1
|
Yue L, Li N, Ye X, Xiu Y, Wang B. Polymethoxylated flavones for modulating signaling pathways in inflammation. Int Immunopharmacol 2024; 143:113522. [PMID: 39515044 DOI: 10.1016/j.intimp.2024.113522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Aberrant signaling pathways play a crucial role in the pathogenesis of various diseases, including inflammatory disorders and autoimmune conditions. Polymethoxylated flavones (PMFs), a class of natural compounds found in citrus fruits, have obtained increasing attention for their potential therapeutic effects in modulating inflammatory responses. Although significant progress has been made in the pharmacological research of PMFs, the mechanisms by which they modulate signaling pathways to treat inflammation have not been systematically reviewed or analyzed. To address this gap in the literature, this review explores the mechanisms underlying the anti-inflammatory properties of PMFs and their prospects as drugs for treating inflammatory diseases. We discuss the molecular targets and signaling pathways through which PMFs exert their anti-inflammatory effects, including NF-κB pathway, PI3K/Akt pathway, MAPK pathway, Nrf2 pathway, and regulation of inflammatory cytokine production. Furthermore, we highlight preclinical studies evaluating the efficacy of PMFs in various inflammatory conditions, such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and osteoarthritis (OA). Despite promising findings, challenges remain in optimizing the pharmacokinetic properties and therapeutic efficacy of PMFs for clinical use. Future research directions include elucidating the structure-activity relationships of PMFs, developing novel delivery strategies, and conducting large-scale clinical trials to validate their efficacy and safety profiles. Overall, PMFs represent a promising class of natural compounds with potential applications as anti-inflammatory drugs, offering novel therapeutic opportunities for managing inflammatory diseases.
Collapse
Affiliation(s)
- Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Li
- Shenzhen Research Institute, the Hong Kong University of Science and Technology, Shenzhen 518054, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Nascimento CM, Casaro MC, Perez ER, Ribeiro WR, Mayer MPA, Ishikawa KH, Lino-dos-Santos-Franco A, Pereira JNB, Ferreira CM. Experimental allergic airway inflammation impacts gut homeostasis in mice. Heliyon 2023; 9:e16429. [PMID: 37484240 PMCID: PMC10360590 DOI: 10.1016/j.heliyon.2023.e16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
Background /Aims: Epidemiological data show that there is an important relationship between respiratory and intestinal diseases. To improve our understanding on the interconnectedness between the lung and intestinal mucosa and the overlap between respiratory and intestinal diseases, our aim was to investigate the influence of ovalbumin (OVA)-induced allergic airway inflammation on gut homeostasis. Methods A/J mice were sensitized and challenged with OVA. The animals were euthanized 24 h after the last challenge, lung inflammation was determined by evaluating cells in Bronchoalveolar lavage fluid, serum anti-OVA IgG titers and colon morphology, inflammation and integrity of the intestinal mucosa were investigated. IL-4 and IL-13 levels and myeloperoxidase activity were determined in the colon samples. The expression of genes involved in inflammation and mucin production at the gut mucosa was also evaluated. Results OVA challenge resulted not only in lung inflammation but also in macroscopic alterations in the gut such as colon shortening, increased myeloperoxidase activity and loss of integrity in the colonic mucosal. Neutral mucin intensity was lower in the OVA group, which was followed by down-regulation of transcription of ATOH1 and up-regulation of TJP1 and MUC2. In addition, the OVA group had higher levels of IL-13 and IL-4 in the colon. Ova-specific IgG1 and OVA-specific IgG2a titers were higher in the serum of the OVA group than in controls. Conclusions Our data using the OVA experimental model suggested that challenges in the respiratory system may result not only in allergic airway inflammation but also in the loss of gut homeostasis.
Collapse
Affiliation(s)
- Carolina Martins Nascimento
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Mateus Campos Casaro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Evelyn Roxana Perez
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Willian Rodrigues Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Karin Hitomi Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| |
Collapse
|
3
|
Luo Y, Kang J, Luo J, Yan Z, Li S, Lu Z, Song Y, Zhang X, Yang J, Liu A. Hepatocytic AP-1 and STAT3 contribute to chemotaxis in alphanaphthylisothiocyanate-induced cholestatic liver injury. Toxicol Lett 2023; 373:184-193. [PMID: 36460194 DOI: 10.1016/j.toxlet.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The development of cholestatic liver injury (CLI) involves inflammation, but the dominant pathway mediating the chemotaxis is not yet established. This work explored key signaling pathway mediating chemotaxis in CLI and the role of Kupffer cells in the inflammatory liver injury. Probe inhibitors T-5224 (100 mg/kg) for AP-1 and C188-9 (100 mg/kg) for STAT3 were used to validate key inflammatory pathways in alpha-naphthylisothiocyanate (ANIT, 100 mg/kg)-induced CLI. Two doses of GdCl3 (10 mg/kg and 40 mg/kg) were used to delete Kupffer cells and explore their role in CLI. Serum and liver samples were collected for biochemical and mechanism analysis. The liver injury in ANIT-treated mice were significantly increased supported by biochemical and histopathological changes, and neutrophils gathering around the necrotic loci. Inhibitor treatments down-regulated liver injury biomarkers except the level of total bile acid. The chemokine Ccl2 increased by 170-fold and to a less degree Cxcl2 by 45-fold after the ANIT treatment. p-c-Jun and p-STAT3 were activated in the group A but inhibited by the inhibitors in western blot analysis. The immunofluorescence results showed AP-1 not STAT3 responded to inhibitors in ANIT-induced CLI. With or without GdCl3, there was no significant difference in liver injury among the CLI groups. In necrotic loci in CLI, CXCL2 colocalized with hepatocyte biomarker Albumin, not with the F4/80 in Kupffer cells. Conclusively, AP-1 played a more critical role in the inflammation cascade than STAT3 in ANIT-induced CLI. Hepatocytes, not the Kupffer cells released chemotactic factors mediating the chemotaxis in CLI.
