1
|
Pyari G, Bansal H, Roy S. Optogenetically mediated large volume suppression and synchronized excitation of human ventricular cardiomyocytes. Pflugers Arch 2023; 475:1479-1503. [PMID: 37415050 DOI: 10.1007/s00424-023-02831-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
A major challenge in cardiac optogenetics is to have minimally invasive large volume excitation and suppression for effective cardioversion and treatment of tachycardia. It is important to study the effect of light attenuation on the electrical activity of cells in in vivo cardiac optogenetic experiments. In this computational study, we present a detailed analysis of the effect of light attenuation in different channelrhodopsins (ChRs)-expressing human ventricular cardiomyocytes. The study shows that sustained illumination from the myocardium surface used for suppression, simultaneously results in spurious excitation in deeper tissue regions. Tissue depths of suppressed and excited regions have been determined for different opsin expression levels. It is shown that increasing the expression level by 5-fold enhances the depth of suppressed tissue from 2.24 to 3.73 mm with ChR2(H134R) (ChR2 with a single point mutation at position H134), 3.78 to 5.12 mm with GtACR1 (anion-conducting ChR from cryptophyte algae Guillardia theta) and 6.63 to 9.31 mm with ChRmine (a marine opsin gene from Tiarina fusus). Light attenuation also results in desynchrony in action potentials in different tissue regions under pulsed illumination. It is further shown that gradient-opsin expression not only enables suppression up to the same level of tissue depth but also enables synchronized excitation under pulsed illumination. The study is important for the effective treatment of tachycardia and cardiac pacing and for extending the scale of cardiac optogenetics.
Collapse
Affiliation(s)
- Gur Pyari
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Himanshu Bansal
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Sukhdev Roy
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India.
| |
Collapse
|
2
|
Nakao M, Watanabe M, Miquerol L, Natsui H, Koizumi T, Kadosaka T, Koya T, Hagiwara H, Kamada R, Temma T, de Vries AAF, Anzai T. Optogenetic termination of atrial tachyarrhythmias by brief pulsed light stimulation. J Mol Cell Cardiol 2023; 178:9-21. [PMID: 36965700 DOI: 10.1016/j.yjmcc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
AIMS The most efficient way to acutely restore sinus rhythm from atrial fibrillation (AF) is electrical cardioversion, which is painful without adequate sedation. Recent studies in various experimental models have indicated that optogenetic termination of AF using light-gated ion channels may provide a myocardium-specific and potentially painless alternative future therapy. However, its underlying mechanism(s) remain(s) incompletely understood. As brief pulsed light stimulation, even without global illumination, can achieve optogenetic AF termination, besides direct conduction block also modulation of action potential (AP) properties may be involved in the termination mechanism. We studied the relationship between optogenetic AP duration (APD) and effective refractory period (ERP) prolongation by brief pulsed light stimulation and termination of atrial tachyarrhythmia (AT). METHODS AND RESULTS Hearts from transgenic mice expressing the H134R variant of channelrhodopsin-2 in atrial myocytes were explanted and perfused retrogradely. AT induced by electrical stimulation was terminated by brief pulsed blue light stimulation (470 nm, 10 ms, 16 mW/mm2) with 68% efficacy. The termination rate was dependent on pulse duration and light intensity. Optogenetically imposed APD and ERP changes were systematically examined and optically monitored. Brief pulsed light stimulation (10 ms, 6 mW/mm2) consistently prolonged APD and ERP when light was applied at different phases of the cardiac action potential. Optical tracing showed light-induced APD prolongation during the termination of AT. CONCLUSION Our results directly demonstrate that cationic channelrhodopsin activation by brief pulsed light stimulation prolongs the atrial refractory period suggesting that this is one of the key mechanisms of optogenetic termination of AT.
