1
|
Chatterjee S, De R, Hens C, Dana SK, Kapitaniak T, Bhattacharyya S. Response of a three-species cyclic ecosystem to a short-lived elevation of death rate. Sci Rep 2023; 13:20740. [PMID: 38007582 PMCID: PMC10676407 DOI: 10.1038/s41598-023-48104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
A balanced ecosystem with coexisting constituent species is often perturbed by different natural events that persist only for a finite duration of time. What becomes important is whether, in the aftermath, the ecosystem recovers its balance or not. Here we study the fate of an ecosystem by monitoring the dynamics of a particular species that encounters a sudden increase in death rate. For exploration of the fate of the species, we use Monte-Carlo simulation on a three-species cyclic rock-paper-scissor model. The density of the affected (by perturbation) species is found to drop exponentially immediately after the pulse is applied. In spite of showing this exponential decay as a short-time behavior, there exists a region in parameter space where this species surprisingly remains as a single survivor, wiping out the other two which had not been directly affected by the perturbation. Numerical simulations using stochastic differential equations of the species give consistency to our results.
Collapse
Affiliation(s)
- Sourin Chatterjee
- Department of Mathematics and Statistics, Indian Institute of Science Education and Research, Kolkata, West Bengal, 741246, India
| | - Rina De
- Department of Physics, Raja Rammohun Roy Mahavidyalaya, Radhanagar, Hooghly, 712406, India
| | - Chittaranjan Hens
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, 500 032, India
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
| | - Syamal K Dana
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, 700032, India
| | - Tomasz Kapitaniak
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
| | | |
Collapse
|
2
|
Carvalho S, Mota H, Martins M. Landscapes of Biochemical Warfare: Spatial Self-Organization Woven from Allelopathic Interactions. Life (Basel) 2023; 13:512. [PMID: 36836869 PMCID: PMC9967760 DOI: 10.3390/life13020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Evidence shows that diversity and spatial distributions of biological communities are largely driven by the race of living organisms in their adaptation to chemicals synthesized by their neighbors. In this report, the emergence of mathematical models on pure spatial self-organization induced by biochemical suppression (allelopathy) and competition between species were investigated through numerical analysis. For both random and patched initial spatial distributions of species, we demonstrate that warfare survivors are self-organized on the landscape in Turing-like patterns driven by diffusive instabilities of allelochemicals. These patterns are simple; either all species coexist at low diffusion rates or are massively extinct, except for a few at high diffusivities, but they are complex and biodiversity-sustained at intermediate diffusion rates. "Defensive alliances" and ecotones seem to be basic mechanisms that sustain great biodiversity in our hybrid cellular automata model. Moreover, species coexistence and extinction exhibit multi-stationarity.
Collapse
Affiliation(s)
- Sylvestre Carvalho
- Institute for Advanced Studies, University of São Paulo, São Paulo 05508-050, Brazil
- Department of Physics, CFisUC, Center of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
| | - Henrique Mota
- Department of Physics, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Marcelo Martins
- Department of Physics, Federal University of Viçosa, Viçosa 36570-900, Brazil
- National Institute of Science and Technology for Complex Systems, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, Brazil
- Ibitipoca Institute of Physics (IbitiPhys), Conceição do Ibitipoca 36140-000, Brazil
| |
Collapse
|
3
|
Park J. Correlation between the formation of new competing group and spatial scale for biodiversity in the evolutionary dynamics of cyclic competition. CHAOS (WOODBURY, N.Y.) 2022; 32:081101. [PMID: 36049957 DOI: 10.1063/5.0102416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Securing space for species breeding is important in the evolution and maintenance of life in ecological sciences, and an increase in the number of competing species may cause frequent competition and conflict among the population in securing such spaces in a given area. In particular, for cyclically competing species, which can be described by the metaphor of rock-paper-scissors game, most of the previous works in microscopic frameworks have been studied with the initially given three species without any formation of additional competing species, and the phase transition of biodiversity via mobility from coexistence to extinction has never been changed by a change of spatial scale. In this regard, we investigate the relationship between spatial scales and species coexistence in the spatial cyclic game by considering the emergence of a new competing group by mutation. For different spatial scales, our computations reveal that coexistence can be more sensitive to spatial scales and may require larger spaces for frequencies of interactions. By exploiting the calculation of the coexistence probability from Monte-Carlo simulations, we obtain that certain interaction ranges for coexistence can be affected by both spatial scales and mobility, and spatial patterns for coexistence can appear in different ways. Since the issue of spatial scale is important for species survival as competing populations increase, we expect our results to have broad applications in the fields of social and ecological sciences.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
4
|
Mir H, Stidham J, Pleimling M. Emerging spatiotemporal patterns in cyclic predator-prey systems with habitats. Phys Rev E 2022; 105:054401. [PMID: 35706181 DOI: 10.1103/physreve.105.054401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Three-species cyclic predator-prey systems are known to establish spiral waves that allow species to coexist. In this study, we analyze a structured heterogeneous system which gives one species an advantage to escape predation in an area that we refer to as a habitat and study the effect on species coexistence and emerging spatiotemporal patterns. Counterintuitively, the predator of the advantaged species emerges as dominant species with the highest average density inside the habitat. The species given the advantage in the form of an escape rate has the lowest average density until some threshold value for the escape rate is exceeded, after which the density of the species with the advantage overtakes that of its prey. Numerical analysis of the spatial density of each species as well as of the spatial two-point correlation function for both inside and outside the habitats allow a detailed quantitative discussion. Our analysis is extended to a six-species game that exhibits spontaneous spiral waves, which displays similar but more complicated results.
