1
|
Hong YQ, Zhang XR, Wu LH, Lv TY, Liao XJ, Guinea GV, Pérez-Rigueiro J, Jiang P. The Effect of the Loading-Unloading Cycles on the Tensile Behavior and Structures of Spider Tubular Gland Silk. ACS Biomater Sci Eng 2025; 11:1379-1390. [PMID: 39957541 DOI: 10.1021/acsbiomaterials.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
There exists a significant correlation between the microstructural evolution and the mechanical properties of fibers during repeated loading and unloading cycles. Nevertheless, the influence of deformation and the duration of intervals on the structural and tensile behavior of spider silk after repeated stretching at a given strain value has been rarely reported, with the exception of studies focusing on the major ampullate gland silk (Mas) of the spider. In order to investigate the effects of repeated stretching on the structural and mechanical behavior of spider tubular gland silk (Tus), the tensile properties and the changes in semiquantitative protein secondary structure of Argiope bruennichi Tus during loading-unloading cycles were characterized. The results indicate that the typical tensile behavior curves of Tus were irreversibly modified to resemble those of Mas, demonstrating a clear yield region accompanied by a necking phenomenon. The Tus displays remarkable characteristics of repeated stretching and mechanical memory, and it is capable of reproducing the tensile behavior of fibers subjected to one stretch, independent from its previous loading history. The above phenomenon may be caused by repeated stretching leading to the damage and reconstruction of protein structures, including an increase in α-helix content and the rearrangement of spider-silk proteins, enabling them to reproduce their mechanical behavior. These findings may provide valuable insights for the biomimetic design of novel fiber materials, such as the spider silk gut, through the artificial stretching of spider silk glands.
Collapse
Affiliation(s)
- Yi-Qin Hong
- School of Life Sciences, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an, Jiangxi Province 343009, China
| | - Xin-Ru Zhang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an, Jiangxi Province 343009, China
| | - Li-Hua Wu
- Business College, Jinggangshan University, Ji'an, Jiangxi Province 343009, China
| | - Tai-Yong Lv
- Department of Nuclear Medicine, Sichuan Key Laboratory of Nuclear Medicine and Molecular Imaging, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Xin-Jun Liao
- School of Life Sciences, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an, Jiangxi Province 343009, China
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
- Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
- Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Ping Jiang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an, Jiangxi Province 343009, China
| |
Collapse
|
2
|
Greco G, Schmuck B, Jalali SK, Pugno NM, Rising A. Influence of experimental methods on the mechanical properties of silk fibers: A systematic literature review and future road map. BIOPHYSICS REVIEWS 2023; 4:031301. [PMID: 38510706 PMCID: PMC10903380 DOI: 10.1063/5.0155552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 03/22/2024]
Abstract
Spider silk fibers are of scientific and industrial interest because of their extraordinary mechanical properties. These properties are normally determined by tensile tests, but the values obtained are dependent on the morphology of the fibers, the test conditions, and the methods by which stress and strain are calculated. Because of this, results from many studies are not directly comparable, which has led to widespread misconceptions in the field. Here, we critically review most of the reports from the past 50 years on spider silk mechanical performance and use artificial spider silk and native silks as models to highlight the effect that different experimental setups have on the fibers' mechanical properties. The results clearly illustrate the importance of carefully evaluating the tensile test methods when comparing the results from different studies. Finally, we suggest a protocol for how to perform tensile tests on silk and biobased fibers.
Collapse
Affiliation(s)
| | | | - S. K. Jalali
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy
| | | | - Anna Rising
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
3
|
Massive production of fibroin nano-fibrous biomaterial by turbulent co-flow. Sci Rep 2022; 12:21924. [PMID: 36536025 PMCID: PMC9763433 DOI: 10.1038/s41598-022-26137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Among the different polymers (proteins, polysaccharides, etc.) that make up natural fibers, fibroin is a protein produced by silk spinning animals, which have developed an optimized system for the conversion of a highly concentrated solution of this protein into high-performance solid fibers. This protein undergoes a self-assembly process in the silk glands that result from chemical gradients and by the application of mechanical stresses during the last step of the process. In the quest for a process that could mimic natural spinning at massive scales, we have discovered that turbulence offers a novel and promising solution: a turbulent liquid jet can be formed by a chemically green and simple coagulating liquid (a diluted solution of acetic acid in etanol) co-flowing with a concentrated solution of fibroin in water by the use of a Flow Blurring nebulizer. In this system, (a) the co-flowing coagulant liquid extracts water from the original protein solution and, simultaneously, (b) the self-assembled proteins are subjected to mechanical actions, including splitting and stretching. Given the non-negligible produced content with the size and appearance of natural silk, the stochastic distribution of those effects in our process should contain the range of natural ones found in animals. The resulting easily functionalizable and tunable one-step material is 100% biocompatible, and our method a perfect candidate to large-scale, low-cost, green and sustainable processing of fibroin for fibres and textiles.