Collapse
Affiliation(s)
- Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Lucile Miquerol
- Developmental Biology Institute of Marseille, Aix-Marseille Université, CNRS UMR 7288, Campus de Luminy Case 907, CEDEX 9, Marseille 13288, France
| | - Hiroyuki Natsui
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Koizumi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahide Kadosaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hikaru Hagiwara
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rui Kamada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Temma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology Department of Cardiology, Leiden University Medical Center Leiden, Netherlands
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Guo J, Wu Y, Gong Z, Chen X, Cao F, Kala S, Qiu Z, Zhao X, Chen J, He D, Chen T, Zeng R, Zhu J, Wong KF, Murugappan S, Zhu T, Xian Q, Hou X, Ruan YC, Li B, Li YC, Zhang Y, Sun L. Photonic Nanojet-Mediated Optogenetics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104140. [PMID: 35187865 PMCID: PMC9036029 DOI: 10.1002/advs.202104140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/04/2022] [Indexed: 05/11/2023]
Abstract
Optogenetics has become a widely used technique in neuroscience research, capable of controlling neuronal activity with high spatiotemporal precision and cell-type specificity. Expressing exogenous opsins in the selected cells can induce neuronal activation upon light irradiation, and the activation depends on the power of incident light. However, high optical power can also lead to off-target neuronal activation or even cell damage. Limiting the incident power, but enhancing power distribution to the targeted neurons, can improve optogenetic efficiency and reduce off-target effects. Here, the use of optical lenses made of polystyrene microspheres is demonstrated to achieve effective focusing of the incident light of relatively low power to neighboring neurons via photonic jets. The presence of microspheres significantly localizes and enhances the power density to the target neurons both in vitro and ex vivo, resulting in increased inward current and evoked action potentials. In vivo results show optogenetic stimulation with microspheres that can evoke significantly more motor behavior and neuronal activation at lowered power density. In all, a proof-of-concept of a strategy is demonstrated to increase the efficacy of optogenetic neuromodulation using pulses of reduced optical power.
Collapse
Affiliation(s)
- Jinghui Guo
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Yong Wu
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Zhiyong Gong
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Xixi Chen
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Fei Cao
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Shashwati Kala
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Zhihai Qiu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Xinyi Zhao
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Jun‐jiang Chen
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Dongming He
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Taiheng Chen
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Rui Zeng
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Jiejun Zhu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Kin Fung Wong
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Suresh Murugappan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Ting Zhu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Quanxiang Xian
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Xuandi Hou
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Ye Chun Ruan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Baojun Li
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Yu Chao Li
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Yao Zhang
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Lei Sun
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| |
Collapse
|
4
|
Abstract
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
Collapse
|
5
|
Cheng Y, Li H, Wang L, Li J, Kang W, Rao P, Zhou F, Wang X, Huang C. Optogenetic approaches for termination of ventricular tachyarrhythmias after myocardial infarction in rats in vivo. JOURNAL OF BIOPHOTONICS 2020; 13:e202000003. [PMID: 32246523 DOI: 10.1002/jbio.202000003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Cardiac optogenetics facilitates the painless manipulation of the heart with optical energy and was recently shown to terminate ventricular tachycardia (VT) in explanted mice heart. This study aimed to evaluate the optogenetic-based termination of induced VT under ischemia in an open-chest rat model and to develop an optimal, optical-manipulation procedure. VT was induced by burst stimulation after ligation of the left anterior descending coronary artery, and the termination effects of the optical manipulation, including electrical anti-tachycardia pacing (ATP) and spontaneous recovery, were tested. Among different multisegment optical modes, four repeated illuminations of 1000 ms in duration with 1-second interval at a 20-times intensity threshold on the right ventricle achieved the highest termination rate of 86.14% ± 4.145%, higher than that achieved by ATP and spontaneous termination. We demonstrated that optogenetic-based cardioversion is feasible and effective in vivo, with the underlying mechanism involving the light-triggered, ChR2-induced depolarization of the illuminated myocardium, in turn generating an excitation that disrupts the preexisting reentrant wave front.