Collapse
Affiliation(s)
- Hana Mir
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | - James Stidham
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | - Michel Pleimling
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| |
Collapse
|
5
|
Uversky VN, Giuliani A. Networks of Networks: An Essay on Multi-Level Biological Organization. Front Genet 2021; 12:706260. [PMID: 34234818 PMCID: PMC8255927 DOI: 10.3389/fgene.2021.706260] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
The multi-level organization of nature is self-evident: proteins do interact among them to give rise to an organized metabolism, while in the same time each protein (a single node of such interaction network) is itself a network of interacting amino-acid residues allowing coordinated motion of the macromolecule and systemic effect as allosteric behavior. Similar pictures can be drawn for structure and function of cells, organs, tissues, and ecological systems. The majority of biologists are used to think that causally relevant events originate from the lower level (the molecular one) in the form of perturbations, that “climb up” the hierarchy reaching the ultimate layer of macroscopic behavior (e.g., causing a specific disease). Such causative model, stemming from the usual genotype-phenotype distinction, is not the only one. As a matter of fact, one can observe top-down, bottom-up, as well as middle-out perturbation/control trajectories. The recent complex network studies allow to go further the pure qualitative observation of the existence of both non-linear and non-bottom-up processes and to uncover the deep nature of multi-level organization. Here, taking as paradigm protein structural and interaction networks, we review some of the most relevant results dealing with between networks communication shedding light on the basic principles of complex system control and dynamics and offering a more realistic frame of causation in biology.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
6
|
Bhattacharyya S, Sinha P, De R, Hens C. Mortality makes coexistence vulnerable in evolutionary game of rock-paper-scissors. Phys Rev E 2020; 102:012220. [PMID: 32795013 DOI: 10.1103/physreve.102.012220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/13/2020] [Indexed: 11/07/2022]
Abstract
Multiple species in the ecosystem are believed to compete cyclically for maintaining balance in nature. The evolutionary dynamics of cyclic interaction crucially depends on different interactions representing different natural habits. Based on a rock-paper-scissors model of cyclic competition, we explore the role of mortality of individual organisms in the collective survival of a species. For this purpose a parameter called "natural death" is introduced. It is meant for bringing about the decease of an individual irrespective of any intra- and interspecific interaction. We perform a Monte Carlo simulation followed by a stability analysis of different fixed points of defined rate equations and observe that the natural death rate is surprisingly one of the most significant factors in deciding whether an ecosystem would come up with a coexistence or a single-species survival.
