1
|
Okamoto A, Uenaka M, Ito Y, Kuroki Y, Miyasaka T, Toda K, Hiryu S, Kobayasi KI, Tamai Y. Safety evaluations for transtympanic laser stimulation of the cochlea in Mongolian gerbils (Meriones unguiculatus). Neurosci Res 2024:S0168-0102(24)00124-X. [PMID: 39447653 DOI: 10.1016/j.neures.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Infrared laser stimulation of the cochlea has been proposed as a possible alternative to conventional auditory prostheses. Whereas previous studies have focused primarily on the short-term effects of laser stimulation, the practical application of this technics requires an investigation into whether prolonged laser exposure can induce neural responses and safely. This study assessed the effect of laser-induced damage to the cochlea on auditory perception using Mongolian gerbils (Meriones unguiculatus) trained with a classical conditioning task. The broadband noise was presented as a conditioned stimulus, and reward licking was recorded as a conditioned response. After training, the subject's cochlea was exposed to a continuous pulsed laser for 15h. Broadband noise of various intensities was presented without pairing it with water before and after laser exposure to assess the decrease in auditory perception due to laser-induced injury. The licking rate did not change after laser exposure of 6.6W/cm2 or weaker but drastically decreased after 26.4W/cm2 or higher. These findings showed, for the first time, that the safety margin of long-term, at least several hours, cochlear laser stimulation exists and will contribute to the appropriate delimitation of the safe and effective laser stimulation parameters in future research.
Collapse
Affiliation(s)
- Aya Okamoto
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Miku Uenaka
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Yuki Ito
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Yuta Kuroki
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Tomohiro Miyasaka
- Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Koji Toda
- Department of Psychology, Keio University, Tokyo, Japan
| | - Shizuko Hiryu
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kohta I Kobayasi
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan.
| | - Yuta Tamai
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan; Neurobiology of Social Communication, Department of Otolaryngology-Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
He W, Burwood G, Fridberger A, Nuttall AL, Ren T. An outer hair cell-powered global hydromechanical mechanism for cochlear amplification. Hear Res 2022; 423:108407. [PMID: 34922772 PMCID: PMC9156726 DOI: 10.1016/j.heares.2021.108407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/04/2022]
Abstract
It is a common belief that the mammalian cochlea achieves its exquisite sensitivity, frequency selectivity, and dynamic range through an outer hair cell-based active process, or cochlear amplification. As a sound-induced traveling wave propagates from the cochlear base toward the apex, outer hair cells at a narrow region amplify the low level sound-induced vibration through a local feedback mechanism. This widely accepted theory has been tested by measuring sound-induced sub-nanometer vibrations within the organ of Corti in the sensitive living cochleae using heterodyne low-coherence interferometry and optical coherence tomography. The aim of this short review is to summarize experimental findings on the cochlear active process by the authors' group. Our data show that outer hair cells are able to generate substantial forces for driving the cochlear partition at all audible frequencies in vivo. The acoustically induced reticular lamina vibration is larger and more broadly tuned than the basilar membrane vibration. The reticular lamina and basilar membrane vibrate approximately in opposite directions at low frequencies and in the same direction at the best frequency. The group delay of the reticular lamina is larger than that of the basilar membrane. The magnitude and phase differences between the reticular lamina and basilar membrane vibration are physiologically vulnerable. These results contradict predictions based on the local feedback mechanism but suggest a global hydromechanical mechanism for cochlear amplification. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- Wenxuan He
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - George Burwood
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - Anders Fridberger
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Alfred L Nuttall
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States
| | - Tianying Ren
- Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland OR, United States.