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianyi Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Wen Kang
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Fang Zhou
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Yoo J, Kwak H, Kwon J, Ha GE, Lee EH, Song S, Na J, Lee HJ, Lee J, Hwangbo A, Cha E, Chae Y, Cheong E, Choi HJ. Long-term Intracellular Recording of Optogenetically-induced Electrical Activities using Vertical Nanowire Multi Electrode Array. Sci Rep 2020; 10:4279. [PMID: 32152369 PMCID: PMC7062878 DOI: 10.1038/s41598-020-61325-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Continuous recording of intracellular activities in single cells is required for deciphering rare, dynamic and heterogeneous cell responses, which are missed by population or brief single-cell recording. Even if the field of intracellular recording is constantly proceeding, several technical challenges are still remained to conquer this important approach. Here, we demonstrate long-term intracellular recording by combining a vertical nanowire multi electrode array (VNMEA) with optogenetic stimulation to minimally disrupt cell survival and functions during intracellular access and measurement. We synthesized small-diameter and high-aspect-ratio silicon nanowires to spontaneously penetrate into single cells, and used light to modulate the cell's responsiveness. The light-induced intra- and extracellular activities of individual optogenetically-modified cells were measured simultaneously, and each cell showed distinctly different measurement characteristics according to the cell-electrode configuration. Intracellular recordings were achieved continuously and reliably without signal interference and attenuation over 24 hours. The integration of two controllable techniques, vertically grown nanowire electrodes and optogenetics, expands the strategies for discovering the mechanisms for crucial physiological and dynamic processes in various types of cells.
Collapse
Affiliation(s)
- Jisoo Yoo
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Juyoung Kwon
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Go Eun Ha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Elliot H Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seungwoo Song
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jukwan Na
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo-Jung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jaejun Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Areum Hwangbo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunkyung Cha
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Youngcheol Chae
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea. .,Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.
| | - Heon-Jin Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Rao P, Wang L, Cheng Y, Wang X, Li H, Zheng G, Li Z, Jiang C, Zhou Q, Huang C. Near-infrared light driven tissue-penetrating cardiac optogenetics via upconversion nanoparticles in vivo. BIOMEDICAL OPTICS EXPRESS 2020; 11:1401-1416. [PMID: 32206418 PMCID: PMC7075614 DOI: 10.1364/boe.381480] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 05/27/2023]
Abstract
This study determines whether near-infrared (NIR) light can drive tissue-penetrating cardiac optical control with upconversion luminescent materials. Adeno-associated virus (AAV) encoding channelrhodopsin-2 (ChR2) was injected intravenously to rats to achieve ChR2 expression in the heart. The upconversion nanoparticles (UCNP) NaYF4:Yb/Tm or upconversion microparticles (UCMP) NaYF4 to upconvert blue light were selected to fabricate freestanding polydimethylsiloxane films. These were attached on the ventricle and covered with muscle tissue. Additionally, a 980-nm NIR laser was programmed and illuminated on the film or the tissue. The NIR laser successfully captured ectopic paced rhythm in the heart, which displays similar manipulation characteristics to those triggered by blue light. Our results highlight the feasibility of tissue-penetration cardiac optogenetics by NIR and demonstrate the potential to use external optical manipulation for non-invasive or weakly invasive applications in cardiovascular diseases.