Collapse
Affiliation(s)
- Yishuang Luo
- School of Medicine, Ningbo University, 315211 Ningbo, China; Ningbo Haishu District Center for Disease Control and Prevention, 315000 Ningbo, China
| | - Jinyu Kang
- School of Medicine, Ningbo University, 315211 Ningbo, China; The Affiliated Lihuili Hospital, Ningbo University, 315000 Ningbo, China
| | - Jia Luo
- School of Medicine, Ningbo University, 315211 Ningbo, China
| | - Zheng Yan
- School of Medicine, Ningbo University, 315211 Ningbo, China
| | - Shengtao Li
- School of Medicine, Ningbo University, 315211 Ningbo, China
| | - Zhuoheng Lu
- School of Medicine, Ningbo University, 315211 Ningbo, China
| | - Yufei Song
- The Affiliated Lihuili Hospital, Ningbo University, 315000 Ningbo, China
| | - Xie Zhang
- The Affiliated Lihuili Hospital, Ningbo University, 315000 Ningbo, China
| | - Julin Yang
- Ningbo College of Health Sciences, 315100 Ningbo, China
| | - Aiming Liu
- School of Medicine, Ningbo University, 315211 Ningbo, China.
| |
Collapse
|
4
|
Nan S, Wan J, Lei Q, Wang X, Ma N, Yin R, Zhu J, Ding M, Ding Y. The involvement of the primo vascular system in local enteritis and its modification by electroacupuncture. Front Immunol 2023; 13:1072996. [PMID: 36713388 PMCID: PMC9874324 DOI: 10.3389/fimmu.2022.1072996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The primo vascular system (PVS), an intensive network structure, has been claimed to be representative of the acupuncture meridian. Here, we explored the role of the PVS in local enteritis and its modification by acupuncture. Methods Chronic cecitis in rabbits was induced by 2,4,6-trinitro-benzene-sulfonic acid (TNBS). The PVS on the cecum was visualized with trypan blue staining, and collected with the help of microsurgical forceps under an optical stereomicroscope. Results The increased primo vessels (PVs) and primo nodes (PNs) of the PVS on the surface of the cecum were induced by local inflammation, which was positively correlated with the inflammatory cells in the cecal mucosa. Tandem mass tag (TMT) based proteomic analysis revealed that 110 differentiated proteins of the PVS existed between TNBS-treated and control rabbits; 65 proteins were upregulated, while 45 proteins were downregulated. These proteins were mainly enriched in inflammation- and immunity-related processes, such as inflammatory cell proliferation, antigen presentation, and cell adhesion in the proliferated PVS (data are available via ProteomeXchange with the identifiers PXD034280). Importantly, TNBS-induced cecitis, the proliferated PVS and inflammation response-related proteins (CD40, CD45, HLA-DRA1, LAMP1, JAGN1 and FGL1) in the PVS were alleviated or reversed by repetitive electroacupuncture (EA) stimulations. Conclusion These results suggest that the proliferated PVS and its active inclusions were related to the inflammatory process, which was modified by EA. Our study provides a new avenue for further exploration of the mechanism by which EA exerts anti-inflammatory effects.
Collapse
Affiliation(s)
- Sha Nan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Juan Wan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Gannan Innovation and Transformation Medical Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Qianghui Lei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinya Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ning Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ruiling Yin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiandi Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,*Correspondence: Yi Ding,
| |
Collapse
|
5
|
Yang P, Wei L, Tian H, Yu F, Shi Y, Gao L. Gadolinium chloride protects neurons by regulating the activation of microglia in the model of optic nerve crush. Biochem Biophys Res Commun 2022; 618:119-126. [PMID: 35717906 DOI: 10.1016/j.bbrc.2022.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
Abstract
The pathological basis of optic nerve crush (ONC) is the apoptosis of retinal ganglion cells (RGCs), which leads to an irreversible impairment of visual function. When stimulated by external stimuli, microglia polarize into different types and play different roles in repairing retinal injury. In this study, gadolinium chloride (GdCl3) could inhibit the excessive proliferation and activation of microglia in the retina after ONC and significantly inhibited the morphological changes of microglia in the ganglion cell layer (GCL) and inner plexiform layer (IPL). In the early stage of optic nerve injury, blood-derived immune cells did not play an essential role in retinal repair. In addition, transcriptome analysis showed that GdCl3 inhibited the expression of microglia proliferation-related factors and regulated signaling pathways related to skeletonization and inflammation. After GdCl3 treatment, M1 markers were significantly down-regulated, while M2 markers were increased. In conclusion, this study demonstrated that GdCl3 could regulate the distribution and morphological change of the retinal microglia and protect the ganglion cells by eliminating M1 microglia selectively, which provided a theoretical basis for further localizing different types of microglia in retina related diseases.
Collapse
Affiliation(s)
- Pengfei Yang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li Wei
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huanbing Tian
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Feifei Yu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongpeng Shi
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lan Gao
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Pan Y, Ning Y, Hu J, Wang Z, Chen X, Zhao X. The Preventive Effect of Lactobacillus plantarum ZS62 on DSS-Induced IBD by Regulating Oxidative Stress and the Immune Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9416794. [PMID: 34745426 PMCID: PMC8566036 DOI: 10.1155/2021/9416794] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
In this study, we used DSS to establish an IBD mouse model to study the preventive effect of Lactobacillus plantarum (L. plantarum) ZS62 on IBD in the context of oxidative stress and the immune response. We assessed the mitigating effect of this strain on IBD mice by examining the length of and histopathological changes in the colon, determining the serum antioxidant index and the levels of inflammatory cytokines, as well as the mRNA and protein expression levels of relevant genes. The study results showed that L. plantarum ZS62 could inhibit colonic atrophy in IBD mice, reduce the degree of colonic damage, downregulate the serum levels of MDA, MPO, IL-1β, IL-6, IL-12, TNF-α, and IFN-γ and the relative mRNA and protein expression of IL-1β, IL-12, TNF-α, COX-2, iNOS, and NF-κB p65 in mouse colon tissues, and upregulate the serum levels of CAT, T-SOD, and IL-10 and the relative mRNA and protein expression of Cu/Zn SOD, Mn SOD, GSH-Px, CAT, IL-10, and IκB-α in colon tissues. In summary, L. plantarum ZS62 exhibited a good preventive effect on DSS-induced IBD by regulating oxidative stress and the immune response.