Collapse
Affiliation(s)
| | - Pritam Sinha
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Rina De
- Department of Physics, R.R.R Mahavidyalaya, Radhanagar, Hooghly 712406, India
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
7
|
Avelino PP, de Oliveira BF, Trintin RS. Performance of weak species in the simplest generalization of the rock-paper-scissors model to four species. Phys Rev E 2020; 101:062312. [PMID: 32688501 DOI: 10.1103/physreve.101.062312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/04/2020] [Indexed: 11/07/2022]
Abstract
We investigate the problem of the predominance and survival of "weak" species in the context of the simplest generalization of the spatial stochastic rock-paper-scissors model to four species by considering models in which one, two, or three species have a reduced predation probability. We show, using lattice based spatial stochastic simulations with random initial conditions, that if only one of the four species has its probability reduced, then the most abundant species is the prey of the "weakest" (assuming that the simulations are large enough for coexistence to prevail). Also, among the remaining cases, we present examples in which "weak" and "strong" species have similar average abundances and others in which either of them dominates-the most abundant species being always a prey of a weak species with which it maintains a unidirectional predator-prey interaction. However, in contrast to the three-species model, we find no systematic difference in the global performance of weak and strong species, and we conjecture that a similar result will hold if the number of species is further increased. We also determine the probability of single species survival and coexistence as a function of the lattice size, discussing its dependence on initial conditions and on the change to the dynamics of the model which results from the extinction of one of the species.
Collapse
Affiliation(s)
- P P Avelino
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, PT4169-007 Porto, Portugal.,School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - R S Trintin
- Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
8
|
Non-king elimination, intransitive triad interactions, and species coexistence in ecological competition networks. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-020-00459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Carvalho SA, Martins ML. Biochemical Warfare Between Living Organisms for Survival: Mathematical Modeling. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-319-96397-6_52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Baker R, Pleimling M. The effect of habitats and fitness on species coexistence in systems with cyclic dominance. J Theor Biol 2020; 486:110084. [PMID: 31758965 DOI: 10.1016/j.jtbi.2019.110084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022]
Abstract
Cyclic dominance between species may yield spiral waves that are known to provide a mechanism enabling persistent species coexistence. This observation holds true even in presence of spatial heterogeneity in the form of quenched disorder. In this work we study the effects on spatio-temporal patterns and species coexistence of structured spatial heterogeneity in the form of habitats that locally provide one of the species with an advantage. Performing extensive numerical simulations of systems with three and six species we show that these structured habitats destabilize spiral waves. Analyzing extinction events, we find that species extinction probabilities display a succession of maxima as function of time, that indicate a periodically enhanced probability for species extinction. Analysis of the mean extinction time reveals that as a function of the parameter governing the advantage of one of the species a transition between stable coexistence and unstable coexistence takes place. We also investigate how efficiency as a predator or a prey affects species coexistence.
Collapse
Affiliation(s)
- Ryan Baker
- Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0563, USA
| | - Michel Pleimling
- Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0563, USA; Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435, USA; Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435, USA.
| |
Collapse
|
11
|
Avelino PP, de Oliveira BF, Trintin RS. Predominance of the weakest species in Lotka-Volterra and May-Leonard formulations of the rock-paper-scissors model. Phys Rev E 2019; 100:042209. [PMID: 31770947 DOI: 10.1103/physreve.100.042209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 01/11/2023]
Abstract
We revisit the problem of the predominance of the "weakest" species in the context of Lotka-Volterra and May-Leonard formulations of a spatial stochastic rock-paper-scissors model in which one of the species has its predation probability reduced by 0<P_{w}<1. We show that, despite the different population dynamics and spatial patterns, these two formulations lead to qualitatively similar results for the late time values of the relative abundances of the three species (as a function of P_{w}), as long as the simulation lattices are sufficiently large for coexistence to prevail-the "weakest" species generally having an advantage over the others (specially over its predator). However, for smaller simulation lattices, we find that the relatively large oscillations at the initial stages of simulations with random initial conditions may result in a significant dependence of the probability of species survival on the lattice size.
Collapse
Affiliation(s)
- P P Avelino
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, PT4169-007 Porto, Portugal.,School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - R S Trintin
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
12
|
Brown BL, Meyer-Ortmanns H, Pleimling M. Dynamically generated hierarchies in games of competition. Phys Rev E 2019; 99:062116. [PMID: 31330747 DOI: 10.1103/physreve.99.062116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 02/05/2023]
Abstract
Spatial many-species predator-prey systems have been shown to yield very rich space-time patterns. This observation begs the question whether there exist universal mechanisms for generating this type of emerging complex patterns in nonequilibrium systems. In this work we investigate the possibility of dynamically generated hierarchies in predator-prey systems. We analyze a nine-species model with competing interactions and show that the studied situation results in the spontaneous formation of spirals within spirals. The parameter dependence of these intriguing nested spirals is elucidated. This is achieved through the numerical investigation of various quantities (correlation lengths, densities of empty sites, Fourier analysis of species densities, interface fluctuations) that allows us to gain a rather complete understanding of the spatial arrangements and the temporal evolution of the system. A possible generalization of the interaction scheme yielding dynamically generated hierarchies is discussed. As cyclic interactions occur spontaneously in systems with competing strategies, the mechanism discussed in this work should contribute to our understanding of various social and biological systems.