Collapse
Affiliation(s)
- Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- These authors contributed equally to this work
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- These authors contributed equally to this work
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Co-corresponding authors
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, 570311, Haikou, China
| | - Guoxing Zheng
- School of Electronic Information, Wuhan University, 430072, Wuhan, China
- Co-corresponding authors
| | - Zile Li
- School of Electronic Information, Wuhan University, 430072, Wuhan, China
| | - Chan Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| | - Qing Zhou
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| |
Collapse
|
8
|
Quach B, Krogh-Madsen T, Entcheva E, Christini DJ. Light-Activated Dynamic Clamp Using iPSC-Derived Cardiomyocytes. Biophys J 2018; 115:2206-2217. [PMID: 30447994 PMCID: PMC6289097 DOI: 10.1016/j.bpj.2018.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/23/2018] [Accepted: 10/02/2018] [Indexed: 01/31/2023] Open
Abstract
iPSC-derived cardiomyocytes (iPSC-CMs) are a potentially advantageous platform for drug screening because they provide a renewable source of human cardiomyocytes. One obstacle to their implementation is their immature electrophysiology, which reduces relevance to adult arrhythmogenesis. To address this, dynamic clamp is used to inject current representing the insufficient potassium current, IK1, thereby producing more adult-like electrophysiology. However, dynamic clamp requires patch clamp and is therefore low throughput and ill-suited for large-scale drug screening. Here, we use optogenetics to generate such a dynamic-clamp current. The optical dynamic clamp (ODC) uses outward-current-generating opsin, ArchT, to mimic IK1, resulting in more adult-like action potential morphology, similar to IK1 injection via classic dynamic clamp. Furthermore, in the presence of an IKr blocker, ODC revealed expected action potential prolongation and reduced spontaneous excitation. The ODC presented here still requires an electrode to measure Vm but provides a first step toward contactless dynamic clamp, which will not only enable high-throughput screening but may also allow control within multicellular iPSC-CM formats to better recapitulate adult in vivo physiology.
Collapse
Affiliation(s)
- Bonnie Quach
- Cardiovascular Research Institute, New York, New York; Weill Cornell Medicine, New York, New York
| | - Trine Krogh-Madsen
- Cardiovascular Research Institute, New York, New York; Weill Cornell Medicine, New York, New York
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - David J Christini
- Cardiovascular Research Institute, New York, New York; Weill Cornell Medicine, New York, New York.
| |
Collapse
|
9
|
Aboelkassem Y, Campbell SG. Acute Optogenetic Modulation of Cardiac Twitch Dynamics Explored Through Modeling. J Biomech Eng 2017; 138:2552973. [PMID: 27618140 DOI: 10.1115/1.4034655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Indexed: 11/08/2022]
Abstract
Optogenetic approaches allow cellular membrane potentials to be perturbed by light. When applied to muscle cells, mechanical events can be controlled through a process that could be termed "optomechanics." Besides functioning as an optical on/off switch, we hypothesized that optomechanical control could include the ability to manipulate the strength and duration of contraction events. To explore this possibility, we constructed an electromechanical model of the human ventricular cardiomyocyte while adding a representation of channelrhodopsin-2 (ChR2), a light-activated channel commonly used in optogenetics. Two hybrid stimulus protocols were developed that combined light-based stimuli with traditional electrical current (all-or-none) excitation. The first protocol involved delivery of a subthreshold optical stimulus followed 50-90 ms later by an electrical stimulus. The result was a graded inhibition of peak cellular twitch force in concert with a prolongation of the intracellular Ca2+ transient. The second protocol was comprised of an electrical stimulus followed by a long light pulse (250-350 ms) that acted to prolong the cardiac action potential (AP). This created a pulse duration-dependent prolongation of the intracellular Ca2+ transient that in turn altered the rate of muscle relaxation without changing peak twitch force. These results illustrate the feasibility of acute, optomechanical manipulation of cardiomyocyte contraction and suggest that this approach could be used to probe the dynamic behavior of the cardiac sarcomere without altering its intrinsic properties. Other experimentally meaningful stimulus protocols could be designed by making use of the optomechanical cardiomyocyte model presented here.