Collapse
Affiliation(s)
- Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
- Department of Food Science and Biotechnology, Cha University, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - Yujing Ning
- Anorectal Department of Traditional Chinese Medicine, People's Hospital of Chongqing Banan District, Chongqing 401320, China
| | - Jing Hu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Zhiying Wang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040 Heilongjiang, China
| | - Xiufeng Chen
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing 400044, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
7
|
Zhao YH, Zhang SW, Zhao HJ, Qin HY, Wu F, Zhang J, Zhang YQ, Liu XL, Liang S, Zhang H, Wu JD, Zhao ZY, Wang HZ, Shao M, Liu J, Dong JT, Zhang WJ. Gadolinium chloride pre-treatment reduces the inflammatory response and preserves intestinal barrier function in a rat model of sepsis. Exp Ther Med 2021; 22:1143. [PMID: 34504589 PMCID: PMC8393272 DOI: 10.3892/etm.2021.10577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/09/2019] [Indexed: 11/12/2022] Open
Abstract
The inflammatory response is closely associated with sepsis occurrence and progression. Damage to the function of the intestinal mucosal barrier is considered to be the ῾initiation factor᾿ for the development of multiple organ dysfunction syndrome, which is the most severe progression of sepsis. The aim of the present study was to investigate whether gadolinium chloride (GdCl3) could alleviate the systemic inflammatory response and protect the function of the intestinal mucosal barrier in a rat model of sepsis. The mechanism underlying this protective effect was also explored. Sprague-Dawley rats were divided into four groups: Sham, sham + GdCl3, cecal ligation and puncture (CLP; a model of sepsis) and CLP + GdCl3. In each group, blood was collected from the abdominal aorta, and intestinal tissue was collected after 6, 12 and 24 h of successful modeling. Levels of tumor necrosis factor-α, interleukin (IL)-6 and IL-1β were determined using ELISA. Western blot analysis was used to determine levels of occludin, tight junction protein ZO-1 (ZO-1), myosin light chain kinase 3 (MLCK), NF-κB and caspase-3 in intestinal tissues. Hematoxylin-eosin staining was used to observe the degree of damage to intestinal tissue. The results indicated that in CLP sepsis model rats treated with GdCl3, the release of systemic and intestinal pro-inflammatory factors was reduced and tissue damage was alleviated when compared with untreated CLP rats. Additionally, the expression of occludin and ZO-1 was increased, while that of NF-κB, MLCK, and caspase-3 was reduced in the CLP + GdCl3 rats compared with the CLP rats. GdCl3 may alleviate systemic and intestinal inflammatory responses and reduce the expression of MLCK through inhibition of the activation of NF-kB. The results of the present study also indicated that GdCl3 promoted the expression of occludin and ZO-1. GdCl3 was also demonstrated to reduce cell apoptosis through the inhibition of caspase-3 expression.
Collapse
Affiliation(s)
- Yan Heng Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Shun Wen Zhang
- Department of Thoracic Surgery, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hai Jun Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Hui Yuan Qin
- Department of Thoracic Surgery, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Fang Wu
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Jie Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Yu Qing Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Xiao Ling Liu
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Su Liang
- Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Hui Zhang
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Jiang Dong Wu
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Zheng Yong Zhao
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Hong Zhou Wang
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Meng Shao
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Jing Liu
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| | - Jiang Tao Dong
- Department of Critical Care Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Wan Jiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
8
|
Shah MK, Ding Y, Wan J, Janyaro H, Tahir AH, Vodyanoy V, Ding MX. Electroacupuncture intervention of visceral hypersensitivity is involved in PAR-2-activation and CGRP-release in the spinal cord. Sci Rep 2020; 10:11188. [PMID: 32636402 PMCID: PMC7341736 DOI: 10.1038/s41598-020-67702-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/16/2020] [Indexed: 01/02/2023] Open
Abstract
Electroacupuncture (EA) relieves visceral hypersensitivity (VH) with underlying inflammatory bowel diseases. However, the mechanism by which EA treats ileitis-induced VH is not clearly known. To assess the effects of EA on ileitis-induced VH and confirm whether EA attenuates VH through spinal PAR-2 activation and CGRP release, goats received an injection of 2,4,6-trinitro-benzenesulfonic-acid (TNBS) solution into the ileal wall. TNBS-injected goats were allocated into VH, Sham acupuncture (Sham-A) and EA groups, while goats treated with saline instead of TNBS solution were used as the control. Goats in EA group received EA at bilateral Hou-San-Li acupoints for 0.5 h at 7 days and thereafter repeated every 3 days for 6 times. Goats in the Sham-A group were inserted with needles for 0.5 h at the aforementioned acupoints without any hand manipulation and electric stimulation. Visceromotor responses to colorectal distension, an indicator of VH, were recorded by electromyography. The terminal ileum and thoracic spinal cord (T11) were sampled for evaluating ileitis at days 7 and 22, and distribution and expression-levels of PAR-2, CGRP and c-Fos on day 22. TNBS-treated-goats exhibited apparent transmural-ileitis on day 7, microscopically low-grade ileitis on day 22 and VH at days 7–22. Goats of Sham-A, VH or EA group showed higher (P < 0.01) VH at days 7–22 than the Control-goats. EA-treated goats exhibited lower (P < 0.01) VH as compared with Sham-A or VH group. Immunoreactive-cells and expression-levels of spinal PAR-2, CGRP and c-Fos in the EA group were greater (P < 0.01) than those in the Control group, but less (P < 0.01) than those in Sham-A and VH groups on day 22. Downregulation of spinal PAR-2 and CGRP levels by EA attenuates the ileitis and resultant VH.
Collapse
Affiliation(s)
- Manoj K Shah
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China.,Department of Surgery and Pharmacology, Agriculture and Forestry University, Bharatpur, Nepal
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Juan Wan
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Habibullah Janyaro
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Adnan Hassan Tahir
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - Ming-Xing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
9
|
Van Steenwinckel J, Schang AL, Krishnan ML, Degos V, Delahaye-Duriez A, Bokobza C, Csaba Z, Verdonk F, Montané A, Sigaut S, Hennebert O, Lebon S, Schwendimann L, Le Charpentier T, Hassan-Abdi R, Ball G, Aljabar P, Saxena A, Holloway RK, Birchmeier W, Baud O, Rowitch D, Miron V, Chretien F, Leconte C, Besson VC, Petretto EG, Edwards AD, Hagberg H, Soussi-Yanicostas N, Fleiss B, Gressens P. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain 2020; 142:3806-3833. [PMID: 31665242 DOI: 10.1093/brain/awz319] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Microglia of the developing brain have unique functional properties but how their activation states are regulated is poorly understood. Inflammatory activation of microglia in the still-developing brain of preterm-born infants is associated with permanent neurological sequelae in 9 million infants every year. Investigating the regulators of microglial activation in the developing brain across models of neuroinflammation-mediated injury (mouse, zebrafish) and primary human and mouse microglia we found using analysis of genes and proteins that a reduction in Wnt/β-catenin signalling is necessary and sufficient to drive a microglial phenotype causing hypomyelination. We validated in a cohort of preterm-born infants that genomic variation in the Wnt pathway is associated with the levels of connectivity found in their brains. Using a Wnt agonist delivered by a blood-brain barrier penetrant microglia-specific targeting nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, white matter injury and behavioural deficits. Collectively, these data validate that the Wnt pathway regulates microglial activation, is critical in the evolution of an important form of human brain injury and is a viable therapeutic target.