| |
Collapse
|
3
|
Uenaka M, Nagamura H, Okamoto A, Hiryu S, Kobayasi KI, Tamai Y. Feasibility evaluation of transtympanic laser stimulation of the cochlea from the outer ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:1850. [PMID: 36182303 DOI: 10.1121/10.0014241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Infrared laser stimulation has been studied as an alternative approach to auditory prostheses. This study evaluated the feasibility of infrared laser stimulation of the cochlea from the outer ear, bypassing the middle ear function. An optic fiber was inserted into the ear canal, and a laser was used to irradiate the cochlea through the tympanic membrane in Mongolian gerbils. A pulsed infrared laser (6.9 mJ/cm2) and clicking sound (70 peak-to-peak equivalent sound pressure level) were presented to the animals. The amplitude of the laser-evoked cochlear response was systematically decreased following insertion of a filter between the tympanic membrane and cochlea; however, the auditory-evoked cochlear response did not decrease. The filter was removed, and the laser-evoked response returned to around the original level. The amplitude ratio and the relative change in response amplitude before and during filter insertion significantly decreased as the absorbance of the infrared filter increased. These results indicate that laser irradiation could bypass the function of the middle ear and directly activate the cochlea. Therefore, laser irradiation from the outer ear is a possible alternative for stimulating the cochlea, circumventing the middle ear.
Collapse
Affiliation(s)
- Miku Uenaka
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Hidekazu Nagamura
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Aya Okamoto
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Shizuko Hiryu
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kohta I Kobayasi
- Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Yuta Tamai
- Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
4
|
Electrorheological Model Based on Liquid Crystals Membranes with Applications to Outer Hair Cells. FLUIDS 2018. [DOI: 10.3390/fluids3020035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Tan X, Jahan I, Xu Y, Stock S, Kwan CC, Soriano C, Xiao X, García-Añoveros J, Fritzsch B, Richter CP. Auditory Neural Activity in Congenitally Deaf Mice Induced by Infrared Neural Stimulation. Sci Rep 2018; 8:388. [PMID: 29321651 PMCID: PMC5762820 DOI: 10.1038/s41598-017-18814-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/11/2017] [Indexed: 11/16/2022] Open
Abstract
To determine whether responses during infrared neural stimulation (INS) result from the direct interaction with spiral ganglion neurons (SGNs), we tested three genetically modified deaf mouse models: Atoh1-cre; Atoh1f/f (Atoh1 conditional knockout, CKO), Atoh1-cre; Atoh1f/kiNeurog1 (Neurog1 knockin, KI), and the Vglut3 knockout (Vglut3−/−) mice. All animals were exposed to tone bursts and clicks up to 107 dB (re 20 µPa) and to INS, delivered with a 200 µm optical fiber. The wavelength (λ) was 1860 nm, the radiant energy (Q) 0-800 µJ/pulse, and the pulse width (PW) 100–500 µs. No auditory responses to acoustic stimuli could be evoked in any of these animals. INS could not evoke auditory brainstem responses in Atoh1 CKO mice but could in Neurog1 KI and Vglut3−/− mice. X-ray micro-computed tomography of the cochleae showed that responses correlated with the presence of SGNs and hair cells. Results in Neurog1 KI mice do not support a mechanical stimulation through the vibration of the basilar membrane, but cannot rule out the direct activation of the inner hair cells. Results in Vglut3−/− mice, which have no synaptic transmission between inner hair cells and SGNs, suggested that hair cells are not required.
Collapse
Affiliation(s)
- Xiaodong Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, 320 E. Chicago Avenue, Searle 12-561, Chicago, IL, 60611, USA
| | - Israt Jahan
- Department of Biology, University of Iowa, 129 E. Jefferson Street, Iowa City, IA, 52242, USA
| | - Yingyue Xu
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, 320 E. Chicago Avenue, Searle 12-561, Chicago, IL, 60611, USA
| | - Stuart Stock
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Changyow Claire Kwan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, 320 E. Chicago Avenue, Searle 12-561, Chicago, IL, 60611, USA
| | - Carmen Soriano
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Xianghui Xiao
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Jaime García-Añoveros
- Departments of Anesthesiology, Physiology, and Neurology, Northwestern University Institute for Neuroscience, Ward 10-070, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, 129 E. Jefferson Street, Iowa City, IA, 52242, USA
| | - Claus-Peter Richter
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, 320 E. Chicago Avenue, Searle 12-561, Chicago, IL, 60611, USA. .,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, IL, 60208, USA. .,The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Frances Searle Building, 2240 Campus Drive, Evanston, IL, 60208, USA.