Collapse
Affiliation(s)
- Yasser Aboelkassem
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 e-mail:
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511 e-mail:
| |
Collapse
|
10
|
Karathanos TV, Boyle PM, Trayanova NA. Light-based Approaches to Cardiac Arrhythmia Research: From Basic Science to Translational Applications. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:47-60. [PMID: 27840581 PMCID: PMC5094582 DOI: 10.4137/cmc.s39711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/27/2016] [Accepted: 10/09/2016] [Indexed: 02/06/2023]
Abstract
Light has long been used to image the heart, but now it can be used to modulate its electrophysiological function. Imaging modalities and techniques have long constituted an indispensable part of arrhythmia research and treatment. Recently, advances in the fields of optogenetics and photodynamic therapy have provided scientists with more effective approaches for probing, studying and potentially devising new treatments for cardiac arrhythmias. This article is a review of research toward the application of these techniques. It contains (a) an overview of advancements in technology and research that have contributed to light-based cardiac applications and (b) a summary of current and potential future applications of light-based control of cardiac cells, including modulation of heart rhythm, manipulation of cardiac action potential morphology, quantitative analysis of arrhythmias, defibrillation and cardiac ablation.
Collapse
Affiliation(s)
- Thomas V. Karathanos
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick M. Boyle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Williams JC, Entcheva E. Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights. Biophys J 2016; 108:1934-45. [PMID: 25902433 DOI: 10.1016/j.bpj.2015.03.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/25/2015] [Accepted: 03/18/2015] [Indexed: 11/15/2022] Open
Abstract
Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediated by genetically expressed light-sensitive ion channels, e.g., Channelrhodopsin-2 (ChR2). Using a computational model of ChR2(H134R mutant), we show that both stimulation modalities produce similar-in-morphology APs in human cardiomyocytes, and that electrical and optical excitability vary with cell type in a similar fashion. However, whereas the strength-duration curves for electrical excitation in ventricular and atrial cardiomyocytes closely follow the theoretical exponential relationship for an equivalent RC circuit, the respective optical strength-duration curves significantly deviate, exhibiting higher nonlinearity. We trace the origin of this deviation to the waveform of the excitatory current-a nonrectangular self-terminating inward current produced in optical stimulation due to ChR2 kinetics and voltage-dependent rectification. Using a unifying charge measure to compare energy needed for electrical and optical stimulation, we reveal that direct electrical current injection (rectangular pulse) is more efficient at short pulses, whereas voltage-mediated negative feedback leads to self-termination of ChR2 current and renders optical stimulation more efficient for long low-intensity pulses. This applies to cardiomyocytes but not to neuronal cells (with much shorter APs). Furthermore, we demonstrate the cell-specific use of ChR2 current as a unique modulator of intrinsic activity, allowing for optical control of AP duration in atrial and, to a lesser degree, in ventricular myocytes. For self-oscillatory cells, such as Purkinje, constant light at extremely low irradiance can be used for fine control of oscillatory frequency, whereas constant electrical stimulation is not feasible due to electrochemical limitations. Our analysis offers insights for designing future new energy-efficient stimulation strategies in heart or brain.
Collapse
Affiliation(s)
- John C Williams
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York
| | - Emilia Entcheva
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York; Institute for Molecular Cardiology, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
12
|
Cardiac Optogenetics: Enhancement by All-trans-Retinal. Sci Rep 2015; 5:16542. [PMID: 26568132 PMCID: PMC4644984 DOI: 10.1038/srep16542] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022] Open
Abstract
All-trans-Retinal (ATR) is a photosensitizer, serving as the chromophore for depolarizing and hyperpolarizing light-sensitive ion channels and pumps (opsins), recently employed as fast optical actuators. In mammalian optogenetic applications (in brain and heart), endogenous ATR availability is not considered a limiting factor, yet it is unclear how ATR modulation may affect the response to optical stimulation. We hypothesized that exogenous ATR may improve light responsiveness of cardiac cells modified by Channelrhodopsin2 (ChR2), hence lowering the optical pacing energy. In virally-transduced (Ad-ChR2(H134R)-eYFP) light-sensitive cardiac syncytium in vitro, ATR supplements ≤2 μM improved cardiomyocyte viability and augmented ChR2 membrane expression several-fold, while >4 μM was toxic. Employing integrated optical actuation (470 nm) and optical mapping, we found that 1–2 μM ATR dramatically reduced optical pacing energy (over 30 times) to several μW/mm2, lowest values reported to date, but also caused action potential prolongation, minor changes in calcium transients and no change in conduction. Theoretical analysis helped explain ATR-caused reduction of optical excitation threshold in cardiomyocytes. We conclude that cardiomyocytes operate at non-saturating retinal levels, and carefully-dosed exogenous ATR can enhance the performance of ChR2 in cardiac cells and yield energy benefits over orders of magnitude for optogenetic stimulation.