Collapse
Affiliation(s)
| | - Anne-Laure Schang
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,UMR CNRS 8638-Chimie Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 Avenue de l'Observatoire, F-75006 Paris, France
| | - Michelle L Krishnan
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Vincent Degos
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Department of Anesthesia and Intensive Care, Pitié Salpétrière Hospital, F-75013 Paris France
| | - Andrée Delahaye-Duriez
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France
| | - Cindy Bokobza
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Zsolt Csaba
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Franck Verdonk
- Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, F-75006 Paris, France
| | - Amélie Montané
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Stéphanie Sigaut
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Olivier Hennebert
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Sophie Lebon
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Leslie Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Tifenn Le Charpentier
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Rahma Hassan-Abdi
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Rebecca K Holloway
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrueck Center for Molecular Medicine in the Helmholtz Society, Berlin-Buch, Germany
| | - Olivier Baud
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - David Rowitch
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Veronique Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Fabrice Chretien
- UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France.,Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Laboratoire de Neuropathologie, Centre Hospitalier Sainte Anne, F-75014 Paris, France
| | - Claire Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Valérie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | | | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,Perinatal Center, Institute of Clinical Sciences and Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, 41390 Gothenburg, Sweden
| | - Nadia Soussi-Yanicostas
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Bobbi Fleiss
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
10
|
Zhang J, Zhao Y, Hou T, Zeng H, Kalambhe D, Wang B, Shen X, Huang Y. Macrophage-based nanotherapeutic strategies in ulcerative colitis. J Control Release 2020; 320:363-380. [DOI: 10.1016/j.jconrel.2020.01.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/11/2020] [Accepted: 01/26/2020] [Indexed: 12/21/2022]
|
11
|
Costantino MD, Schuster A, Helmholz H, Meyer-Rachner A, Willumeit-Römer R, Luthringer-Feyerabend BJC. Inflammatory response to magnesium-based biodegradable implant materials. Acta Biomater 2020; 101:598-608. [PMID: 31610341 DOI: 10.1016/j.actbio.2019.10.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/15/2022]
Abstract
Biodegradability and mechanical properties of magnesium alloys are attractive for orthopaedic and cardiovascular applications. In order to study their cytotoxicity usually bone cells are used. However, after implantation, diverse and versatile cells are recruited and interact. Among the first ones coming into play are cells of the immune system, which are responsible for the inflammatory reaction. Macrophages play a central role in the inflammatory process due to the production of cytokines involved in the tissue healing but also in the possible failure of the implants. In order to evaluate the in vitro influence of the degradation products of magnesium-based alloys on cytokine release, the extracts of pure magnesium and two magnesium alloys (with gadolinium and silver as alloying elements) were examined in an inflammatory in vitro model. Human promonocytic cells (U937 cells) were differentiated into macrophages and further cultured with magnesium-based extracts for 1 and 3 days (simulating early and late inflammatory reaction phases), either at 37 °C or at 39 °C (mimicking normal and inflammatory conditions, respectively). All extracts exhibit very good cytocompatibility on differentiated macrophages. Results suggest that M1 and even more M2 profiles of macrophage were stimulated by the extracts of Mg. Furthermore, Mg-10Gd and Mg-2Ag extracts introduced a nuancing effect by rather inhibiting macrophage M1 profile. Magnesium-based biomaterials could thus induce a faster inflammation resolution while improving tissue repair. STATEMENT OF SIGNIFICANCE: Macrophage are the key-cells during inflammation and can influence the fate of tissue healing and implant performance. Magnesium-based implants are biodegradable and bioactive. Here we selected an in vitro system to model early and late inflammation and effect of pyrexia (37 °C versus 39 °C). We showed the beneficial and nuancing effects of magnesium (Mg) and the selected alloying elements (silver (Ag) and gadolinium (Gd)) on the macrophage polarisation. Mg extracts exacerbated simultaneously the macrophage M1 and M2 profiles while Mg-2Ag and Mg-10Gd rather inhibited the M1 differentiation. Furthermore, 39 °C exhibited protective effect by either decreasing cytokine production or promoting anti-inflammatory ones, with or without extracts. Mg-based biomaterials could thus induce a faster inflammation resolution while improving tissue repair.
Collapse
Affiliation(s)
- M D Costantino
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - A Schuster
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - H Helmholz
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - A Meyer-Rachner
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - R Willumeit-Römer
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - B J C Luthringer-Feyerabend
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany.
| |
Collapse
|
12
|
Li J, Wu B, Hu H, Fang X, Liu Z, Wu S. GdCl 3 attenuates the glomerular sclerosis of streptozotocin (STZ) induced diabetic rats via inhibiting TGF-β/Smads signal pathway. J Pharmacol Sci 2019; 142:41-49. [PMID: 31831259 DOI: 10.1016/j.jphs.2019.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/25/2019] [Accepted: 06/19/2019] [Indexed: 01/05/2023] Open
Abstract
Diabetic nephropathy (DN) is the most serious end-stage renal disease which characterized by renal glomerular sclerosis including glomerular hypertrophy, glomerular basement membrane (GBM) thickening, mesangial expansion and renal fibrosis. TGF-β/Smads signal pathway plays a crucial role in the development of renal fibrosis. In this study, we found that GdCl3 which was an agonist of Calcium-sensing receptor (CaSR) could repress the activation of TGF-β/Smads signal pathway induced by TGF-β1 or high glucose and then alleviated the accumulation of extracellular matrix (ECM) in mesangial cells and the kidney of type1 diabetic rats. Further study indicated that GdCl3 could induce the binding of CaSR and TβR II and then both of these two receptors translocated from cell membrane to cytoplasm, in this case, TβR II on the cell membrane was decreased and then desensitized to the stimulation of its ligand TGF-β1, so that the activation of its downstream factors such as Smad2 and Smad3 were blocked, finally, ECM expression in mesangial cells were inhibited. We concluded that GdCl3 could alleviate the accumulation of ECM in mesangial cells via antagonizing TGF-β/Smads signal pathway in diabetes mellitus.