Collapse
|
4
|
Aznar-Cervantes SD, Cenis JL, Lozano-Picazo P, Bruno AL, Pagán A, Ruiz-León Y, Candel MJ, González-Nieto D, Rojo FJ, Elices M, Guinea GV, Pérez-Rigueiro J. Unexpected high toughness of Samia cynthia ricini silk gut. SOFT MATTER 2022; 18:4973-4982. [PMID: 35748816 DOI: 10.1039/d2sm00340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silk gut fibers were produced from the silkworm Samia cynthia ricini silk glands by the usual procedure of immersion in a mildly acidic solution and subsequent stretching. The morphology of the silk guts was assessed by scanning electron microscopy, and their microstructure was assessed by infrared spectroscopy and X-ray diffraction. It was found that both naturally spun and Samia silk guts share a common semicrystalline microstructure. The mechanical characterization of the silk guts revealed that these fibers show an elastomeric behavior when tested in water, and exhibit a genuine ground state to which the fiber may revert independently of its previous loading history. In spite of its large cross-sectional area compared with naturally spun silk fibers, Samia silk guts show values of work to fracture up to 160 MJ m-3, much larger than those of most of their natural counterparts, and establish a new record value for this parameter in silk guts.
Collapse
Affiliation(s)
- Salvador D Aznar-Cervantes
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - José Luis Cenis
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - Paloma Lozano-Picazo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Augusto Luis Bruno
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Ana Pagán
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - Yolanda Ruiz-León
- Research Support Unit, Real Jardín Botánico, Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain
| | - María José Candel
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - Daniel González-Nieto
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Javier Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - Manuel Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo Víctor Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| |
Collapse
|
5
|
Jorge I, Ruiz V, Lavado-García J, Vázquez J, Hayashi C, Rojo FJ, Atienza JM, Elices M, Guinea GV, Pérez-Rigueiro J. Expression of spidroin proteins in the silk glands of golden orb-weaver spiders. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:241-253. [PMID: 34981640 DOI: 10.1002/jez.b.23117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The expression of spidroins in the major ampullate, minor ampullate, flagelliform, and tubuliform silk glands of Trichonephila clavipes spiders was analyzed using proteomics analysis techniques. Spidroin peptides were identified and assigned to different gene products based on sequence concurrence when compared with the whole genome of the spider. It was found that only a relatively low proportion of the spidroin genes are expressed as proteins in any of the studied glands. In addition, the expression of spidroin genes in different glands presents a wide range of patterns, with some spidroins being found in a single gland exclusively, while others appear in the content of several glands. The combination of precise genomics, proteomics, microstructural, and mechanical data provides new insights both on the design principles of these materials and how these principles might be translated for the production of high-performance bioinspired artificial fibers.
Collapse
Affiliation(s)
- Inmaculada Jorge
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Víctor Ruiz
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Jesús Lavado-García
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departament d'Enginyeria Química, Grup d'Enginyeria Cel·lular i de Bioprocessos (GECIB), Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cheryl Hayashi
- Division of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, USA
| | - Francisco J Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - José M Atienza
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Elices
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
6
|
Aznar-Cervantes SD, Pagán A, Candel MJ, Pérez-Rigueiro J, Cenis JL. Silkworm Gut Fibres from Silk Glands of Samia cynthia ricini-Potential Use as a Scaffold in Tissue Engineering. Int J Mol Sci 2022; 23:ijms23073888. [PMID: 35409245 PMCID: PMC8998787 DOI: 10.3390/ijms23073888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
High-performance fibroin fibres are ideal candidates for the manufacture of scaffolds with applications in tissue engineering due to the excellent mechanical properties and optimal biocompatibility of this protein. In this work, the manufacture of high-strength fibres made from the silk glands of Samia cynthia ricini is explored. The glands were subjected to soaking in aqueous dissolutions of acetic acid and stretched to manufacture the fibres. The materials produced were widely characterized, in terms of morphology, mechanical properties, crystallinity and content of secondary structures, comparing them with those produced by the standard procedure published for Bombyx mori. In addition, mechanical properties and biocompatibility of a braided scaffold produced from these fibres was evaluated. The results obtained show that the fibres from B. mori present a higher degree of crystallinity than those from S. c. ricini, which is reflected in higher values of elastic modulus and lower values of strain at break. Moreover, a decrease in the elongation values of the fibres from S. c. ricini was observed as the concentration of acetic acid was increased during the manufacture. On the other hand, the study of the braided scaffolds showed higher values of tensile strength and strain at break in the case of S. c. ricini materials and similar values of elastic modulus, compared to those of B. mori, displaying both scaffolds optimal biocompatibility using a fibroblast cell line.
