1
|
Sun C, Ruan Z, Zhang Y, Guo R, Li H, Wang T, Gao T, Tang Y, Song N, Hao S, Huang X, Li S, Ning F, Su Y, Lu Q, Wang Q, Cao X, Li Z, Chang T. High indirect bilirubin levels as an independent predictor of postoperative myasthenic crisis: a single-center, retrospective study. Front Neurol 2024; 14:1336823. [PMID: 38283685 PMCID: PMC10811789 DOI: 10.3389/fneur.2023.1336823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Background Thymectomy is an efficient and standard treatment strategy for patients with myasthenia gravis (MG), postoperative myasthenic crisis (POMC) is the major complication related to thymectomy and has a strongly life-threatening effect. As a biomarker, whether the bilirubin level is a risk factor for MG progression remains unclear. This study aimed to investigate the association between the preoperative bilirubin level and postoperative myasthenic crisis (POMC). Methods We analyzed 375 patients with MG who underwent thymectomy at Tangdu Hospital between January 2012 and September 2021. The primary outcome measurement was POMC. The association between POMC and bilirubin level was analyzed by restricted cubic spline (RCS). Indirect bilirubin (IBIL) was divided into two subgroups based on the normal upper limit of IBIL, 14 μmol/L. Results Compared with non-POMC group, IBIL levels were significantly higher in patients with POMC. Elevated IBIL levels were closely associated with an increased risk of POMC (p for trend = 0.002). There was a dose-response curve relationship between IBIL levels and POMC incidence (p for non-linearity = 0.93). However, DBIL levels showed a U-shaped association with POMC incidence. High IBIL level (≥14 μmol/L) was an independent predictive factor for POMC [odds ratio = 3.47, 95% confidence interval (CI): 1.56-7.8, p = 0.002]. The addition of high IBIL levels improved the prediction model performance (net reclassification index = 0.186, 95% CI: 0.039-0.334; integrated discrimination improvement = 0.0345, 95% CI: 0.005-0.065). Conclusion High preoperative IBIL levels, especially those exceeding the normal upper limit, could independently predict the incidence of POMC.
Collapse
Affiliation(s)
- Chao Sun
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Ruan
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rongjing Guo
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tantan Wang
- School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Ting Gao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yonglan Tang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Na Song
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sijia Hao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxi Huang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuang Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fan Ning
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yue Su
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qingqing Wang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiangqi Cao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Gao H, Zhao Q, Song JG, Hu GX, Yu WF, Jiao YF, Song JC. Bilirubin potentiates etomidate-induced sedation by enhancing GABA-induced currents after bile duct ligation. BMC Pharmacol Toxicol 2023; 24:46. [PMID: 37740245 PMCID: PMC10517516 DOI: 10.1186/s40360-023-00675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2022] [Accepted: 05/09/2023] [Indexed: 09/24/2023] Open
Abstract
OBJECTIVES Our previous clinical trial showed that etomidate requirements to reach an appropriate level of anesthesia in patients with obstructive jaundice were reduced, which means that these patients are more sensitive to etomidate. However, the mechanism is still not completely clear. The present study was aimed to investigate the mechanism by which bilirubin facilitates etomidate induced sedation. METHODS A bile duct ligation (BDL) rat model was used to simulate obstructive jaundice. Anesthesia sensitivity to etomidate was determined by the time to loss of righting reflex (LORR). Intrathecal injection of bilirubin was used to test the effects of bilirubin on etomidate induced sedation. The modulating effects of bilirubin on GABA responses were studied using the whole-cell patch clamp technique. RESULTS The time to LORR induced by etomidate was significantly decreased in the BDL groups (p < 0.05), and unconjugated bilirubin in serum and cerebrospinal fluid (CSF) were markedly increased (p < 0.05). The time to LORR induced by etomidate was decreased after intrathecal injection of bilirubin (p < 0.05). A bilirubin concentration of 1.0 μM increased the GABA-induced currents of rat cortical pyramidal neurons (p < 0.05). Furthermore, 1.0 μM bilirubin enhanced GABA-induced currents modulated by etomidate (p < 0.05). CONCLUSIONS Our results demonstrated that pathologic bilirubin in CSF could enhance etomidate induced sedation. The mechanism may be that bilirubin increase the GABA-induced currents of rat pyramidal neurons.
