1
|
Xu Y, Wang S, Ma W, Li J, Lu Y, Abulizi A, Sun J, Yang B. An HPLC-MS/MS Method for Pharmacokinetic Study of Y-99: A Novel Diuretic Agent Targeting Urea Transporters. J Chromatogr Sci 2023; 61:552-558. [PMID: 36369644 DOI: 10.1093/chromsci/bmac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/05/2022] [Accepted: 10/12/2022] [Indexed: 07/20/2023]
Abstract
Y-99, a promising first-in-class diuretic, is a novel urea transporter inhibitor with oral diuretic activity. However, little is known about the pharmacokinetic profiles of Y-99 in experimental animals. In this study, a method of quantitative determination of Y-99 in rat plasma based on high-performance liquid chromatography-tandem mass spectrometry was developed and validated in selectivity, linearity, recovery and matrix effect, accuracy and precision, stability, carry-over and dilution integrity. Chromatographic separation was conducted on an ACQUITY BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with gradient elution at a 0.3 mL/min flow rate after protein precipitation. Mass spectrometry was performed by a positive electrospray ionization mass spectrometer in multiple reaction monitoring mode. The method showed standard-compliant linearity (1-1,000 ng/mL, r = 0.9991). The intra-day and inter-day accuracy (relative error < 11.2%) and precision (coefficient of variation <8.4%) were within acceptable criteria. The recovery and matrix effects were 97.3-110.7% and 103.7-107.5%, respectively. The stability, dilution integrity and carry-over of the method were also within the acceptable criteria. Pharmacokinetic profiles of Y-99 in rats were first investigated using this method, which was vital for developing novel diuretics without electrolyte imbalance targeting urea transporters.
Collapse
Affiliation(s)
- Yue Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shuyuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Abudumijiti Abulizi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Ying Y, Li N, Wang S, Zhang H, Zuo Y, Tang Y, Qiao P, Quan Y, Li M, Yang B. Urea Transporter Inhibitor 25a Reduces Ascites in Cirrhotic Rats. Biomedicines 2023; 11:biomedicines11020607. [PMID: 36831143 PMCID: PMC9953117 DOI: 10.3390/biomedicines11020607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Ascites is a typical symptom of liver cirrhosis that is caused by a variety of liver diseases. Ascites severely affects the life quality of patients and needs long-term treatment. 25a is a specific urea transporter inhibitor with a diuretic effect that does not disturb the electrolyte balance. In this study, we aimed to determine the therapeutic effect of 25a on ascites with a dimethylnitrosamine (DMN)-induced cirrhotic rat model. It was found that 100 mg/kg of 25a significantly increased the daily urine output by 60% to 97% and reduced the daily abdominal circumference change by 220% to 260% in cirrhotic rats with a water intake limitation. The 25a treatment kept the serum electrolyte levels within normal ranges in cirrhotic rats. The H&E and Masson staining of liver tissue showed that 25a did not change the cirrhotic degree. A serum biochemical examination showed that 25a did not improve the liver function in cirrhotic rats. A Western blot analysis showed that 25a did not change the expression of fibrosis-related marker protein α-SMA, but significantly decreased the expressions of type I collagen in the liver of cirrhotic rats, indicating that 25a did not reverse cirrhosis, but could slow the cirrhotic progression. These data indicated that 25a significantly reduced ascites via diuresis without an electrolyte imbalance in cirrhotic rats. Our study provides a proof of concept that urea transporter inhibitors might be developed as novel diuretics to treat cirrhotic ascites.
Collapse
Affiliation(s)
- Yi Ying
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Nannan Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shuyuan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yinglin Zuo
- The State Key Laboratory of Anti-Infective Drug Development, Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China
| | - Yiwen Tang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Panshuang Qiao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yazhu Quan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
- Correspondence:
| |
Collapse
|
3
|
Amin SA, Nandi S, Kashaw SK, Jha T, Gayen S. A critical analysis of urea transporter B inhibitors: molecular fingerprints, pharmacophore features for the development of next-generation diuretics. Mol Divers 2022; 26:2549-2559. [PMID: 34978011 DOI: 10.1007/s11030-021-10353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Urea transporter is a membrane transport protein. It is involved in the transferring of urea across the cell membrane in humans. Along with urea transporter A, urea transporter B (UT-B) is also responsible for the management of urea concentration and blood pressure of human. The inhibitors of urea transporters have already generated a huge attention to be developed as alternate safe class of diuretic. Unlike conventional diuretics, these inhibitors are suitable for long-term therapy without hampering the precious electrolyte imbalance in the human body. In this study, UT-B inhibitors were analysed by using multi-chemometric modelling approaches. The possible pharmacophore features along with favourable and unfavourable sub-structural fingerprints for UT-B inhibition are extracted. This information will guide the medicinal chemist to design potent UT-B inhibitors in future.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P. O. Box 17020, Kolkata, India
| | - Sudipta Nandi
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P. O. Box 17020, Kolkata, India.