Collapse
Affiliation(s)
- Jialin Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Bing Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Haibo Hu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Xiansong Fang
- The First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China.
| | - Suzhen Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China.
| |
Collapse
|
13
|
Gadolinium chloride attenuates acetic acid-evoked colitis in mice by reducing neutrophil infiltration and pro-oxidative enzyme activity. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:299-311. [PMID: 30483861 DOI: 10.1007/s00210-018-1592-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/22/2018] [Indexed: 12/19/2022]
Abstract
This study investigated the potential of gadolinium chloride (GdCl3), an inhibitor of kupffer cells on the myeloperoxidase (MPO) function, both in vivo on colon inflammation model and in vitro on thioglycollate-elicited peritoneal neutrophils. Colon inflammation was induced in mice (n = 7) by 4% acetic acid (AA) enema. GdCl3 (10 mg/kg) treatment was given 24 h before AA challenge. Clinical changes during the protocol were scored. Colons were segmented into distal and proximal parts for histological and biochemical assessment. Furthermore, myeloperoxidase (MPO) enzymes were extracted and analyzed by western blot. Short-term GdCl3 treatment inhibited dose-dependently superoxide anion (O2·-), alkaline phosphatase (ALP), and MPO release and promoted neutrophil apoptosis. In vivo, low-dose GdCl3 improved colitis scores and inhibited acute phagocyte recruitment and colon damage within the mucosa as revealed by the decrease in MPO, nitric oxide (NO), and malondialdehyde (MDA) levels. At the same time, GdCl3 restored catalase (CAT), superoxide dismutase (SOD) activities, and reduced glutathione (GSH) levels, thus reversing the MDA/GSH ratio in both distal and proximal colons. Compared to proximal, distal colon was more altered and displayed higher pathological manifestations. Lastly, the induction of apoptosis and regulation of the major nitrosative and oxidative functions of neutrophils by GdCl3 suggests its consideration as a beneficial tool in attenuating colon inflammation.
Collapse
|
14
|
Assessment of Serum sTREM-1 as a Marker of Subclinical Inflammation in Diarrhea-Predominant Patients with Irritable Bowel Syndrome. Dig Dis Sci 2018. [PMID: 29516326 DOI: 10.1007/s10620-018-5002-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Irritable bowel disease (IBS) is viewed upon as a functional disorder of subclinical inflammatory changes in recent years, and there is no reliable biomarker. Triggering receptor expressed on myeloid cells 1 (TREM-1), also produced in a soluble form (sTREM-1), is involved in the activation of inflammatory cascades of intracellular events and may play a role in pathogenesis of IBS. AIM To investigate whether serum sTREM-1 level can be used as a marker of subclinical inflammation in D-IBS. METHODS Abdominal pain was quantified by a validated questionnaire. Expression level of TREM-1 in colonic mucosa as well as sTREM-1 level in serum was also detected. Furthermore, we investigated the involvement of TREM-1-associated macrophage activation in IBS-like visceral hypersensitivity. RESULTS No evidence for obvious inflammation was found in D-IBS patients. Serum sTREM-1 level in D-IBS patients was significantly higher than that in HCs, which was also significantly correlated with abdominal pain scores. We showed a marked increase in the proportion of TREM-1-expressing macrophages in D-IBS, which was significantly correlated with abdominal pain scores. Functionally, gadolinium chloride (GdCl3), a macrophage selective inhibitor, or LP17, the TREM-1-specific peptide, significantly suppressed the visceral hypersensitivity in trinitrobenzene sulfonic acid (TNBS)-treated mice with IBS-like visceral hypersensitivity. CONCLUSIONS Serum sTREM-1 level is significantly higher in D-IBS patients and positively correlates with abdominal pain, which may be initiated by TREM-1-associated macrophage activation, indicating the existence of subclinical inflammation in D-IBS. Therefore, serum sTREM-1 is a potential marker of subclinical inflammation in D-IBS.
Collapse
|
15
|
Wang Y, Guo Y, Chen H, Wei H, Wan C. Potential of Lactobacillus plantarum ZDY2013 and Bifidobacterium bifidum WBIN03 in relieving colitis by gut microbiota, immune, and anti-oxidative stress. Can J Microbiol 2018; 64:327-337. [PMID: 29401402 DOI: 10.1139/cjm-2017-0716] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that is difficult to cure, with rising incidence in recent decades. Probiotics have become a new strategy for UC treatment. In this study, we chose 2 new multisource probiotics, Lactobacillus plantarum ZDY2013 from acid beans and Bifidobacterium bifidum WBIN03 from infant feces, and a mixture of both, to investigate the anti-inflammatory and antioxidant effect on H2O2-induced oxidative damage in a HT-29 cell model and dextran sodium sulfate (DSS)-induced UC in mice. Compared with the model group, the general relative indices results showed L. plantarum ZDY2013 and B. bifidum WBIN03 have a significant effect on DSS-induced UC in mice, by downregulating the pro-inflammatory cytokines (e.g., TNF-α) and upregulating antioxidant factors (e.g., SOD1, SOD2, GPX2) at the transcriptional level. By means of high-throughput sequencing (16S V3-V4) and systematical bioinformatics analyses, we found that colitis may be associated with the changes in intestinal flora, especially Firmicutes and Bacteroides. Administration of L. plantarum ZDY2013 increased the abundance of Lactobacillus animalis, whereas B. bifidum WBIN03 increased the abundance of Lachnospiraceae bacterium COE1. Our results revealed that a supplement of L. plantarum ZDY2013 and B. bifidum WBIN03 remit UC through modification of gut microbiota to regulate oxidative stress and inflammatory mediators.
