1
|
Monalisha P, Li S, Jin T, Kumar PSA, Piramanayagam SN. A multilevel electrolyte-gated artificial synapse based on ruthenium-doped cobalt ferrite. NANOTECHNOLOGY 2023; 34:165201. [PMID: 36645906 DOI: 10.1088/1361-6528/acb35a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Synaptic devices that emulate synchronized memory and processing are considered the core components of neuromorphic computing systems for the low-power implementation of artificial intelligence. In this regard, electrolyte-gated transistors (EGTs) have gained much scientific attention, having a similar working mechanism as the biological synapses. Moreover, compared to a traditional solid-state gate dielectric, the liquid dielectric has the key advantage of inducing extremely large modulation of carrier density while overcoming the problem of electric pinholes, that typically occurs when using large-area films gated through ultra-thin solid dielectrics. Herein we demonstrate a three-terminal synaptic transistor based on ruthenium-doped cobalt ferrite (CRFO) thin films by electrolyte gating. In the CRFO-based EGT, we have obtained multilevel non-volatile conductance states for analog computing and high-density storage. Furthermore, the proposed synaptic transistor exhibited essential synaptic behavior, including spike amplitude-dependent plasticity, spike duration-dependent plasticity, long-term potentiation, and long-term depression successfully by applying electrical pulses. This study can motivate the development of advanced neuromorphic devices that leverage simultaneous modulation of electrical and magnetic properties in the same device and show a new direction to synaptic electronics.
Collapse
Affiliation(s)
- P Monalisha
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Shengyao Li
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Tianli Jin
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - P S Anil Kumar
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - S N Piramanayagam
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
2
|
Walter J, Voigt B, Day-Roberts E, Heltemes K, Fernandes RM, Birol T, Leighton C. Voltage-induced ferromagnetism in a diamagnet. SCIENCE ADVANCES 2020; 6:eabb7721. [PMID: 32832693 PMCID: PMC7439324 DOI: 10.1126/sciadv.abb7721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/12/2020] [Indexed: 05/29/2023]
Abstract
Increasingly impressive demonstrations of voltage-controlled magnetism have been achieved recently, highlighting potential for low-power data processing and storage. Magnetoionic approaches appear particularly promising, electrolytes and ionic conductors being capable of on/off control of ferromagnetism and tuning of magnetic anisotropy. A clear limitation, however, is that these devices either electrically tune a known ferromagnet or electrically induce ferromagnetism from another magnetic state, e.g., antiferromagnetic. Here, we demonstrate that ferromagnetism can be voltage-induced even from a diamagnetic (zero-spin) state suggesting that useful magnetic phases could be electrically induced in "nonmagnetic" materials. We use ionic liquid-gated diamagnetic FeS2 as a model system, showing that as little as 1 V induces a reversible insulator-metal transition by electrostatic surface inversion. Anomalous Hall measurements then reveal electrically tunable surface ferromagnetism at up to 25 K. Density functional theory-based modeling explains this in terms of Stoner ferromagnetism induced via filling of a narrow e g band.
Collapse
Affiliation(s)
- Jeff Walter
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Physics, Augsburg University, Minneapolis, MN 55454, USA
| | - Bryan Voigt
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ezra Day-Roberts
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kei Heltemes
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Physics, Augsburg University, Minneapolis, MN 55454, USA
| | - Rafael M. Fernandes
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Turan Birol
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Abstract
Most digital information today is encoded in the magnetization of ferromagnetic domains. The demand for ever-increasing storage space fuels continuous research for energy-efficient manipulation of magnetism at smaller and smaller length scales. Writing a bit is usually achieved by rotating the magnetization of domains of the magnetic medium, which relies on effective magnetic fields. An alternative approach is to change the magnetic state directly by acting on the interaction between magnetic moments. Correlated oxides are ideal materials for this because the effects of a small external control parameter are amplified by the electronic correlations. Here, we present a radical method for reversible, light-induced tuning of ferromagnetism at room temperature using a halide perovskite/oxide perovskite heterostructure. We demonstrate that photoinduced charge carriers from the [Formula: see text] photovoltaic perovskite efficiently dope the thin [Formula: see text] film and decrease the magnetization of the ferromagnetic state, allowing rapid rewriting of the magnetic bit. This manipulation could be accomplished at room temperature; hence this opens avenues for magnetooptical memory devices.