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| |
Collapse
|
4
|
Nandi S, Sanyal S, Amin SA, Kashaw SK, Jha T, Gayen S. Urea transporter and its specific and nonspecific inhibitors: State of the art and pharmacological perspective. Eur J Pharmacol 2021; 911:174508. [PMID: 34536365 DOI: 10.1016/j.ejphar.2021.174508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
Hypertension is a major concern for a wide array of patients. The traditional drugs are commonly referred as 'water pills' and these molecules have been successful in alleviating hypertension. However, this comes at the high expense of precious electrolytes in our body. To dissipate this major adverse effect, the urea transporter inhibitors play especially important roles in maintaining the fluid balance by maintaining the concentration of urea in the inner medullary collecting duct. The purpose of this communication is to provide insights into the structural feature of these target proteins and inhibition of both urea transporter types A (UT-A) and B (UT-B) selectively and non-selectively with a special focus on the UT-A inhibitors as they are the primary target for diuresis. It was observed that a wide class of drugs such as thiourea analogues, 2,7-disubstituted fluorenones can inhibit both the protein non-selectively whereas 8-hydroxyquinoline, aminothiazolone, 1,3,5-triazine, triazolothienopyrimidine, thienoquinoline, arylthiazole, γ-sultambenzosulfonamide and 1,2,4-triazoloquinoxaline classes of compounds inhibit UT-A. The goal of this study is to highlight the important aspects that may be useful to understanding the perspectives of urea transporter inhibitors in rational drug discovery.
Collapse
Affiliation(s)
- Sudipta Nandi
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, MP, India
| | - Saptarshi Sanyal
- School of Pharmaceutical Technology, Adamas University, Kolkata, India; Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, MP, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Shovanlal Gayen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, MP, India; Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| |
Collapse
|
5
|
Zhang S, Zhao Y, Wang S, Li M, Xu Y, Ran J, Geng X, He J, Meng J, Shao G, Zhou H, Ge Z, Chen G, Li R, Yang B. Discovery of novel diarylamides as orally active diuretics targeting urea transporters. Acta Pharm Sin B 2021; 11:181-202. [PMID: 33532188 PMCID: PMC7838058 DOI: 10.1016/j.apsb.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Urea transporters (UT) play a vital role in the mechanism of urine concentration and are recognized as novel targets for the development of salt-sparing diuretics. Thus, UT inhibitors are promising for development as novel diuretics. In the present study, a novel UT inhibitor with a diarylamide scaffold was discovered by high-throughput screening. Optimization of the inhibitor led to the identification of a promising preclinical candidate, N-[4-(acetylamino)phenyl]-5-nitrofuran-2-carboxamide (1H), with excellent in vitro UT inhibitory activity at the submicromolar level. The half maximal inhibitory concentrations of 1H against UT-B in mouse, rat, and human erythrocyte were 1.60, 0.64, and 0.13 μmol/L, respectively. Further investigation suggested that 8 μmol/L 1H more powerfully inhibited UT-A1 at a rate of 86.8% than UT-B at a rate of 73.9% in MDCK cell models. Most interestingly, we found for the first time that oral administration of 1H at a dose of 100 mg/kg showed superior diuretic effect in vivo without causing electrolyte imbalance in rats. Additionally, 1H did not exhibit apparent toxicity in vivo and in vitro, and possessed favorable pharmacokinetic characteristics. 1H shows promise as a novel diuretic to treat hyponatremia accompanied with volume expansion and may cause few side effects.