| |
Collapse
|
6
|
Nankali A, Grosh K. Simulating the Chan-Hudspeth experiment on an active excised cochlear segment. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:215. [PMID: 28764454 PMCID: PMC5513745 DOI: 10.1121/1.4990522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Hearing relies on a series of coupled electrical, acoustical, and mechanical interactions inside the cochlea that enable sound processing. The local structural and electrical properties of the organ of Corti (OoC) and basilar membrane give rise to the global, coupled behavior of the cochlea. However, it is difficult to determine the root causes of important behavior, such as the mediator of active processes, in the fully coupled in vivo setting. An alternative experimental approach is to use an excised segment of the cochlea under controlled electrical and mechanical conditions. Using the excised cochlear segment experiment conducted by Chan and Hudspeth [Nat. Neurosci. 8, 149-155 (2005); Biophys. J. 89, 4382-4395 (2005)] as the model problem, a quasilinear computational model for studying the active in vitro response of the OoC to acoustical stimulation was developed. The model of the electrical, mechanical, and acoustical conditions of the experimental configuration is able to replicate some of the experiment results, such as the shape of the frequency response of the sensory epithelium and the variation of the resonance frequency with the added fluid mass. As in the experiment, the model predicts a phase accumulation along the segment. However, it was found that the contribution of this phase accumulation to the dynamics is insignificant. Taking advantage of the relative simplicity of the fluid loading, the three-dimensional fluid dynamics was reduced into an added mass loading on the OoC thereby reducing the overall complexity of the model.
Collapse
Affiliation(s)
- Amir Nankali
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Karl Grosh
- Department of Mechanical Engineering and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
7
|
Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser. Lasers Med Sci 2016; 32:389-396. [PMID: 27995385 DOI: 10.1007/s10103-016-2129-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.
Collapse
|
8
|
Abstract
Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane. Outside the region of peak movement, an exponential decline in motion amplitude occurred across the basilar membrane. The moving region had different dependence on stimulus frequency than the vibrations measured near the mechanosensitive stereocilia. This behavior differs substantially from the behavior found in the extensively studied high-frequency regions of the cochlea.
Collapse
|
9
|
The Coda of the Transient Response in a Sensitive Cochlea: A Computational Modeling Study. PLoS Comput Biol 2016; 12:e1005015. [PMID: 27380177 PMCID: PMC4933343 DOI: 10.1371/journal.pcbi.1005015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 06/07/2016] [Indexed: 11/19/2022] Open
Abstract
In a sensitive cochlea, the basilar membrane response to transient excitation of any kind–normal acoustic or artificial intracochlear excitation–consists of not only a primary impulse but also a coda of delayed secondary responses with varying amplitudes but similar spectral content around the characteristic frequency of the measurement location. The coda, sometimes referred to as echoes or ringing, has been described as a form of local, short term memory which may influence the ability of the auditory system to detect gaps in an acoustic stimulus such as speech. Depending on the individual cochlea, the temporal gap between the primary impulse and the following coda ranges from once to thrice the group delay of the primary impulse (the group delay of the primary impulse is on the order of a few hundred microseconds). The coda is physiologically vulnerable, disappearing when the cochlea is compromised even slightly. The multicomponent sensitive response is not yet completely understood. We use a physiologically-based, mathematical model to investigate (i) the generation of the primary impulse response and the dependence of the group delay on the various stimulation methods, (ii) the effect of spatial perturbations in the properties of mechanically sensitive ion channels on the generation and separation of delayed secondary responses. The model suggests that the presence of the secondary responses depends on the wavenumber content of a perturbation and the activity level of the cochlea. In addition, the model shows that the varying temporal gaps between adjacent coda seen in experiments depend on the individual profiles of perturbations. Implications for non-invasive cochlear diagnosis are also discussed. The fluid-structure-electrical interaction in the cochlea enable the basilar membrane, one of the most important structures in the cochlear partition, to display different dynamic patterns depending on the frequency content of the incoming sound. Interestingly, in a healthy cochlea the motion of the basilar membrane shows echoes upon an impulse acoustic stimulation delivered to the ear canal. The delay, duration, and shape of these echoes vary from one cochlea to another. A hypothesis that irregularities of the properties of the cochlear partition coherently scatter acoustic waves and generate echoes is examined. These irregularities are posited to arise, for example, the damage of the sensory cells or the natural randomness in the morphology of the cochlear partition. Here we build a physiologically-based mathematical model to understand the echoes observed in experiments by introducing irregularity to the properties of the sensory cells. We found that the patterns of the echoes depend on the individual profiles of the irregularities. Our work suggest that the ear canal recording, which is correlated to the dynamics of the basilar membrane, can be used as a non-invasive tool not only to diagnose the intracochlear damage but also to interpret these data given its idiosyncratic origin.