Collapse
|
4
|
Yi D, Wang Y, van ʼt Erve OMJ, Xu L, Yuan H, Veit MJ, Balakrishnan PP, Choi Y, N'Diaye AT, Shafer P, Arenholz E, Grutter A, Xu H, Yu P, Jonker BT, Suzuki Y. Emergent electric field control of phase transformation in oxide superlattices. Nat Commun 2020; 11:902. [PMID: 32060300 PMCID: PMC7021769 DOI: 10.1038/s41467-020-14631-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion transfer, has been identified as a powerful means to achieve electric-field-controlled phase transformations. The class of transition metal oxides provide many potential candidates that present a strong response under electrolytic gating. However, very few show a reversible structural transformation at room-temperature. Here, we report the realization of a digitally synthesized transition metal oxide that shows a reversible, electric-field-controlled transformation between distinct crystalline phases at room-temperature. In superlattices comprised of alternating one-unit-cell of SrIrO3 and La0.2Sr0.8MnO3, we find a reversible phase transformation with a 7% lattice change and dramatic modulation in chemical, electronic, magnetic and optical properties, mediated by the reversible transfer of oxygen and hydrogen ions. Strikingly, this phase transformation is absent in the constituent oxides, solid solutions and larger period superlattices. Our findings open up this class of materials for voltage-controlled functionality.
Collapse
Affiliation(s)
- Di Yi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA.
| | - Yujia Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Olaf M J van ʼt Erve
- Materials Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Liubin Xu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Hongtao Yuan
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Michael J Veit
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Purnima P Balakrishnan
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Alpha T N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander Grutter
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, USA
| | - Haixuan Xu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China.
- Frontier Science Center for Quantum Information, Beijing, 100084, China.
- RIKEN Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan.
| | - Berend T Jonker
- Materials Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Yuri Suzuki
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
5
|
Kim D, Lim H, Ha SS, Seo O, Lee SS, Kim J, Kim KJ, Perez Ramirez L, Gallet JJ, Bournel F, Jo JY, Nemsak S, Noh DY, Mun BS. Correlation between structural phase transition and surface chemical properties of thin film SrRuO 3/SrTiO 3 (001). J Chem Phys 2020; 152:034704. [PMID: 31968967 DOI: 10.1063/1.5134653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The correlation between the structural phase transition (SPT) and oxygen vacancy in SrRuO3 (SRO) thin films was investigated by in situ X-ray diffraction (XRD) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). In situ XRD shows that the SPT occurs from a monoclinic SRO phase to a tetragonal SRO phase near ∼200 °C, regardless of the pressure environment. On the other hand, significant core level shifts in both the Ru and Sr photoemission spectra are found under ultrahigh vacuum, but not under the oxygen pressure environment. The directions and behavior of the core level shift of Ru and Sr are attributed to the formation of oxygen vacancy across the SPT temperature of SRO. The analysis of in situ XRD and AP-XPS results provides an evidence for the formation of metastable surface oxide possibly due to the migration of internal oxygen atoms across the SPT temperature, indicating the close relationship between oxygen vacancy and SPT in SRO thin films.