Collapse
Key Words
- AQP1, aquaporin 1
- BCRP, breast cancer resistance protein
- CCK-8, cell counting kit-8
- CMC-Na, carboxymethylcellulose sodium
- DMF, N,N-dimethylformamide
- Diuretic
- Fa, fraction absorbance
- GFR, glomerular filtration rate
- HDL-C and LDL-C, high- and low-density lipoprotein
- IC50, half maximal inhibitory concentration
- IMCD, inner medulla collecting duct
- Oral administration
- P-gp, P-glycoprotein
- PBS, phosphate buffered saline
- Papp, apparent permeability
- Structure optimization
- THF, tetrahydrofuran
- UT, urea transporter
- Urea transporter inhibitor
- r.t., room temperature
Collapse
|
6
|
Geng X, Zhang S, He J, Ma A, Li Y, Li M, Zhou H, Chen G, Yang B. The urea transporter UT-A1 plays a predominant role in a urea-dependent urine-concentrating mechanism. J Biol Chem 2020; 295:9893-9900. [PMID: 32461256 PMCID: PMC7380188 DOI: 10.1074/jbc.ra120.013628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Urea transporters are a family of urea-selective channel proteins expressed in multiple tissues that play an important role in the urine-concentrating mechanism of the mammalian kidney. Previous studies have shown that knockout of urea transporter (UT)-B, UT-A1/A3, or all UTs leads to urea-selective diuresis, indicating that urea transporters have important roles in urine concentration. Here, we sought to determine the role of UT-A1 in the urine-concentrating mechanism in a newly developed UT-A1-knockout mouse model. Phenotypically, daily urine output in UT-A1-knockout mice was nearly 3-fold that of WT mice and 82% of all-UT-knockout mice, and the UT-A1-knockout mice had significantly lower urine osmolality than WT mice. After 24-h water restriction, acute urea loading, or high-protein (40%) intake, UT-A1-knockout mice were unable to increase urine-concentrating ability. Compared with all-UT-knockout mice, the UT-A1-knockout mice exhibited similarly elevated daily urine output and decreased urine osmolality, indicating impaired urea-selective urine concentration. Our experimental findings reveal that UT-A1 has a predominant role in urea-dependent urine-concentrating mechanisms, suggesting that UT-A1 represents a promising diuretic target.
Collapse
Affiliation(s)
- Xiaoqiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jinzhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guangping Chen
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Raghunathan S, Jaganade T, Priyakumar UD. Urea-aromatic interactions in biology. Biophys Rev 2020; 12:65-84. [PMID: 32067192 PMCID: PMC7040157 DOI: 10.1007/s12551-020-00620-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Noncovalent interactions are key determinants in both chemical and biological processes. Among such processes, the hydrophobic interactions play an eminent role in folding of proteins, nucleic acids, formation of membranes, protein-ligand recognition, etc.. Though this interaction is mediated through the aqueous solvent, the stability of the above biomolecules can be highly sensitive to any small external perturbations, such as temperature, pressure, pH, or even cosolvent additives, like, urea-a highly soluble small organic molecule utilized by various living organisms to regulate osmotic pressure. A plethora of detailed studies exist covering both experimental and theoretical regimes, to understand how urea modulates the stability of biological macromolecules. While experimentalists have been primarily focusing on the thermodynamic and kinetic aspects, theoretical modeling predominantly involves mechanistic information at the molecular level, calculating atomistic details applying the force field approach to the high level electronic details using the quantum mechanical methods. The review focuses mainly on examples with biological relevance, such as (1) urea-assisted protein unfolding, (2) urea-assisted RNA unfolding, (3) urea lesion interaction within damaged DNA, (4) urea conduction through membrane proteins, and (5) protein-ligand interactions those explicitly address the vitality of hydrophobic interactions involving exclusively the urea-aromatic moiety.