Collapse
Affiliation(s)
- Salvador D. Aznar-Cervantes
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), La Alberca, 30150 Murcia, Spain; (S.D.A.-C.); (M.J.C.); (J.L.C.)
| | - Ana Pagán
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), La Alberca, 30150 Murcia, Spain; (S.D.A.-C.); (M.J.C.); (J.L.C.)
- Correspondence: ; Tel.: +34-968366719
| | - María J. Candel
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), La Alberca, 30150 Murcia, Spain; (S.D.A.-C.); (M.J.C.); (J.L.C.)
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28223 Madrid, Spain
| | - José L. Cenis
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), La Alberca, 30150 Murcia, Spain; (S.D.A.-C.); (M.J.C.); (J.L.C.)
| |
Collapse
|
7
|
Badillo-Sanchez D, Chelazzi D, Giorgi R, Cincinelli A, Baglioni P. Understanding the structural degradation of South American historical silk: A Focal Plane Array (FPA) FTIR and multivariate analysis. Sci Rep 2019; 9:17239. [PMID: 31754137 PMCID: PMC6872790 DOI: 10.1038/s41598-019-53763-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022] Open
Abstract
Silk artifacts constitute an invaluable heritage, and to preserve such patrimony it is necessary to correlate the degradation of silk fibroin with the presence of dyes, pollutants, manufacturing techniques, etc. Fourier Transform Infrared Spectroscopy with a Focal plane array detector (FPA FTIR) provides structural information at the micron scale. We characterized the distribution of secondary structures in silk fibers for a large set of South American historical textiles, coupling FTIR with multivariate statistical analysis to correlate the protein structure with the age of the samples and the presence of dyes. We found that the pressure applied during attenuated total reflectance (ATR) measurements might induce structural changes in the fibers, producing similar spectra for pristine and aged samples. Reflectance spectra were thus used for the rigorous characterization of secondary structures. Some correlation was highlighted between the age of the samples (spanning over five centuries) and specific changes in their secondary structure. A correlation was found between the color of the samples and structural alterations, in agreement with the chemical nature of the dyes. Overall, we demonstrated the efficacy of reflectance FPA µ-FTIR, combined with multivariate analysis, for the rigorous and non-invasive description of protein secondary structures on large sets of samples.
Collapse
Affiliation(s)
- Diego Badillo-Sanchez
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| | - Rodorico Giorgi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
8
|
Ruiz V, Jiang P, Müller C, Jorge I, Vázquez J, Ridruejo Á, Aznar-Cervantes SD, Cenis JL, Messeguer-Olmo L, Elices M, Guinea GV, Pérez-Rigueiro J. Preparation and characterization of Nephila clavipes tubuliform silk gut. SOFT MATTER 2019; 15:2960-2970. [PMID: 30901019 DOI: 10.1039/c9sm00212j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tubuliform silk glands were dissected from Nephila clavipes spiders, and silk gut fibers were produced by immersing the glands in a mild acid solution and subsequent stretching. The tensile properties of the as produced fibers were obtained through tensile tests, and the stress-strain curves were compared with those of naturally spun tubuliform silk fibers. The influence on the mechanical properties of the fibers after immersion in water and drying was also discerned. The microstructure of the silk guts was obtained by X-ray diffraction (XRD) and infrared spectroscopy (FTIR). It was found that the stress-strain curves of the stretched tubuliform silk guts concur with those of their natural counterparts (tubuliform silk fibers).