Collapse
Affiliation(s)
- Dongwoo Kim
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Hojoon Lim
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Sung Soo Ha
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Okkyun Seo
- Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS), Kouto, Sayo, Hyogo 679-5148, Japan
| | - Sung Su Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jinwoo Kim
- Pohang Accelerator Laboratory, POSTECH, 127 Jigok-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, South Korea
| | - Ki-Jeong Kim
- Pohang Accelerator Laboratory, POSTECH, 127 Jigok-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, South Korea
| | - Lucia Perez Ramirez
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, Campus Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Jean-Jacques Gallet
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, Campus Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Fabrice Bournel
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, Campus Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Ji Young Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Slavomir Nemsak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Bongjin Simon Mun
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| |
Collapse
|
6
|
Li Z, Shen S, Tian Z, Hwangbo K, Wang M, Wang Y, Bartram FM, He L, Lyu Y, Dong Y, Wan G, Li H, Lu N, Zang J, Zhou H, Arenholz E, He Q, Yang L, Luo W, Yu P. Reversible manipulation of the magnetic state in SrRuO 3 through electric-field controlled proton evolution. Nat Commun 2020; 11:184. [PMID: 31924767 PMCID: PMC6954193 DOI: 10.1038/s41467-019-13999-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 11/29/2019] [Indexed: 11/09/2022] Open
Abstract
Ionic substitution forms an essential pathway to manipulate the structural phase, carrier density and crystalline symmetry of materials via ion-electron-lattice coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both structural and electronic phase transformations through the electric-field controlled proton evolution with ionic liquid gating. The insertion of protons results in a large structural expansion and increased carrier density, leading to an exotic ferromagnetic to paramagnetic phase transition. Importantly, we reveal a novel protonated compound of HSrRuO3 with paramagnetic metallic as ground state. We observe a topological Hall effect at the boundary of the phase transition due to the proton concentration gradient across the film-depth. We envision that electric-field controlled protonation opens up a pathway to explore novel electronic states and material functionalities in protonated material systems.
Collapse
Affiliation(s)
- Zhuolu Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Shengchun Shen
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Zijun Tian
- Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Kyle Hwangbo
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
| | - Meng Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Yujia Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
| | - F Michael Bartram
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
| | - Liqun He
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
| | - Yingjie Lyu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Yongqi Dong
- Advanced Photon Source, Argonne National Lab, Argonne, IL, 60439, USA
- Materials Science Division, Argonne National Lab, Argonne, IL, 60439, USA
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Gang Wan
- Materials Science Division, Argonne National Lab, Argonne, IL, 60439, USA
| | - Haobo Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Nianpeng Lu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, 100190, Beijing, China
| | - Jiadong Zang
- Department of Physics and Astronomy, University of New Hampshire, Durham, NH, 03824, USA
| | - Hua Zhou
- Advanced Photon Source, Argonne National Lab, Argonne, IL, 60439, USA
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Qing He
- Department of Physics, Durham University, Durham, DH13LE, United Kingdom
| | - Luyi Yang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China.
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada.
- Frontier Science Center for Quantum Information, 100084, Beijing, China.
| | - Weidong Luo
- Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Collaborative Innovation Center of Advanced Microstructures, 210093, Nanjing, China.
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084, Beijing, China.
- Frontier Science Center for Quantum Information, 100084, Beijing, China.
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-198, Japan.
| |
Collapse
|
7
|
Robbennolt S, Menéndez E, Quintana A, Gómez A, Auffret S, Baltz V, Pellicer E, Sort J. Reversible, Electric-Field Induced Magneto-Ionic Control of Magnetism in Mesoporous Cobalt Ferrite Thin Films. Sci Rep 2019; 9:10804. [PMID: 31346196 PMCID: PMC6658663 DOI: 10.1038/s41598-019-46618-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022] Open
Abstract
The magnetic properties of mesoporous cobalt ferrite films can be largely tuned by the application of an electric field using a liquid dielectric electrolyte. By applying a negative voltage, the cobalt ferrite becomes reduced, leading to an increase in saturation magnetization of 15% (MS) and reduction in coercivity (HC) between 5-28%, depending on the voltage applied (-10 V to -50 V). These changes are mainly non-volatile so after removal of -10 V MS remains 12% higher (and HC 5% smaller) than the pristine sample. All changes can then be reversed with a positive voltage to recover the initial properties even after the application of -50 V. Similar studies were done on analogous films without induced porosity and the effects were much smaller, underscoring the importance of nanoporosity in our system. The different mechanisms possibly responsible for the observed effects are discussed and we conclude that our observations are compatible with voltage-driven oxygen migration (i.e., the magneto-ionic effect).
