. Oncol Lett 2015; 9:2767-2770. [PMID: 26137143 DOI: 10.3892/ol.2015.3129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 11/25/2014] [Indexed: 12/11/2022] Open
Abstract
Receptor for activated C kinase 1 (RACK1) is up-regulated in hepatocellular carcinoma (HCC) and has been reported to augment c-Jun N-terminal protein kinase (JNK) activity in HCC SMMC-7721 cells. By contrast, activator protein-1, a downstream JNK transcription factor, has been revealed to mediate the overexpression of RACK1 in melanoma cells. Therefore, the association between RACK1 and JNK activity in HCC cells has yet to be completely elucidated. The present study analyzed the effects of RACK1 or JNK loss of function on the levels of RACK1 protein, JNK activity, cell proliferation and apoptosis induced by tumor necrosis factor-related apoptosis inducing ligand in HCC SMMC-7721 cells. It was found that JNK loss of function exhibited no effect on RACK1 expression, whereas a loss of RACK1 function led to reduced JNK activity in SMMC-7721 cells. RACK1 and JNK loss of function resulted in the impaired oncogenic growth of SMMC-7721 cells. The present data further support a pivotal role of RACK1 in mediating enhanced JNK activity in HCC cells and also indicate that a novel mechanism exists for RACK1 overexpression in HCC SMMC-7721 cells.
Collapse
Affiliation(s)
- Wen-Die Wang
- Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475001, P.R. China
| | - Zhi Wen
- Division of Internal Medicine, The Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wenbin Ji
- Department of Hepatobiliary Surgery, The Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuanfang Ma
- Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan 475001, P.R. China
| |
Collapse
|
23
|
Zhang D, Qi J, Liu R, Dai B, Ma W, Zhan Y, Zhang Y. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells. Am J Cancer Res 2015; 5:1076-1088. [PMID: 26045987 PMCID: PMC4449436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/25/2014] [Indexed: 06/04/2023] Open
Abstract
Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| | - Junpeng Qi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| | - Rui Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| | - Weina Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| | - Yingzhuan Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an, Shaanxi Province, P.R. China
| |
Collapse
|
24
|
Zhu M, Guo J, Xia H, Li W, Lu Y, Dong X, Chen Y, Xie X, Fu S, Li M. Alpha-fetoprotein activates AKT/mTOR signaling to promote CXCR4 expression and migration of hepatoma cells. Oncoscience 2015; 2:59-70. [PMID: 25815363 PMCID: PMC4341465 DOI: 10.18632/oncoscience.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/01/2015] [Indexed: 01/01/2023] Open
Abstract
CXCR4, stromal cell-derived factor-1α(SDF 1α) receptor, stimulates growth and metastasis of hepatocellular carcinoma (HCC). Alpha-fetoprotein(AFP) governs the expression of some metastasis-related genes. Here we report that AFP and CXCR4 levels correlated in HCC tissues. AFP-expressing vectors induced CXCR4. In agreement, AFP depletion by siRNA decreased CXCR4. AFP co-localized and interacted with PTEN, thus inducing CXCR4 by activating AKT(Ser473) phosphorylation. In turn, phospho-mTOR(Ser2448) entered the nucleus and bound the CXCR4 gene promoter. Thus, AFP promoted migration of HCC cells. In concusion, AFP induced CXCR4 by activating the AKT/mTOR signal pathway.
Collapse
Affiliation(s)
- Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, PR.China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, PR.China
| | - Junli Guo
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, PR.China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, PR.China
| | - Hua Xia
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, PR.China.,Graduate School, Guanxi Medical University, Nanning, PR. China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, PR.China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, PR.China
| | - Yan Lu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, PR.China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, PR.China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, PR.China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, PR.China
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, PR.China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, PR.China
| | - Xieju Xie
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, PR.China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, PR.China
| | - Shigan Fu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, PR.China.,Department of Physiology, Hainan Medical College, Haikou, PR.China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, PR.China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou, PR.China.,Graduate School, Guanxi Medical University, Nanning, PR. China.,Institution of Tumor, Hainan Medical College, Haikou, PR.China
| |
Collapse
|