Collapse
Affiliation(s)
- Víctor Ruiz
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Madurga R, Guinea GV, Elices M, Pérez-Rigueiro J, Gañán-Calvo AM. Straining flow spinning: Simplified model of a bioinspired process to mass produce regenerated silk fibers controllably. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat Chem Biol 2017; 13:262-264. [PMID: 28068309 DOI: 10.1038/nchembio.2269] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 11/08/2022]
Abstract
Herein we present a chimeric recombinant spider silk protein (spidroin) whose aqueous solubility equals that of native spider silk dope and a spinning device that is based solely on aqueous buffers, shear forces and lowered pH. The process recapitulates the complex molecular mechanisms that dictate native spider silk spinning and is highly efficient; spidroin from one liter of bacterial shake-flask culture is enough to spin a kilometer of the hitherto toughest as-spun artificial spider silk fiber.
Collapse
|
11
|
Localised semicrystalline phases of MaSp1 proteins show high sensitivity to overshearing in β -sheet nanocrystals. Int J Biol Macromol 2016; 92:1006-1011. [DOI: 10.1016/j.ijbiomac.2016.07.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 11/22/2022]
|
12
|
Soler A, Zaera R. The secondary frame in spider orb webs: the detail that makes the difference. Sci Rep 2016; 6:31265. [PMID: 27507613 PMCID: PMC4978998 DOI: 10.1038/srep31265] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 06/29/2016] [Indexed: 11/09/2022] Open
Abstract
Spider orb webs are multifunctional structures, the main function of which is to dissipate the kinetic energy of the impacting prey, while minimizing structural damage. There is no single explanation for their remarkable strength and ductility. However, it is clear that topology is decisive in the structural performance upon impact, and the arrangement of the different silk threads in the web must also exert an effect. The aim of this study is to show how a slight variation in the geometry markedly affects the prey-capture ability of spider orb webs. The study is focused on the secondary frame, a thread interposed between radial and primary frame strands, the importance of which has not been examined until now. The simulation of the impact performance of webs using different lengths of the secondary frame clarifies its structural role, which has proven to be decisive. Furthermore, the study explains why secondary frame threads of moderate length, as commonly encountered, enable the capture of prey with higher energy without a marked increase in the volume of silk used.
Collapse
Affiliation(s)
- Alejandro Soler
- Universidad Carlos III de Madrid, Department of Continuum Mechanics and Structural Analysis, 28911 Leganés, Madrid, Spain
| | - Ramón Zaera
- Universidad Carlos III de Madrid, Department of Continuum Mechanics and Structural Analysis, 28911 Leganés, Madrid, Spain
| |
Collapse
|
13
|
Cenis JL, Madurga R, Aznar-Cervantes SD, Lozano-Pérez AA, Marí-Buyé N, Meseguer-Olmo L, Plaza GR, Guinea GV, Elices M, Del Pozo F, Pérez-Rigueiro J. Mechanical behaviour and formation process of silkworm silk gut. SOFT MATTER 2015; 11:8981-8991. [PMID: 26403149 DOI: 10.1039/c5sm01877c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High performance silk fibers were produced directly from the silk glands of silkworms (Bombyx mori) following an alternative route to natural spinning. This route is based on a traditional procedure that consists of soaking the silk glands in a vinegar solution and stretching them by hand leading to the so called silkworm guts. Here we present, to the authors' best knowledge, the first comprehensive study on the formation, properties and microstructure of silkworm gut fibers. Comparison of the tensile properties and microstructural organization of the silkworm guts with those of naturally spun fibers allows gain of a deeper insight into the mechanisms that lead to the formation of the fiber, as well as the relationship between the microstructure and properties of these materials. In this regard, it is proved that an acidic environment and subsequent application of tensile stress in the range of 1000 kPa are sufficient conditions for the formation of a silk fiber.
Collapse
Affiliation(s)
- José L Cenis
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 La Alberca (Murcia), Spain
| | - Rodrigo Madurga
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain and Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Salvador D Aznar-Cervantes
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 La Alberca (Murcia), Spain
| | - A Abel Lozano-Pérez
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 La Alberca (Murcia), Spain
| | - Núria Marí-Buyé
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain and Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Luis Meseguer-Olmo
- Universidad Católica San Antonio de Murcia (UCAM) and Hospital Universitario "Virgen de la Arrixaca", 30120 El Palmar, Murcia, Spain
| | - Gustavo R Plaza
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain and Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain and Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Manuel Elices
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain and Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Francisco Del Pozo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain and Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| |
Collapse
|