Collapse
Affiliation(s)
- Shauna Robbennolt
- Departament de Física, Universitat Autònoma de Barcelona, E-08193, Cerdanyola del Vallès, Spain.
| | - Enric Menéndez
- Departament de Física, Universitat Autònoma de Barcelona, E-08193, Cerdanyola del Vallès, Spain
| | - Alberto Quintana
- Departament de Física, Universitat Autònoma de Barcelona, E-08193, Cerdanyola del Vallès, Spain
| | - Andrés Gómez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Stéphane Auffret
- SPINTEC, Univ. Grenoble Alpes/CNRS/INAC-CEA, F-38000, Grenoble, France
| | - Vincent Baltz
- SPINTEC, Univ. Grenoble Alpes/CNRS/INAC-CEA, F-38000, Grenoble, France
| | - Eva Pellicer
- Departament de Física, Universitat Autònoma de Barcelona, E-08193, Cerdanyola del Vallès, Spain
| | - Jordi Sort
- Departament de Física, Universitat Autònoma de Barcelona, E-08193, Cerdanyola del Vallès, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, E-08010, Barcelona, Spain.
| |
Collapse
|
8
|
Molinari A, Hahn H, Kruk R. Voltage-Control of Magnetism in All-Solid-State and Solid/Liquid Magnetoelectric Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806662. [PMID: 30785649 DOI: 10.1002/adma.201806662] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/20/2018] [Indexed: 06/09/2023]
Abstract
The control of magnetism by means of low-power electric fields, rather than dissipative flowing currents, has the potential to revolutionize conventional methods of data storage and processing, sensing, and actuation. A promising strategy relies on the utilization of magnetoelectric composites to finely tune the interplay between electric and magnetic degrees of freedom at the interface of two functional materials. Albeit early works predominantly focused on the magnetoelectric coupling at solid/solid interfaces; however, recently there has been an increased interest related to the opportunities offered by liquid-gating techniques. Here, a comparative overview on voltage control of magnetism in all-solid-state and solid/liquid composites is presented within the context of the principal coupling mediators, i.e., strain, charge carrier doping, and ionic intercalation. Further, an exhaustive and critical discussion is carried out, concerning the suitability of using the common definition of coupling coefficient α C = Δ M Δ E to compare the strength of the interaction between electricity and magnetism among different magnetoelectric systems.
Collapse
Affiliation(s)
- Alan Molinari
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Horst Hahn
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- KIT-TUD-Joint Research Laboratory Nanomaterials, Technical University Darmstadt, Jovanka-Bontschits-Strasse 2, 64287, Darmstadt, Germany
| | - Robert Kruk
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Leighton C. Electrolyte-based ionic control of functional oxides. NATURE MATERIALS 2019; 18:13-18. [PMID: 30542099 DOI: 10.1038/s41563-018-0246-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/12/2018] [Indexed: 05/23/2023]
Abstract
The use of electrolyte gating to electrically control electronic, magnetic and optical properties of materials has seen strong recent growth, driven by the potential of the many devices and applications that such control may enable. Contrary to initial expectations of a purely electrostatic response based on electron or hole doping, electrochemical mechanisms based on the motion of ions are now understood to be common, suggesting promising new electrical control concepts.
Collapse
Affiliation(s)
- Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
10
|
Chen A, Su Q, Han H, Enriquez E, Jia Q. Metal Oxide Nanocomposites: A Perspective from Strain, Defect, and Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803241. [PMID: 30368932 DOI: 10.1002/adma.201803241] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Vertically aligned nanocomposite thin films with ordered two phases, grown epitaxially on substrates, have attracted tremendous interest in the past decade. These unique nanostructured composite thin films with large vertical interfacial area, controllable vertical lattice strain, and defects provide an intriguing playground, allowing for the manipulation of a variety of functional properties of the materials via the interplay among strain, defect, and interface. This field has evolved from basic growth and characterization to functionality tuning as well as potential applications in energy conversion and information technology. Here, the remarkable progress achieved in vertically aligned nanocomposite thin films from a perspective of tuning functionalities through control of strain, defect, and interface is summarized.