Collapse
Affiliation(s)
- Yuanyuan Wang
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Yilin Guo
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Hui Chen
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
| | - Hua Wei
- b Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, People's Republic of China
| | - Cuixiang Wan
- b Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, People's Republic of China
| |
Collapse
|
16
|
Zhang Z, Wu X, Cao S, Wang L, Wang D, Yang H, Feng Y, Wang S, Li L. Caffeic acid ameliorates colitis in association with increased Akkermansia population in the gut microbiota of mice. Oncotarget 2017; 7:31790-9. [PMID: 27177331 PMCID: PMC5077976 DOI: 10.18632/oncotarget.9306] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence shows that dietary agents and phytochemicals contribute to the prevention and treatment of ulcerative colitis (UC). We first reported the effects of dietary caffeic acid (CaA) on murine experimental colitis and on fecal microbiota. Colitis was induced in C57BL/6 mice by administration of 2.5% dextran sulfate sodium (DSS). Mice were fed a control diet or diet with CaA (1 mM). Our results showed that dietary CaA exerted anti-inflammatory effects in DSS colitis mice. Moreover, CaA could significantly suppress the secretion of IL-6, TNFα, and IFNγ and the colonic infiltration of CD3+ T cells, CD177+ neutrophils and F4/80+ macrophages via inhibition of the activation of NF-κB signaling pathway. Analysis of fecal microbiota showed that CaA could restore the reduction of richness and inhibit the increase of the ratio of Firmicute to Bacteroidetes in DSS colitis mice. And CaA could dramatically increase the proportion of the mucin-degrading bacterium Akkermansia in DSS colitis mice. Thus, CaA could ameliorate colonic pathology and inflammation in DSS colitis mice, and it might be associated with a proportional increase in Akkermansia.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xinyue Wu
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Shuyuan Cao
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Li Wang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Di Wang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Hui Yang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Yiming Feng
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Shoulin Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Lei Li
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
17
|
Zhao X, Jin B, Yang B, Yan W, Wu X, Jiang C, Cheng S. Gadolinium chloride ameliorates acute lung injury associated with severe acute pancreatitis in rats by regulating CYLD/NF-κB signaling. Biochem Biophys Res Commun 2017; 492:255-261. [PMID: 28823916 DOI: 10.1016/j.bbrc.2017.08.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022]
Abstract
The present study was embarked on an investigation of the mechanisms behind the effects of Gadolinium chloride (GdCl3) on lung injury associated with severe acute pancreatitis (SAP) in rats. Rats were randomly distributed into three groups: sham operation group (SO), SAP group and SAP treated with GdCl3 group (SAP + GdCl3). Retrograde injection of 5% sodium taurocholate into the biliopancreatic duct was adopted to induce SAP. Lung tissue specimens were harvested for histological study, wet-to-dry weight ratio calculation and myeloperoxidase examination. Meanwhile, bronchoalveolar lavage fluid was analyzed for TNF-α and IL-1β activity and proteins content. Then the apoptosis ratio of alveolar macrophages (AMs) was detected. NF-κB activation and cylindromatosis (CYLD) expression in AMs were measured respectively. Results showed that GdCl3 treatment notably ameliorated lung injury induced by SAP, and simultaneously, the apoptosis ratio of AMs was significantly promoted. The NF-κB activation was obviously inhibited when CYLD expression was markedly up-regulated in AMs of SAP + GdCl3. Negative correlation was analyzed between CYLD and NF-κB in both SAP and SAP + GdCl3. These data demonstrate that GdCl3 ameliorates lung injury secondary to SAP in rats mainly by up-regulating CYLD expression and inhibiting NF-κB activation in AMs, which may play a vital role in lung injury.
Collapse
Affiliation(s)
- Xiuhao Zhao
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, PR China
| | - Bei Jin
- Department of Pediatric Surgery, Central Hospital of Handan City, Hebei, PR China
| | - Bin Yang
- Department of Vascular Surgery, Jining No.1 People's Hospital, Shandong, PR China
| | - Wenmao Yan
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, PR China
| | - Xianjia Wu
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, PR China
| | - Cuinan Jiang
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, PR China
| | - Shi Cheng
- Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, PR China.
| |
Collapse
|
18
|
Hanana H, Turcotte P, André C, Gagnon C, Gagné F. Comparative study of the effects of gadolinium chloride and gadolinium - based magnetic resonance imaging contrast agent on freshwater mussel, Dreissena polymorpha. CHEMOSPHERE 2017; 181:197-207. [PMID: 28437745 DOI: 10.1016/j.chemosphere.2017.04.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
Gadolinium (Gd), a metal of the lanthanide series used in various industrial and medical purposes is released into the aquatic environment. However, there are few aquatic toxicological studies addressing environmental effects of Gd which remains unknown in aquatic animals. Therefore, this study aimed to compare the effects of GdCl3 and a gadolinium-based MRI contrast agent (Omniscan), in zebra mussels after 28 days through a multibiomarker approach. Data revealed that after GdCl3 exposure, the mRNA level of metallothionein (MT) was modulated, those of cytochrome c oxidase (CO1) and superoxide dismutase (SOD) were increased, while gene expressions of catalase (CAT) and glutathione-S-transferase (GST) were downregulated. Furthermore, neither lipoperoxidation (LPO) nor genotoxicity were detected but only a decrease in the cyclooxygenase (COX) activity was observed. In addition, a significant correlation was found between biomarkers and bioaccumulated Gd, suggesting that mitochondrial and anti-inflammatory pathways were triggered with GdCl3. By opposition, the contrasting agent formulation induced downregulation of SOD, CAT, GST and CO1, a decrease in the level of LPO and an increase in the GST and COX activities. This suggests that the chelated form of Gd did not promote reactive oxygen species (ROS) production and exhibits antioxidant and proinflammatory effects in mussels. Therefore, this study revealed that ionic and the chelated form of Gd influence different cellular pathways to initiate cellular changes.
Collapse
Affiliation(s)
- Houda Hanana
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec H2Y 2E7, Canada.
| | - Patrice Turcotte
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec H2Y 2E7, Canada
| | - Chantale André
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec H2Y 2E7, Canada
| | - Christian Gagnon
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec H2Y 2E7, Canada
| | - François Gagné
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec H2Y 2E7, Canada.
| |
Collapse
|
19
|
Possible Involvement of Liver Resident Macrophages (Kupffer Cells) in the Pathogenesis of Both Intrahepatic and Extrahepatic Inflammation. Can J Gastroenterol Hepatol 2017; 2017:2896809. [PMID: 28804705 PMCID: PMC5539927 DOI: 10.1155/2017/2896809] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Liver resident macrophages designated Kupffer cells (KCs) form the largest subpopulation of tissue macrophages. KCs are involved in the pathogenesis of liver inflammation. However, the role of KCs in the systemic inflammation is still elusive. In this study, we examined whether KCs are involved in not only intrahepatic inflammation but also extrahepatic systemic inflammation. Administration of clodronate liposomes resulted in the KC deletion and in the suppression of liver injury in T cell-mediated hepatitis by ConA as a local acute inflammation model, while the treatment did not influence dextran sulfate sodium- (DSS-) induced colitis featured by weight loss, intestinal shrink, and pathological observation as an ectopic local acute inflammation model. In contrast, KC deletion inhibited collagen-induced arthritis as a model of extrahepatic, systemic chronical inflammation. KC deleted mice showed weaker arthritic scores, less joint swelling, and more joint space compared to arthritis-induced control mice. These results strongly suggest that KCs are involved in not only intrahepatic inflammatory response but also systemic (especially) chronic inflammation.