Collapse
Affiliation(s)
- Shampa Raghunathan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - Tanashree Jaganade
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, 500032, India.
| |
Collapse
|
8
|
Li M, Zhao Y, Zhang S, Xu Y, Wang SY, Li BW, Ran JH, Li RT, Yang BX. A thienopyridine, CB-20, exerts diuretic activity by inhibiting urea transporters. Acta Pharmacol Sin 2020; 41:65-72. [PMID: 31213671 PMCID: PMC7468274 DOI: 10.1038/s41401-019-0245-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/28/2019] [Indexed: 01/08/2023] Open
Abstract
Urea transporters (UTs) are transmembrane proteins selectively permeable to urea and play an important role in urine concentration. UT-knockout mice exhibit the urea-selective urine-concentrating defect, without affecting electrolyte balance, suggesting that UT-B inhibitors have the potential to be developed as novel diuretics. In this study, we characterized a novel compound 5-ethyl-2-methyl-3-amino-6-methylthieno[2,3-b]pyridine-2,5-dicarboxylate (CB-20) with UT inhibitory activity as novel diuretics with excellent pharmacological properties. This compound was discovered based on high-throughput virtual screening combined with the erythrocyte osmotic lysis assay. Selectivity of UT inhibitors was assayed using transwell chambers. Diuretic activity of the compound was examined in rats and mice using metabolic cages. Pharmacokinetic parameters were detected in rats using LC-MS/MS. Molecular docking was employed to predict the potential binding modes for the CB-20 with human UT-B. This compound dose-dependently inhibited UT-facilitated urea transport with IC50 values at low micromolar levels. It exhibited nearly equal inhibitory activity on both UT-A1 and UT-B. After subcutaneous administration of CB-20, the animals showed polyuria, without electrolyte imbalance and abnormal metabolism. CB-20 possessed a good absorption and rapid clearance in rat plasma. Administration of CB-20 for 5 days did not cause significant morphological abnormality in kidney or liver tissues of rats. Molecular docking showed that CB-20 was positioned near several residues in human UT-B, including Leu364, Val367, and so on. This study provides proof of evidence for the prominent diuretic activity of CB-20 by specifically inhibiting UTs. CB-20 or thienopyridine analogs may be developed as novel diuretics.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yan Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of pharmaceutical Sciences, Peking University, Beijing, 100191, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yue Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shu-Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Bo-Wen Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jian-Hua Ran
- Chongqing Medical University, Chongqing, 400016, China
| | - Run-Tao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Bao-Xue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
9
|
Pharmacokinetics, Tissue Distribution and Excretion of a Novel Diuretic (PU-48) in Rats. Pharmaceutics 2018; 10:pharmaceutics10030124. [PMID: 30096833 PMCID: PMC6160999 DOI: 10.3390/pharmaceutics10030124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 01/02/2023] Open
Abstract
Methyl 3-amino-6-methoxythieno [2,3-b] quinoline-2-carboxylate (PU-48) is a novel diuretic urea transporter inhibitor. The aim of this study is to investigate the profile of plasma pharmacokinetics, tissue distribution, and excretion by oral dosing of PU-48 in rats. Concentrations of PU-48 within biological samples are determined using a validated high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. After oral administration of PU-48 (3, 6, and 12 mg/kg, respectively) in self-nanomicroemulsifying drug delivery system (SNEDDS) formulation, the peak plasma concentrations (Cmax), and the area under the curve (AUC0⁻∞) were increased by the dose-dependent and linear manner, but the marked different of plasma half-life (t1/2) were not observed. This suggests that the pharmacokinetic profile of PU-48 prototype was first-order elimination kinetic characteristics within the oral three doses range in rat plasma. Moreover, the prototype of PU-48 was rapidly and extensively distributed into thirteen tissues, especially higher concentrations were detected in stomach, intestine, liver, kidney, and bladder. The total accumulative excretion of PU-48 in the urine, feces, and bile was less than 2%. This research is the first report on disposition via oral administration of PU-48 in rats, and it provides important information for further development of PU-48 as a diuretic drug candidate.