Collapse
Affiliation(s)
- Hao Gao
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shanghai, China
- Department of Anesthesiology, Shanghai Shuguang Hospital, University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Zhao
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shanghai, China
| | - Jian-Gang Song
- Department of Anesthesiology, Shanghai Shuguang Hospital, University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Xia Hu
- Department of Transfusion Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ying-Fu Jiao
- Department of Anesthesiology, Renji Hospital Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Jin-Chao Song
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Menshov VA, Trofimov AV, Zagurskaya AV, Berdnikova NG, Yablonskaya OI, Platonova AG. Influence of Nicotine from Diverse Delivery Tools on the Autonomic Nervous and Hormonal Systems. Biomedicines 2022; 10:biomedicines10010121. [PMID: 35052800 PMCID: PMC8773565 DOI: 10.3390/biomedicines10010121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Through measurements of the heart rate variability (HRV) accompanied by the pertinent biomarker assays, the effects of nicotine and byproducts derived from alternative nicotine delivery systems (ANDS) on the autonomic nervous system (ANS) and hormonal system have been investigated. Methods: HRV was studied in a group of volunteers (17 people), involving non-smokers, i.e., who never smoked before (11), ex-smokers (4) and active smokers (2). ANDS and smoking simulators, including regular, nicotine-free and electronic cigarettes; tobacco heating systems; chewing gums and nicotine packs of oral fixation (nic-packs), were used. Blood pressure, levels of stress hormones in saliva and catecholamines in the blood were also monitored. Results: HRV analysis showed relatively small changes in HRV and in the other studied parameters with the systemic use of nic-packs with low and moderate nicotine contents (up to 6 mg) compared to other ANDS. Conclusions: The HRV method is proven to be a promising technique for evaluation of the risks associated with smoking, dual use of various ANDS and studying the biomedical aspects of smoking cessation. Nic-packs are shown to be leaders in biological safety among the studied ANDS. A sharp surge in the activity of the sympathetic division of the ANS within the first minutes of the use of nicotine packs implies that nicotine begins to act already at very low doses (before entering the blood physically in any significant amount) through fast signal transmission to the brain from the nicotinic and taste buds located in the mouth area.
Collapse
Affiliation(s)
- Valerii A. Menshov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.G.B.); (O.I.Y.)
- Correspondence: (V.A.M.); (A.V.T.); Tel.: +7-495-9397358 (A.V.T.); Fax: +7-499-1374101 (V.A.M. & A.V.T.)
| | - Aleksei V. Trofimov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.G.B.); (O.I.Y.)
- Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- Correspondence: (V.A.M.); (A.V.T.); Tel.: +7-495-9397358 (A.V.T.); Fax: +7-499-1374101 (V.A.M. & A.V.T.)
| | | | - Nadezda G. Berdnikova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.G.B.); (O.I.Y.)
- Department of Clinical Pharmacology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Olga I. Yablonskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.G.B.); (O.I.Y.)