Collapse
|
20
|
Choi S, Chung H, Hong H, Kim SY, Kim SE, Seoh JY, Moon CM, Yang EG, Oh ES. Inflammatory hypoxia induces syndecan-2 expression through IL-1β-mediated FOXO3a activation in colonic epithelia. FASEB J 2016; 31:1516-1530. [PMID: 28031321 DOI: 10.1096/fj.201601098r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is known to be a key causative factor in tumor progression, but we do not yet fully understand the molecular mechanism through which inflammation leads to cancer. Here, we report that the dextran sulfate sodium (DSS)-induced mouse model of chronic colitis is associated with increases in the serum level of IL-1β and the colonic epithelial expression of the cell-surface heparan sulfate proteoglycan, syndecan-2. We further show that IL-1β stimulated the transcription of syndecan-2 via NF-κB-dependent FOXO3a activation in CCD841CoN normal colonic epithelial cells and early-stage HT29 colon cancer cells. Inflammatory hypoxia was observed in the colonic epithelia of mice with chronic colitis, suggesting that hypoxic stress is involved in the regulation of syndecan-2 expression. Consistently, experimental inflammatory hypoxia induced hypoxia inducible factor-1α-dependent FOXO3a expression and the p38 MAPK-mediated nuclear localization of FOXO3a. FOXO3a directly mediated syndecan-2 expression in both cell lines and the colonic epithelia of mice with DSS-induced colitis. Moreover, syndecan-2 expression was detected in azoxymethane/DSS-induced colon tumors. Together, these data demonstrate that inflammatory hypoxia up-regulates syndecan-2 via the IL-1β-NF-κB-FOXO3a pathway. These findings provide new mechanistic insights into inflammatory hypoxia-mediated syndecan-2 expression to connect chronic inflammation and the development of colon cancer.-Choi, S., Chung, H., Hong, H., Kim, S. Y., Kim, S.-E., Seoh, J.-Y., Moon, C. M., Yang, E. G., Oh, E.-S. Inflammatory hypoxia induces syndecan-2 expression through IL-1β-mediated FOXO3a activation in colonic epithelia.
Collapse
Affiliation(s)
- Sojoong Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Heesung Chung
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea; .,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Heejeong Hong
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Seong-Eun Kim
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, South Korea; and
| | - Ju-Young Seoh
- Department of Microbiology, Graduate School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Chang Mo Moon
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, South Korea; and
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea;
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea; .,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
21
|
Iraporda C, Romanin DE, Bengoa AA, Errea AJ, Cayet D, Foligné B, Sirard JC, Garrote GL, Abraham AG, Rumbo M. Local Treatment with Lactate Prevents Intestinal Inflammation in the TNBS-Induced Colitis Model. Front Immunol 2016; 7:651. [PMID: 28082985 PMCID: PMC5187354 DOI: 10.3389/fimmu.2016.00651] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/29/2022] Open
Abstract
Lactate has long been considered as a metabolic by-product of cells. Recently, this view has been changed by the observation that lactate can act as a signaling molecule and regulates critical functions of the immune system. We previously identified lactate as the component responsible for the modulation of innate immune epithelial response of fermented milk supernatants in vitro. We have also shown that lactate downregulates proinflammatory responses of macrophages and dendritic cells. So far, in vivo effects of lactate on intestinal inflammation have not been reported. We evaluated the effect of intrarectal administration of lactate in a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The increase in lactate concentration in colon promoted protective effects against TNBS-induced colitis preventing histopathological damage, as well as bacterial translocation and rise of IL-6 levels in serum. Using intestinal epithelial reporter cells, we found that flagellin treatment induced reporter gene expression, which was abrogated by lactate treatment as well as by glycolysis inhibitors. Furthermore, lactate treatment modulated glucose uptake, indicating that high levels of extracellular lactate can impair metabolic reprograming induced by proinflammatory activation. These results suggest that lactate could be a potential beneficial microbiota metabolite and may constitute an overlooked effector with modulatory properties.
Collapse
Affiliation(s)
- Carolina Iraporda
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA) , La Plata , Argentina
| | - David E Romanin
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP, UNLP-CONICET) , La Plata , Argentina
| | - Ana A Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA) , La Plata , Argentina
| | - Agustina J Errea
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP, UNLP-CONICET) , La Plata , Argentina
| | - Delphine Cayet
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, University of Lille , Lille , France
| | - Benoit Foligné
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, University of Lille , Lille , France
| | - Jean-Claude Sirard
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, University of Lille , Lille , France
| | - Graciela L Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA) , La Plata , Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CONICET-CIC.PBA), La Plata, Argentina; Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Martín Rumbo
- Instituto de Estudios Inmunológicos y Fisopatológicos (IIFP, UNLP-CONICET) , La Plata , Argentina
| |
Collapse
|
22
|
Na YR, Gu GJ, Jung D, Kim YW, Na J, Woo JS, Cho JY, Youn H, Seok SH. GM-CSF Induces Inflammatory Macrophages by Regulating Glycolysis and Lipid Metabolism. THE JOURNAL OF IMMUNOLOGY 2016; 197:4101-4109. [DOI: 10.4049/jimmunol.1600745] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022]
|
23
|
Shah MK, Wan J, Janyaro H, Tahir AH, Cui L, Ding MX. Visceral Hypersensitivity Is Provoked by 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Ileitis in Rats. Front Pharmacol 2016; 7:214. [PMID: 27499743 PMCID: PMC4956665 DOI: 10.3389/fphar.2016.00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/01/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND AIMS Crohn's Disease (CD), a chronic Inflammatory Bowel Disease, can occur in any part of the gastrointestinal tract, but most frequently in the ileum. Visceral hypersensitivity contributes for development of chronic abdominal pain in this disease. Currently, the understanding of the mechanism underlying hypersensitivity of Crohn's ileitis has been hindered by a lack of specific animal model. The present study is undertaken to investigate the visceral hypersensitivity provoked by 2,4,6-trinitrobenzene sulfonic (TNBS)-induced ileitis rats. METHODS Male Sprague-Dawley rats were anaesthetized and laparotomized for intraileal injection of TNBS (0.6 ml, 80 mg/kg body weight in 30% ethanol, n = 48), an equal volume of 30% Ethanol (n = 24), and Saline (n = 24), respectively. Visceral hypersensitivity was assessed by visceromotor responses (VMR) to 20, 40, 60, 80, and 100 mmHg colorectal distension pressure (CRD) at day 1, 3, 7, 14, 21, and 28. Immediately after CRD test, the rats were euthanized for collecting the terminal ileal segment for histopathological examinations and ELISA of myleoperoxidase and cytokines (TNF-α, IL-1β, IL-6), and dorsal root ganglia (T11) for determination of calcitonin gene-related peptide by immunohistochemistry, respectively. RESULTS Among all groups, TNBS-treatment showed transmural inflammation initially at 3 days, reached maximum at 7 days and persisted up to 21 days. The rats with ileitis exhibited (P < 0.05) VMR to CRD at day 7 to day 21. The calcitonin gene-related peptide-immunoreactive positive cells increased (P < 0.05) in dorsal root ganglia at day 7 to 21, which was persistently consistent with visceral hypersensitivity in TNBS-treated rats. CONCLUSION TNBS injection into the ileum induced transmural ileitis including granuloma and visceral hypersensitivity. As this model mimics clinical manifestations of CD, it may provide a road map to probe the pathogenesis of gut inflammation and visceral hypersensitivity, as well as for establishing the therapeutic protocol for Crohn's ileitis.