Collapse
Affiliation(s)
- Aiping Chen
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Qing Su
- Nebraska Center for Energy Sciences Research, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Hyungkyu Han
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Erik Enriquez
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Quanxi Jia
- Department of Materials Design and Innovation, University at Buffalo-The State University of New York, Buffalo, NY, 14260, USA
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul, 143-701, South Korea
| |
Collapse
|
11
|
Zeng SW, Yin XM, Herng TS, Han K, Huang Z, Zhang LC, Li CJ, Zhou WX, Wan DY, Yang P, Ding J, Wee ATS, Coey JMD, Venkatesan T, Rusydi A, Ariando A. Oxygen Electromigration and Energy Band Reconstruction Induced by Electrolyte Field Effect at Oxide Interfaces. PHYSICAL REVIEW LETTERS 2018; 121:146802. [PMID: 30339445 DOI: 10.1103/physrevlett.121.146802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Indexed: 06/08/2023]
Abstract
Electrolyte gating is a powerful means for tuning the carrier density and exploring the resultant modulation of novel properties on solid surfaces. However, the mechanism, especially its effect on the oxygen migration and electrostatic charging at the oxide heterostructures, is still unclear. Here we explore the electrolyte gating on oxygen-deficient interfaces between SrTiO_{3} (STO) crystals and LaAlO_{3} (LAO) overlayer through the measurements of electrical transport, x-ray absorption spectroscopy, and photoluminescence spectra. We found that oxygen vacancies (O_{vac}) were filled selectively and irreversibly after gating due to oxygen electromigration at the amorphous LAO/STO interface, resulting in a reconstruction of its interfacial band structure. Because of the filling of O_{vac}, the amorphous interface also showed an enhanced electron mobility and quantum oscillation of the conductance. Further, the filling effect could be controlled by the degree of the crystallinity of the LAO overlayer by varying the growth temperatures. Our results reveal the different effects induced by electrolyte gating, providing further clues to understand the mechanism of electrolyte gating on buried interfaces and also opening a new avenue for constructing high-mobility oxide interfaces.
Collapse
Affiliation(s)
- S W Zeng
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - X M Yin
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore 117603, Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - T S Herng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - K Han
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Z Huang
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - L C Zhang
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - C J Li
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - W X Zhou
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - D Y Wan
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - P Yang
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore 117603, Singapore
| | - J Ding
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - A T S Wee
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research, National University of Singapore, Singapore 117546, Singapore
| | - J M D Coey
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411, Singapore
- School of Physics and CRANN, Trinity College, Dublin 2, Ireland
| | - T Venkatesan
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), 28 Medical Drive, Singapore 117456, Singapore
| | - A Rusydi
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore 117603, Singapore
| | - A Ariando
- NUSNNI-NanoCore, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
12
|
Bisri SZ, Shimizu S, Nakano M, Iwasa Y. Endeavor of Iontronics: From Fundamentals to Applications of Ion-Controlled Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1607054. [PMID: 28582588 DOI: 10.1002/adma.201607054] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/16/2017] [Indexed: 05/28/2023]
Abstract
Iontronics is a newly emerging interdisciplinary concept which bridges electronics and ionics, covering electrochemistry, solid-state physics, electronic engineering, and biological sciences. The recent developments of electronic devices are highlighted, based on electric double layers formed at the interface between ionic conductors (but electronically insulators) and various electronic conductors including organics and inorganics (oxides, chalcogenide, and carbon-based materials). Particular attention is devoted to electric-double-layer transistors (EDLTs), which are producing a significant impact, particularly in electrical control of phase transitions, including superconductivity, which has been difficult or impossible in conventional all-solid-state electronic devices. Besides that, the current state of the art and the future challenges of iontronics are also reviewed for many applications, including flexible electronics, healthcare-related devices, and energy harvesting.