Collapse
|
10
|
Zhang ZY, Wang X, Liu D, Zhang H, Zhang Q, Lu YY, Li P, Lou YQ, Yang BX, Lu C, Lou YX, Zhang GL. Development and validation of an LC-MS/MS method for the determination of a novel thienoquinolin urea transporter inhibitor PU-48 in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2018; 32. [PMID: 29193233 DOI: 10.1002/bmc.4157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/05/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023]
Abstract
A specific, sensitive and stable high-performance liquid chromatographic-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitative determination of methyl 3-amino-6-methoxythieno [2,3-b]quinoline-2-carboxylate (PU-48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU-48 was achieved with a reversed-phase C18 column (100 × 2.1 mm, 3 μm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple-quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU-48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass-to-charge ratio (m/z) 289.1 → 229.2 for PU-48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU-48 was linear over the concentration range of 0.1-1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU-48 in rats.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Health Analysis Center, Peking University, Beijing, China
| | - Hua Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ying-Yuan Lu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Pu Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ya-Qing Lou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bao-Xue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuang Lu
- Department of Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, Massachusetts, USA
| | - Ya-Xin Lou
- Proteomics Laboratory, Medical and Health Analysis Center, Peking University, Beijing, China
| | - Guo-Liang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Urea is transported by urea transporter proteins in kidney, erythrocytes, and other tissues. Mice in which different urea transporters have been knocked out have urine-concentrating defects, which has led to the development and testing of urea transporters Slc14A2 (UT-A) and Slc14A1 (UT-B) inhibitors as urearetics. This review summarizes the knowledge gained during the past year on urea transporter regulation and investigations into the clinical potential of urearetics. RECENT FINDINGS UT-A1 undergoes several posttranslational modifications that increase its function by increasing UT-A1 accumulation in the apical plasma membrane. UT-A1 is phosphorylated by protein kinase A, exchange protein activated by cyclic AMP, protein kinase Cα, and AMP-activated protein kinase, all at different serine residues. UT-A1 is also regulated by 14-3-3, which contributes to UT-A1 removal from the membrane. UT-A1 is glycosylated with various glycan moieties in animal models of diabetes mellitus. Transgenic expression of UT-A1 into UT-A1/UT-A3 knockout mice restores urine-concentrating ability. UT-B is present in descending vasa recta and urinary bladder, and is linked to bladder cancer. Inhibitors of UT-A and UT-B have been developed that result in diuresis with fewer abnormalities in serum electrolytes than conventional diuretics. SUMMARY Urea transporters play critical roles in the urine-concentrating mechanism. Urea transport inhibitors are a promising new class of diuretic agent.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, and Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | |
Collapse
|
12
|
Phenylphthalazines as small-molecule inhibitors of urea transporter UT-B and their binding model. Acta Pharmacol Sin 2016; 37:973-83. [PMID: 27238209 DOI: 10.1038/aps.2016.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
AIM Urea transporters (UT) are a family of transmembrane proteins that specifically transport urea. UT inhibitors exert diuretic activity without affecting electrolyte balance. The purpose of this study was to discover novel UT inhibitors and determine the inhibition mechanism. METHODS The primary screening urea transporter B (UT-B) inhibitory activity was conducted in a collection of 10 000 diverse small molecules using mouse erythrocyte lysis assay. After discovering a hit with a core structure of 1-phenylamino-4-phenylphthalazin, the UT-B inhibitory activity of 160 analogs were examined with a stopped-flow light scattering assay and their structure-activity relationship (SAR) was analyzed. The inhibition mechanism was further investigated using in silico assays. RESULTS A phenylphthalazine compound PU1424, chemically named 5-(4-((4-methoxyphenyl) amino) phthalazin-1-yl)-2-methylbenzene sulfonamide, showed potent UT-B inhibition activity, inhibited human and mouse UT-B-mediated urea transport with IC50 value of 0.02 and 0.69 μmol/L, respectively, and exerted 100% UT-B inhibition at higher concentrations. The compound PU1424 did not affect membrane urea transport in mouse erythrocytes lacking UT-B. Structure-activity analysis revealed that the analogs with methoxyl group at R4 and sulfonic amide at R2 position exhibited the highest potency inhibition activity on UT-B. Furthermore, in silico assays validated that the R4 and R2 positions of the analogs bound to the UT-B binding pocket and exerted inhibition activity on UT-B. CONCLUSION The compound PU1424 is a novel inhibitor of both human and mouse UT-B with IC50 at submicromolar ranges. Its binding site is located at the So site of the UT-B structure.
Collapse
|
13
|
Wu J, Li J, Zhang J, Hu X, Yao D, Ma L, Ouyang L, Pan X, Huang J, Lin R, Wang J. In silico identification and experimental validation of diuresis compounds from Euphorbia lathyris for potential UT-B inhibitors. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.10.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Chen YC. Beware of docking! Trends Pharmacol Sci 2015; 36:78-95. [DOI: 10.1016/j.tips.2014.12.001] [Citation(s) in RCA: 344] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/23/2014] [Accepted: 12/02/2014] [Indexed: 12/16/2022]
|