Collapse
Affiliation(s)
- Manoj K Shah
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Juan Wan
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Habibullah Janyaro
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Adnan H Tahir
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Luying Cui
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Ming-Xing Ding
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
24
|
Isidro RA, Appleyard CB. Colonic macrophage polarization in homeostasis, inflammation, and cancer. Am J Physiol Gastrointest Liver Physiol 2016; 311:G59-73. [PMID: 27229123 PMCID: PMC4967174 DOI: 10.1152/ajpgi.00123.2016] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/24/2016] [Indexed: 01/31/2023]
Abstract
Our review focuses on the colonic macrophage, a monocyte-derived, tissue-resident macrophage, and the role it plays in health and disease, specifically in inflammatory conditions such as inflammatory bowel disease and cancer of the colon and rectum. We give special emphasis to macrophage polarization, or phenotype, in these different states. We focus on macrophages because they are one of the most numerous leukocytes in the colon, and because they normally contribute to homeostasis through an anti-inflammatory phenotype. However, in conditions such as inflammatory bowel disease, proinflammatory macrophages are increased in the colon and have been linked to disease severity and progression. In colorectal cancer, tumor cells may employ anti-inflammatory macrophages to promote tumor growth and dissemination, whereas proinflammatory macrophages may antagonize tumor growth. Given the key roles that this cell type plays in homeostasis, inflammation, and cancer, the colonic macrophage is an intriguing therapeutic target. As such, potential macrophage-targeting strategies are discussed.
Collapse
Affiliation(s)
- Raymond A Isidro
- Department of Basic Sciences, Ponce Health Sciences University-Medical School and Ponce Research Institute, 395 Zona Industrial Reparada 2, Ponce, Puerto Rico 00716
| | - Caroline B Appleyard
- Department of Basic Sciences, Ponce Health Sciences University-Medical School and Ponce Research Institute, 395 Zona Industrial Reparada 2, Ponce, Puerto Rico 00716
| |
Collapse
|
25
|
Uyangaa E, Kim JH, Patil AM, Choi JY, Kim SB, Eo SK. Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade. PLoS Pathog 2015; 11:e1005256. [PMID: 26618488 PMCID: PMC4664252 DOI: 10.1371/journal.ppat.1005256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/09/2015] [Indexed: 12/24/2022] Open
Abstract
Type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV). However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I–dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC)-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I–dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident–to-hematopoietic–to-resident cells that drives cytokine–to-chemokine–to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues. Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide with lifelong latent infection after peripheral replication in mucosal tissues. Furthermore, acquisition of human immunodeficiency virus (HIV) is increased in HSV-infected individuals, underscoring the contribution of this virus in facilitating increased susceptibility to other microbial pathogens. Therefore, it is imperative to characterize the host defense to HSV infection and identify key components that regulate virus resistance, in order to devise therapeutic strategy. Although type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is considered a key player to control replication and CNS-invasion of HSV, the regulators and cell population that are affected by IFN-I to establish the orchestrated environment of innate cells in HSV-infected tissues are largely unknown. In the present study, we demonstrate that IFN-I signal governs the sequential recruitment of Ly-6Chi monocytes and then NK cells into mucosal tissues, depending on CCL2-CCL3 cascade mediated by HSC-derived leukocytes and epithelial resident cells, respectively. Also, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells were involved in producing the initial CCL2 for migration-based self-amplification of rapidly infiltrated Ly-6Chi monocytes through stimulation by IFN-I produced from infected epithelial cells. This study deciphers detailed IFN-I-dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade.
Collapse
Affiliation(s)
- Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Jin Hyoung Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Seong Bum Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea
- Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, Republic of Korea
- * E-mail:
| |
Collapse
|
26
|
Medicherla K, Sahu BD, Kuncha M, Kumar JM, Sudhakar G, Sistla R. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling. Food Funct 2015; 6:2984-95. [DOI: 10.1039/c5fo00405e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oral administration of geraniol ameliorates DSS-induced ulcerative colitis in mice.
Collapse
Affiliation(s)
- Kanakaraju Medicherla
- Department of Human Genetics
- College of Science and Technology
- Andhra University
- Visakhapatnam-530003
- India
| | - Bidya Dhar Sahu
- Medicinal Chemistry and Pharmacology Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500 007
- India
| | - Madhusudana Kuncha
- Medicinal Chemistry and Pharmacology Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500 007
- India
| | - Jerald Mahesh Kumar
- Animal House Facility
- CSIR-Centre for Cellular and Molecular Biology (CCMB)
- Hyderabad-500 007
- India
| | - Godi Sudhakar
- Department of Human Genetics
- College of Science and Technology
- Andhra University
- Visakhapatnam-530003
- India
| | - Ramakrishna Sistla
- Medicinal Chemistry and Pharmacology Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500 007
- India
| |
Collapse
|