Collapse
|
13
|
Computational modeling of cardiac optogenetics: Methodology overview & review of findings from simulations. Comput Biol Med 2015; 65:200-8. [PMID: 26002074 DOI: 10.1016/j.compbiomed.2015.04.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
Cardiac optogenetics is emerging as an exciting new potential avenue to enable spatiotemporally precise control of excitable cells and tissue in the heart with low-energy optical stimuli. This approach involves the expression of exogenous light-sensitive proteins (opsins) in target heart tissue via viral gene or cell delivery. Preliminary experiments in optogenetically-modified cells, tissue, and organisms have made great strides towards demonstrating the feasibility of basic applications, including the use of light stimuli to pace or disrupt reentrant activity. However, it remains unknown whether techniques based on this intriguing technology could be scaled up and used in humans for novel clinical applications, such as pain-free optical defibrillation or dynamic modulation of action potential shape. A key step towards answering such questions is to explore potential optogenetics-based therapies using sophisticated computer simulation tools capable of realistically representing opsin delivery and light stimulation in biophysically detailed, patient-specific models of the human heart. This review provides (1) a detailed overview of the methodological developments necessary to represent optogenetics-based solutions in existing virtual heart platforms and (2) a survey of findings that have been derived from such simulations and a critical assessment of their significance with respect to the progress of the field.
Collapse
|
14
|
Boyle PM, Karathanos TV, Trayanova NA. "Beauty is a light in the heart": the transformative potential of optogenetics for clinical applications in cardiovascular medicine. Trends Cardiovasc Med 2015; 25:73-81. [PMID: 25453984 PMCID: PMC4336805 DOI: 10.1016/j.tcm.2014.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/04/2014] [Accepted: 10/05/2014] [Indexed: 11/15/2022]
Abstract
Optogenetics is an exciting new technology in which viral gene or cell delivery is used to inscribe light sensitivity in excitable tissue to enable optical control of bioelectric behavior. Initial progress in the fledgling domain of cardiac optogenetics has included in vitro expression of various light-sensitive proteins in cell monolayers and transgenic animals to demonstrate an array of potentially useful applications, including light-based pacing, silencing of spontaneous activity, and spiral wave termination. In parallel to these developments, the cardiac modeling community has developed a versatile computational framework capable of realistically simulating optogenetics in biophysically detailed, patient-specific representations of the human heart, enabling the exploration of potential clinical applications in a predictive virtual platform. Toward the ultimate goal of assessing the feasibility and potential impact of optogenetics-based therapies in cardiovascular medicine, this review provides (1) a detailed synopsis of in vivo, in vitro, and in silico developments in the field and (2) a critical assessment of how existing clinical technology for gene/cell delivery and intra-cardiac illumination could be harnessed to achieve such lofty goals as light-based arrhythmia termination.
Collapse
Affiliation(s)
- Patrick M Boyle
- Institute for Computational Medicine, Johns Hopkins University, 316 Hackerman Hall, 3400 N Charles Street, Baltimore, MD 21218; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD.
| | - Thomas V Karathanos
- Institute for Computational Medicine, Johns Hopkins University, 316 Hackerman Hall, 3400 N Charles Street, Baltimore, MD 21218; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Natalia A Trayanova
- Institute for Computational Medicine, Johns Hopkins University, 316 Hackerman Hall, 3400 N Charles Street, Baltimore, MD 21218; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
15
|
|