Collapse
Affiliation(s)
- Barton L Brown
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | | | - Michel Pleimling
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA.,Academy of Integrated Science, Virginia Tech, Blacksburg, Virginia 24061-0563, USA
| |
Collapse
|
13
|
Park J, Jang B. Robust coexistence with alternative competition strategy in the spatial cyclic game of five species. CHAOS (WOODBURY, N.Y.) 2019; 29:051105. [PMID: 31154778 DOI: 10.1063/1.5097003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Alternative strategy is common in animal populations to promote reproductive fitness by obtaining resources. In spatial dynamics of cyclic competition, reproduction can occur when individuals obtain vacant rooms and, in this regard, empty sites should be resources for reproduction which can be induced by interspecific competition. In this paper, we study the role of alternative competition in the spatial system of cyclically competing five species by utilizing rock-paper-scissors-lizard-spock game. From Monte-Carlo simulations, we found that strong alternative competition can lead to the reemergence of coexistence of five species regardless of mobility, which is never reported in previous works under the symmetric competition structure. By investigating the coexistence probability, we also found that coexistence alternates by passing certain degrees of alternative competition in combination with mobility. In addition, we provided evidences in the opposite scenario by strengthening spontaneous competition, which exhibits the reemergence of coexistence similarly. Our findings may suggest more comprehensive perspectives to interpret mechanisms for biodiversity by alternative strategies in spatially extended systems than previously reported.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Bongsoo Jang
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
14
|
Mugnaine M, Andrade FM, Szezech JD, Bazeia D. Basin entropy behavior in a cyclic model of the rock-paper-scissors type. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/125/58003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Nagatani T, Ichinose G, Tainaka KI. Metapopulation dynamics in the rock-paper-scissors game with mutation: Effects of time-varying migration paths. J Theor Biol 2019; 462:425-431. [DOI: 10.1016/j.jtbi.2018.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
|
16
|
Bazeia D, de Oliveira BF, Szolnoki A. Phase transitions in dependence of apex predator decaying ratio in a cyclic dominant system. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/124/68001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Metapopulation model of rock-scissors-paper game with subpopulation-specific victory rates stabilized by heterogeneity. J Theor Biol 2018; 458:103-110. [PMID: 30213665 DOI: 10.1016/j.jtbi.2018.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022]
Abstract
Recently, metapopulation models for rock-paper-scissors games have been presented. Each subpopulation is represented by a node on a graph. An individual is either rock (R), scissors (S) or paper (P); it randomly migrates among subpopulations. In the present paper, we assume victory rates differ in different subpopulations. To investigate the dynamic state of each subpopulation (node), we numerically obtain the solutions of reaction-diffusion equations on the graphs with two and three nodes. In the case of homogeneous victory rates, we find each subpopulation has a periodic solution with neutral stability. However, when victory rates between subpopulations are heterogeneous, the solution approaches stable focuses. The heterogeneity of victory rates promotes the coexistence of species.
Collapse
|
18
|
Depraetere TMA, Daly AJ, Baetens JM, De Baets B. Three-species competition with non-deterministic outcomes. CHAOS (WOODBURY, N.Y.) 2018; 28:123124. [PMID: 30599525 DOI: 10.1063/1.5046795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Theoretical and experimental research studies have shown that ecosystems governed by non-transitive competition networks tend to maintain high levels of biodiversity. The theoretical body of work, however, has mainly focused on competition networks in which the outcomes of competition events are predetermined and hence deterministic, and where all species are identical up to their competitive relationships, an assumption that may limit the applicability of theoretical results to real-life situations. In this paper, we aim to probe the robustness of the link between biodiversity and non-transitive competition by introducing a three-dimensional winning probability parameter space, making the outcomes of competition events in a three-species in silico ecosystem uncertain. While two degenerate points in this parameter space have been the subject of previous studies, we investigate the remaining settings, which equip the species with distinct competitive abilities. We find that the impact of this modification depends on the spatial dimension of the system. When the system is well mixed, it collapses to monoculture, as is also the case in the non-transitive deterministic setting. In one dimension, chaotic patterns emerge, which tend to maintain biodiversity, and a power law relates the time that species manage to coexist to the degree of uncertainty regarding competition event outcomes. In two dimensions, the formation of spiral wave patterns ensures that biodiversity is maintained for moderate degrees of uncertainty, while considerable deviations from the non-transitive deterministic setting have strong negative effects on species coexistence. It can hence be concluded that non-transitive competition can still produce coexistence when the assumption of deterministic competition is abandoned. When the system collapses to monoculture, one observes a "survival of the strongest" law, as the species that has the highest probability of defeating its competitors has the best odds to become the sole survivor.