Collapse
|
10
|
Ren T, He W, Barr-Gillespie PG. Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry. Nat Commun 2016; 7:10282. [PMID: 26732830 PMCID: PMC4729828 DOI: 10.1038/ncomms10282] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/25/2015] [Indexed: 12/27/2022] Open
Abstract
It is generally believed that the remarkable sensitivity and frequency selectivity of mammalian hearing depend on outer hair cell-generated force, which amplifies sound-induced vibrations inside the cochlea. This 'reverse transduction' force production has never been demonstrated experimentally, however, in the living ear. Here by directly measuring microstructure vibrations inside the cochlear partition using a custom-built interferometer, we demonstrate that electrical stimulation can evoke both fast broadband and slow sharply tuned responses of the reticular lamina, but only a slow tuned response of the basilar membrane. Our results indicate that outer hair cells can generate sufficient force to drive the reticular lamina over all audible frequencies in living cochleae. Contrary to expectations, the cellular force causes a travelling wave rather than an immediate local vibration of the basilar membrane; this travelling wave vibrates in phase with the reticular lamina at the best frequency, and results in maximal vibration at the apical ends of outer hair cells.
Collapse
Affiliation(s)
- Tianying Ren
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Wenxuan He
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
11
|
Wang J, Lu J, Li C, Xu L, Li X, Tian L. Pulsed 980 nm short wavelength infrared neural stimulation in cochlea and laser parameter effects on auditory response characteristics. Biomed Eng Online 2015; 14:89. [PMID: 26445884 PMCID: PMC4597400 DOI: 10.1186/s12938-015-0084-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background Auditory neural stimulation with pulsed infrared radiation has been proposed as an alternative method to activate the auditory nerves in vivo. Infrared wavelengths from 1800–2150 nm with high water absorption were mainly selected in previous studies. However, few researchers have used the short-wavelength infrared (SWIR) for auditory nerve stimulation and limited pulse parameters variability has been investigated so far. Methods In this paper, we pioneered to use the 980 nm SWIR laser with adjustable pulse parameter as a stimulus to act on the deafened guinea pigs’ cochlea in vivo. Pulsed laser light was guided through the cochlear round window to irradiate the spiral ganglion cells via a 105 μm optical fiber, and then the laser pulse parameters variability and its influence to auditory response characteristics were studied. Results The results showed that the optically evoked auditory brainstem response (OABR) had a similar waveform to the acoustically induced ABR with click sound stimulus. And the evoked OABR amplitude had a positive correlation, while the OABR latency period showed a negative correlation, with the laser pulse energy increase. However, when holding the laser peak power constant, the pulse width variability ranged from 100 to 800 μs showed little influence on the evoked OABR amplitude and its latency period. Conclusions Our study suggests that 980 nm SWIR laser is an effective stimulus for auditory neurons activation in vivo. The evoked OABR amplitude and latency are highly affected by the laser pulse energy, while not sensitive to the pulse width variability in 100–800 μs range.