| | | |
Collapse
|
4
|
Pennell EN, Wagner KH, Mosawy S, Bulmer AC. Acute bilirubin ditaurate exposure attenuates ex vivo platelet reactive oxygen species production, granule exocytosis and activation. Redox Biol 2019; 26:101250. [PMID: 31226648 PMCID: PMC6586953 DOI: 10.1016/j.redox.2019.101250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Bilirubin, a by-product of haem catabolism, possesses potent endogenous antioxidant and platelet inhibitory properties. These properties may be useful in inhibiting inappropriate platelet activation and ROS production; for example, during storage for transfusion. Given the hydrophobicity of unconjugated bilirubin (UCB), we investigated the acute platelet inhibitory and ROS scavenging ability of a water-soluble bilirubin analogue, bilirubin ditaurate (BRT) on ex vivo platelet function to ascertain its potential suitability for inclusion during platelet storage. Methods The inhibitory potential of BRT (10–100 μM) was assessed using agonist induced platelet aggregation, dense granule exocytosis and flow cytometric analysis of P-selectin and GPIIb/IIIa expression. ROS production was investigated by analysis of H2DCFDA fluorescence following agonist simulation while mitochondrial ROS production investigated using MitoSOX™ Red. Platelet mitochondrial membrane potential and viability was assessed using TMRE and Zombie Green™ respectively. Results Our data shows ≤35 μM BRT significantly inhibits both dense and alpha granule exocytosis as measured by ATP release and P-selectin surface expression, respectively. Significant inhibition of GPIIb/IIIa expression was also reported upon ≤35 μM BRT exposure. Furthermore, platelet exposure to ≤10 μM BRT significantly reduces platelet mitochondrial ROS production. Despite the inhibitory effect of BRT, platelet viability, mitochondrial membrane potential and agonist induced aggregation were not perturbed. Conclusions These data indicate, for the first time, that BRT, a water-soluble bilirubin analogue, inhibits platelet activation and reduces platelet ROS production ex vivo and may, therefore, may be of use in preserving platelet function during storage. The impact of conjugated bilirubin on platelet function has not been investigated to date. Bilirubin ditaurate (BDT) is a water-soluble analogue of conjugated bilirubin. BDT attenuates ex vivo platelet activation and ROS generation. Conjugated forms of bilirubin might inhibit platelet activation during storage.
Collapse
Affiliation(s)
- Evan Noel Pennell
- School of Medical Science, Griffith University, Gold Coast, Australia
| | - Karl-Heinz Wagner
- Research Platform Active Aging, Department of Nutritional Science, University of Vienna, Austria.
| | - Sapha Mosawy
- School of Medical Science, Griffith University, Gold Coast, Australia; Endeavour College of Natural Health, Melbourne, Australia
| | | |
Collapse
|
5
|
Bulmer AC, Bakrania B, Du Toit EF, Boon AC, Clark PJ, Powell LW, Wagner KH, Headrick JP. Bilirubin acts as a multipotent guardian of cardiovascular integrity: more than just a radical idea. Am J Physiol Heart Circ Physiol 2018; 315:H429-H447. [PMID: 29600900 DOI: 10.1152/ajpheart.00417.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Bilirubin, a potentially toxic catabolite of heme and indicator of hepatobiliary insufficiency, exhibits potent cardiac and vascular protective properties. Individuals with Gilbert's syndrome (GS) may experience hyperbilirubinemia in response to stressors including reduced hepatic bilirubin excretion/increased red blood cell breakdown, with individuals usually informed by their clinician that their condition is of little consequence. However, GS appears to protect from all-cause mortality, with progressively elevated total bilirubin associated with protection from ischemic heart and chronic obstructive pulmonary diseases. Bilirubin may protect against these diseases and associated mortality by reducing circulating cholesterol, oxidative lipid/protein modifications, and blood pressure. In addition, bilirubin inhibits platelet activation and protects the heart from ischemia-reperfusion injury. These effects attenuate multiple stages of the atherosclerotic process in addition to protecting the heart during resultant ischemic stress, likely underpinning the profound reduction in cardiovascular mortality in hyperbilirubinemic GS. This review outlines our current knowledge of and uses for bilirubin in clinical medicine and summarizes recent progress in revealing the physiological importance of this poorly understood molecule. We believe that this review will be of significant interest to clinicians, medical researchers, and individuals who have GS.
Collapse
Affiliation(s)
- Andrew C Bulmer
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Bhavisha Bakrania
- Department of Physiology and Biophysics, University of Mississippi Medical Centre , Jackson, Mississippi
| | - Eugene F Du Toit
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Ai-Ching Boon
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| | - Paul J Clark
- QIMR-Berghofer Medical Research Institute, School of Medicine, University of Queensland and Princess Alexandra and Mater Hospitals , Brisbane, New South Wales , Australia
| | - Lawrie W Powell
- The Centre for the Advancement of Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland Centre for Clinical Research , Brisbane, Queensland , Australia
| | - Karl-Heinz Wagner
- Department of Nutritional Science, University of Vienna , Vienna , Austria
| | - John P Headrick
- School of Medical Science and Menzies Health Institute Queensland, Griffith University , Gold Coast, Queensland , Australia
| |
Collapse
|