Collapse
Affiliation(s)
- Tim M A Depraetere
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Aisling J Daly
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Jan M Baetens
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| |
Collapse
|
19
|
Avelino PP, Bazeia D, Losano L, Menezes J, de Oliveira BF, Santos MA. How directional mobility affects coexistence in rock-paper-scissors models. Phys Rev E 2018; 97:032415. [PMID: 29776155 DOI: 10.1103/physreve.97.032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Indexed: 11/07/2022]
Abstract
This work deals with a system of three distinct species that changes in time under the presence of mobility, selection, and reproduction, as in the popular rock-paper-scissors game. The novelty of the current study is the modification of the mobility rule to the case of directional mobility, in which the species move following the direction associated to a larger (averaged) number density of selection targets in the surrounding neighborhood. Directional mobility can be used to simulate eyes that see or a nose that smells, and we show how it may contribute to reduce the probability of coexistence.
Collapse
Affiliation(s)
- P P Avelino
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, PT4169-007 Porto, Portugal
| | - D Bazeia
- Departamento de Física, Universidade Federal da Paraíba 58051-900 João Pessoa, PB, Brazil
| | - L Losano
- Departamento de Física, Universidade Federal da Paraíba 58051-900 João Pessoa, PB, Brazil
| | - J Menezes
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte Caixa Postal 1524, 59072-970, Natal, RN, Brazil.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - M A Santos
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
20
|
Heterogeneous network promotes species coexistence: metapopulation model for rock-paper-scissors game. Sci Rep 2018; 8:7094. [PMID: 29728573 PMCID: PMC5935761 DOI: 10.1038/s41598-018-25353-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/19/2018] [Indexed: 11/08/2022] Open
Abstract
Understanding mechanisms of biodiversity has been a central question in ecology. The coexistence of three species in rock-paper-scissors (RPS) systems are discussed by many authors; however, the relation between coexistence and network structure is rarely discussed. Here we present a metapopulation model for RPS game. The total population is assumed to consist of three subpopulations (nodes). Each individual migrates by random walk; the destination of migration is randomly determined. From reaction-migration equations, we obtain the population dynamics. It is found that the dynamic highly depends on network structures. When a network is homogeneous, the dynamics are neutrally stable: each node has a periodic solution, and the oscillations synchronize in all nodes. However, when a network is heterogeneous, the dynamics approach stable focus and all nodes reach equilibriums with different densities. Hence, the heterogeneity of the network promotes biodiversity.
Collapse
|
21
|
Park J. Biodiversity in the cyclic competition system of three species according to the emergence of mutant species. CHAOS (WOODBURY, N.Y.) 2018; 28:053111. [PMID: 29857686 DOI: 10.1063/1.5021145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding mechanisms which promote or hinder existing ecosystems are important issues in ecological sciences. In addition to fundamental interactions such as competition and migration among native species, existing ecosystems can be easily disturbed by external factors, and the emergence of new species may be an example in such cases. The new species which does not exist in a current ecosystem can be regarded as either alien species entered from outside or mutant species born by mutation in existing normal species. Recently, as existing ecosystems are getting influenced by various physical/chemical external factors, mutation due to anthropogenic and environmental factors can occur more frequently and is thus attracting much attention for the maintenance of ecosystems. In this paper, we consider emergences of mutant species among self-competing three species in the cyclic dominance. By defining mutation as the birth of mutant species, we investigate how mutant species can affect biodiversity in the existing ecosystem. Through microscopic and macroscopic approaches, we have found that the society of existing normal species can be disturbed by mutant species either the society is maintained accompanying with the coexistence of all species or jeopardized by occupying of mutant species. Due to the birth of mutant species, the existing society may be more complex by constituting two different groups of normal and mutant species, and our results can be contributed to analyze complex ecosystems of many species. We hope our findings may propose a new insight on mutation in cyclic competition systems of many species.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
22
|
Individual-Based Modelling of Invasion in Bioaugmented Sand Filter Communities. Processes (Basel) 2018. [DOI: 10.3390/pr6010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Beppler C, Tekin E, Mao Z, White C, McDiarmid C, Vargas E, Miller JH, Savage VM, Yeh PJ. Uncovering emergent interactions in three-way combinations of stressors. J R Soc Interface 2017; 13:rsif.2016.0800. [PMID: 27974577 DOI: 10.1098/rsif.2016.0800] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/23/2016] [Indexed: 11/12/2022] Open