Collapse
Affiliation(s)
- Jingxuan Wang
- School of Information Science and Engineering, Shandong University, 250100, Jinan, Shandong, China.
| | - Jianren Lu
- School of Information Science and Engineering, Shandong University, 250100, Jinan, Shandong, China.
| | - Chen Li
- School of Information Science and Engineering, Shandong University, 250100, Jinan, Shandong, China.
| | - Lei Xu
- Shandong Artificial Auditory Engineering Centre, 250022, Jinan, Shandong, China.
| | - Xiaofei Li
- Shandong Artificial Auditory Engineering Centre, 250022, Jinan, Shandong, China.
| | - Lan Tian
- School of Information Science and Engineering, Shandong University, 250100, Jinan, Shandong, China.
| |
Collapse
|
12
|
Tan X, Young H, Matic AI, Zirkle W, Rajguru S, Richter CP. Temporal properties of inferior colliculus neurons to photonic stimulation in the cochlea. Physiol Rep 2015; 3:3/8/e12491. [PMID: 26311831 PMCID: PMC4562577 DOI: 10.14814/phy2.12491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Infrared neural stimulation (INS) may be beneficial in auditory prostheses because of its spatially selective activation of spiral ganglion neurons. However, the response properties of single auditory neurons to INS and the possible contributions of its optoacoustic effects are yet to be examined. In this study, the temporal properties of auditory neurons in the central nucleus of the inferior colliculus (ICC) of guinea pigs in response to INS were characterized. Spatial selectivity of INS was observed along the tonotopically organized ICC. Trains of laser pulses and trains of acoustic clicks were used to evoke single unit responses in ICC of normal hearing animals. In response to INS, ICC neurons showed lower limiting rates, longer latencies, and lower firing efficiencies. In deaf animals, ICC neurons could still be stimulated by INS while unresponsive to acoustic stimulation. The site and spatial selectivity of INS both likely shaped the temporal properties of ICC neurons.
Collapse
Affiliation(s)
- Xiaodong Tan
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hunter Young
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Agnella Izzo Matic
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Whitney Zirkle
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Suhrud Rajguru
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA Department of Otolaryngology, University of Miami, Miami, Florida, USA
| | - Claus-Peter Richter
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
13
|
Radiant energy required for infrared neural stimulation. Sci Rep 2015; 5:13273. [PMID: 26305106 PMCID: PMC4548241 DOI: 10.1038/srep13273] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/06/2015] [Indexed: 12/15/2022] Open
Abstract
Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm(2), respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.
Collapse
|
14
|
Wang J, Xia M, Lu J, Li C, Tian X, Tian L. Performance analysis of the beam shaping method on optical auditory neural stimulation in vivo. Lasers Med Sci 2015; 30:1533-40. [PMID: 25947304 DOI: 10.1007/s10103-015-1763-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/28/2015] [Indexed: 11/28/2022]
Abstract
Previous research has shown that infrared neural stimulation (INS) could be an alternative approach to evoke auditory neural activities. The laser beam property of the fiber output is a considerable aspect of INS, and the corresponding effects on auditory responses in vivo deserve further discussions. The paper presents a beam-shaped infrared laser stimulation method of auditory nerves. Pulsed 980-nm fiber-coupled laser systems were used as the radiant sources. The gradient reflective index (GRIN) lens was added at the port of the optical fiber as a beam shaping structure. The laser spot sizes and properties between the beam-shaped output and the bare fiber output were preliminarily analyzed by a laser beam profiler. And further experiments in vivo with four deafened adult guinea pigs were conducted. Optically evoked auditory brainstem responses (OABRs) of the animal samples were recorded and compared under the two output configurations. The results show a decrease of the beam divergence compared to a bare output fiber, and the INS with a beam shaping design evokes above 13 % increase on OABR amplitudes than the bare fiber output, especially when enlarging the distance between the optical fiber and the nerve tissue. The beam shaping design can enhance the effect of INS for evoking auditory nerves, and it could be an optimized design in the future implementation of optical cochlear implants.
Collapse
Affiliation(s)
- Jingxuan Wang
- School of Information Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | | | | | | | | | | |
Collapse
|