Collapse
Affiliation(s)
- Satria Zulkarnaen Bisri
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Sunao Shimizu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Masaki Nakano
- Quantum Phase Electronic Center (QPEC) and Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshihiro Iwasa
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Quantum Phase Electronic Center (QPEC) and Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
13
|
Zhao S, Zhou Z, Peng B, Zhu M, Feng M, Yang Q, Yan Y, Ren W, Ye ZG, Liu Y, Liu M. Quantitative Determination on Ionic-Liquid-Gating Control of Interfacial Magnetism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606478. [PMID: 28256772 DOI: 10.1002/adma.201606478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Ionic-liquid gating on a functional thin film with a low voltage has drawn a lot of attention due to rich chemical, electronic, and magnetic phenomena at the interface. Here, a key challenge in quantitative determination of voltage-controlled magnetic anisotropy (VCMA) in Au/[DEME]+ [TFSI]- /Co field-effect transistor heterostructures is addressed. The magnetic anisotropy change as response to the gating voltage is precisely detected by in situ electron spin resonance measurements. A reversible change of magnetic anisotropy up to 219 Oe is achieved with a low gating voltage of 1.5 V at room temperature, corresponding to a record high VCMA coefficient of ≈146 Oe V-1 . Two gating effects, the electrostatic doping and electrochemical reaction, are distinguished at various gating voltage regions, as confirmed by X-ray photoelectron spectroscopy and atomic force microscopy experiments. This work shows a unique ionic-liquid-gating system for strong interfacial magnetoelectric coupling with many practical advantages, paving the way toward ion-liquid-gating spintronic/electronic devices.
Collapse
Affiliation(s)
- Shishun Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ziyao Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Peng
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mingmin Zhu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengmeng Feng
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qu Yang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuan Yan
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Ren
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zuo-Guang Ye
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yaohua Liu
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
14
|
Wei G, Wei L, Wang D, Tian Y, Chen Y, Yan S, Mei L, Jiao J. Reversible control of the magnetization of Fe3O4via lithium ions. RSC Adv 2017. [DOI: 10.1039/c6ra26422k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A stable and reversible modulation of Fe3O4 saturated magnetization by Li ions is demonstrated in this work.
Collapse
Affiliation(s)
- Guodong Wei
- School of Physics and State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250100
- P. R. China
| | - Lin Wei
- School of Microelectronics
- Shandong University
- Jinan 250100
- P. R. China
| | - Dong Wang
- School of Physics and State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250100
- P. R. China
| | - Yufeng Tian
- School of Physics and State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250100
- P. R. China
| | - Yanxue Chen
- School of Physics and State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250100
- P. R. China
| | - Shishen Yan
- School of Physics and State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250100
- P. R. China
| | - Liangmo Mei
- School of Physics and State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250100
- P. R. China
| | - Jun Jiao
- Department of Mechanical and Materials Engineering
- Portland State University
- Portland
- USA
| |
Collapse
|
15
|
Tie M, Dhirani AA. Electrolyte-gated charge transport in molecularly linked gold nanoparticle films: The transition from a Mott insulator to an exotic metal with strong electron-electron interactions. J Chem Phys 2016; 145:104702. [DOI: 10.1063/1.4962342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
16
|
Walter J, Wang H, Luo B, Frisbie CD, Leighton C. Electrostatic versus Electrochemical Doping and Control of Ferromagnetism in Ion-Gel-Gated Ultrathin La0.5Sr0.5CoO3-δ. ACS NANO 2016; 10:7799-810. [PMID: 27479878 DOI: 10.1021/acsnano.6b03403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recently, electrolyte gating techniques employing ionic liquids/gels in electric double layer transistors have proven remarkably effective in tuning charge carrier density in a variety of materials. The ability to control surface carrier densities at levels above 10(14) cm(-2) has led to widespread use in the study of superconductivity, insulator-metal transitions, etc. In many cases, controversy remains over the doping mechanism, however (i.e., electrostatic vs electrochemical (e.g., redox-based)), and the technique has been less applied to magnetic materials. Here, we discuss ion gel gating of nanoscale 8-unit-cell-thick hole-doped La0.5Sr0.5CoO3-δ (LSCO) films, probing in detail the critical bias windows and doping mechanisms. The LSCO films, which are under compressive stress on LaAlO3(001) substrates, are metallic and ferromagnetic (Curie temperature, TC ∼ 170 K), with strong anomalous Hall effect and perpendicular magnetic anisotropy. Transport measurements reveal that negative gate biases lead to reversible hole accumulation (i.e., predominantly electrostatic operation) up to some threshold, whereas positive bias immediately induces irreversibility. Experiments in inert/O2 atmospheres directly implicate oxygen vacancies in this irreversibility, supported by atomic force microscopy and X-ray photoelectron spectroscopy. The results are thus of general importance, suggesting that hole- and electron-doped oxides may respond very differently to electrolyte gating. Reversible voltage control of electronic/magnetic properties is then demonstrated under hole accumulation, including resistivity, magnetoresistance, and TC. The sizable anomalous Hall coefficient and perpendicular anisotropy in LSCO provide a particularly powerful probe of magnetism, enabling direct extraction of the voltage-dependent order parameter and TC shift. The latter amounts to ∼7%, with potential for much stronger modulation at lower Sr doping.