Abstract
Understanding how multiple stressors interact is needed to predict the dynamical outcomes of diverse biological systems, ranging from drug-resistant pathogens that are combated and treated with combination drug therapies to ecosystems impacted by environmental toxicants or disturbances. Nevertheless, extensive studies of higher-order (more than two component) interactions have been lacking. Here, we conduct experiments using 20 three-drug combinations and their effects on the bacterial growth of Escherichia coli We report our measurements of growth rates in single, pairwise and triple-drug combinations. To uncover emergent interactions, we derive a simple framework to calculate expectations for three-way interactions based on the measured impact of each individual stressor and of each pairwise interaction. Using our framework, we find that (i) emergent antagonisms are more common than emergent synergies and (ii) emergent antagonisms are more common and emergent synergies are more rare than would be inferred from measures of net effects that do not disentangle pairwise interactions from three-way interactions.
Collapse
Affiliation(s)
- Casey Beppler
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Elif Tekin
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zhiyuan Mao
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Cynthia White
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Cassandra McDiarmid
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Emily Vargas
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Van M Savage
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pamela J Yeh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Kim B, Park J. Basins of distinct asymptotic states in the cyclically competing mobile five species game. CHAOS (WOODBURY, N.Y.) 2017; 27:103117. [PMID: 29092432 DOI: 10.1063/1.4998984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study the dynamics of cyclic competing mobile five species on spatially extended systems originated from asymmetric initial populations and investigate the basins for the three possible asymptotic states, coexistence of all species, existences of only two independent species, and the extinction. Through extensive numerical simulations, we find a prosperous dependence on initial conditions for species biodiversity. In particular, for fixed given equal densities of two relevant species, we find that only five basins for the existence of two independent species exist and they are spirally entangled for high mobility. A basin of coexistence is outbreaking when the mobility parameter is decreased through a critical value and surrounded by the other five basins. For fixed given equal densities of two independent species, however, we find that basin structures are not spirally entangled. Further, final states of two independent species are totally different. For all possible considerations, the extinction state is not witnessed which is verified by the survival probability. To provide the validity of basin structures from lattice simulations, we analyze the system in mean-field manners. Consequently, results on macroscopic levels are matched to direct lattice simulations for high mobility regimes. These findings provide a good insight into the fundamental issue of the biodiversity among many species than previous cases.
Collapse
Affiliation(s)
- Beomseok Kim
- Department of Mathematics, KNU-Center for Nonlinear Dynamics, Kyungpook National University, Daegu 41566, South Korea
| | - Junpyo Park
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
25
|
Emergence of unusual coexistence states in cyclic game systems. Sci Rep 2017; 7:7465. [PMID: 28785001 PMCID: PMC5547111 DOI: 10.1038/s41598-017-07911-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/04/2017] [Indexed: 11/08/2022] Open
Abstract
Evolutionary games of cyclic competitions have been extensively studied to gain insights into one of the most fundamental phenomena in nature: biodiversity that seems to be excluded by the principle of natural selection. The Rock-Paper-Scissors (RPS) game of three species and its extensions [e.g., the Rock-Paper-Scissors-Lizard-Spock (RPSLS) game] are paradigmatic models in this field. In all previous studies, the intrinsic symmetry associated with cyclic competitions imposes a limitation on the resulting coexistence states, leading to only selective types of such states. We investigate the effect of nonuniform intraspecific competitions on coexistence and find that a wider spectrum of coexistence states can emerge and persist. This surprising finding is substantiated using three classes of cyclic game models through stability analysis, Monte Carlo simulations and continuous spatiotemporal dynamical evolution from partial differential equations. Our finding indicates that intraspecific competitions or alternative symmetry-breaking mechanisms can promote biodiversity to a broader extent than previously thought.