Collapse
Affiliation(s)
- Jeff Walter
- Department of Chemical Engineering and Materials Science and ‡Characterization Facility, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Helin Wang
- Department of Chemical Engineering and Materials Science and ‡Characterization Facility, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Bing Luo
- Department of Chemical Engineering and Materials Science and ‡Characterization Facility, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science and ‡Characterization Facility, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science and ‡Characterization Facility, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Leng X, Bollinger AT, Božović I. Purely electronic mechanism of electrolyte gating of indium tin oxide thin films. Sci Rep 2016; 6:31239. [PMID: 27506371 PMCID: PMC4979031 DOI: 10.1038/srep31239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/15/2016] [Indexed: 11/21/2022] Open
Abstract
Epitaxial indium tin oxide films have been grown on both LaAlO3 and yttria-stabilized zirconia substrates using RF magnetron sputtering. Electrolyte gating causes a large change in the film resistance that occurs immediately after the gate voltage is applied, and shows no hysteresis during the charging/discharging processes. When two devices are patterned next to one another and the first one gated through an electrolyte, the second one shows no changes in conductance, in contrast to what happens in materials (like tungsten oxide) susceptible to ionic electromigration and intercalation. These findings indicate that electrolyte gating in indium tin oxide triggers a pure electronic process (electron depletion or accumulation, depending on the polarity of the gate voltage), with no electrochemical reactions involved. Electron accumulation occurs in a very thin layer near the film surface, which becomes highly conductive. These results contribute to our understanding of the electrolyte gating mechanism in complex oxides and may be relevant for applications of electric double layer transistor devices.
Collapse
Affiliation(s)
- X Leng
- Brookhaven National Laboratory, Upton NY 11973, USA
| | | | - I Božović
- Brookhaven National Laboratory, Upton NY 11973, USA.,Applied Physics Department, Yale University, New Haven CT 06520, USA
| |
Collapse
|
18
|
Yi HT, Wu X, Zhu X, Podzorov V. Intrinsic Charge Transport across Phase Transitions in Hybrid Organo-Inorganic Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6509-6514. [PMID: 27185304 DOI: 10.1002/adma.201600011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/21/2016] [Indexed: 06/05/2023]
Abstract
Hall effect measurements in CH3 NH3 PbBr3 single crystals reveal that the charge-carrier mobility follows an inverse-temperature power-law dependence, μ ∝ T(-) (γ) , with the power exponent γ = 1.4 ± 0.1 in the cubic phase, indicating an acoustic-phonon-dominated carrier scattering, and γ = 0.5 ± 0.1 in the tetragonal phase, suggesting another dominant mechanism, such as a piezoelectric or space-charge scattering.
Collapse
Affiliation(s)
- Hee Taek Yi
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xiaoxi Wu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Vitaly Podzorov
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
- Institute for Advanced Materials, Devices and Nanotechnology (IAMDN), Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
19
|
A steep-slope transistor based on abrupt electronic phase transition. Nat Commun 2015; 6:7812. [PMID: 26249212 PMCID: PMC4918311 DOI: 10.1038/ncomms8812] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/14/2015] [Indexed: 11/10/2022] Open
Abstract
Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep (‘sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications. The intrinsic properties of conventional semiconductors limits the speed and efficiency of field-effect transistors. Here, the authors take advantage of the insulator-to-metal transition in vanadium dioxide to create a transistor with reversible and steep-slope switching at room temperature.
Collapse
|