Collapse
|
26
|
Brown BL, Pleimling M. Coarsening with nontrivial in-domain dynamics: Correlations and interface fluctuations. Phys Rev E 2017; 96:012147. [PMID: 29347265 DOI: 10.1103/physreve.96.012147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Using numerical simulations we investigate the space-time properties of a system in which spirals emerge within coarsening domains, thus giving rise to nontrivial internal dynamics. Initially proposed in the context of population dynamics, the studied six-species model exhibits growing domains composed of three species in a rock-paper-scissors relationship. Through the investigation of different quantities, such as space-time correlations and the derived characteristic length, autocorrelation, density of empty sites, and interface width, we demonstrate that the nontrivial dynamics inside the domains affects the coarsening process as well as the properties of the interfaces separating different domains. Domain growth, aging, and interface fluctuations are shown to be governed by exponents whose values differ from those expected in systems with curvature driven coarsening.
Collapse
Affiliation(s)
- Barton L Brown
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | - Michel Pleimling
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
- Academy of Integrated Science, Virginia Tech, Blacksburg, Virginia 24061-0405, USA
| |
Collapse
|
27
|
A novel procedure for the identification of chaos in complex biological systems. Sci Rep 2017; 7:44900. [PMID: 28322257 PMCID: PMC5359622 DOI: 10.1038/srep44900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022] Open
Abstract
We demonstrate the presence of chaos in stochastic simulations that are widely used to study biodiversity in nature. The investigation deals with a set of three distinct species that evolve according to the standard rules of mobility, reproduction and predation, with predation following the cyclic rules of the popular rock, paper and scissors game. The study uncovers the possibility to distinguish between time evolutions that start from slightly different initial states, guided by the Hamming distance which heuristically unveils the chaotic behavior. The finding opens up a quantitative approach that relates the correlation length to the average density of maxima of a typical species, and an ensemble of stochastic simulations is implemented to support the procedure. The main result of the work shows how a single and simple experimental realization that counts the density of maxima associated with the chaotic evolution of the species serves to infer its correlation length. We use the result to investigate others distinct complex systems, one dealing with a set of differential equations that can be used to model a diversity of natural and artificial chaotic systems, and another one, focusing on the ocean water level.
Collapse
|
28
|
Daly AJ, Baetens JM, De Baets B. The impact of resource dependence of the mechanisms of life on the spatial population dynamics of an in silico microbial community. CHAOS (WOODBURY, N.Y.) 2016; 26:123121. [PMID: 28039986 DOI: 10.1063/1.4972788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Biodiversity has a critical impact on ecosystem functionality and stability, and thus the current biodiversity crisis has motivated many studies of the mechanisms that sustain biodiversity, a notable example being non-transitive or cyclic competition. We therefore extend existing microscopic models of communities with cyclic competition by incorporating resource dependence in demographic processes, characteristics of natural systems often oversimplified or overlooked by modellers. The spatially explicit nature of our individual-based model of three interacting species results in the formation of stable spatial structures, which have significant effects on community functioning, in agreement with experimental observations of pattern formation in microbial communities.
Collapse
Affiliation(s)
- Aisling J Daly
- KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure links 653, Ghent B-9000, Belgium
| | - Jan M Baetens
- KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure links 653, Ghent B-9000, Belgium
| | - Bernard De Baets
- KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure links 653, Ghent B-9000, Belgium
| |
Collapse
|
29
|
A Five Species Cyclically Dominant Evolutionary Game with Fixed Direction: A New Way to Produce Self-Organized Spatial Patterns. ENTROPY 2016. [DOI: 10.3390/e18080284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Roman A, Dasgupta D, Pleimling M. A theoretical approach to understand spatial organization in complex ecologies. J Theor Biol 2016; 403:10-16. [DOI: 10.1016/j.jtbi.2016.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
|
31
|
Yu Q, Fang D, Zhang X, Jin C, Ren Q. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process. Sci Rep 2016; 6:28585. [PMID: 27346701 PMCID: PMC4921967 DOI: 10.1038/srep28585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/07/2016] [Indexed: 11/21/2022] Open
Abstract
Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.
Collapse
Affiliation(s)
- Qian Yu
- School of Economics, Wuhan University of Technology, Wuhan, 430070, China
| | - Debin Fang
- School of Economics and Management, Wuhan University, Wuhan, 430072, China
| | - Xiaoling Zhang
- Department of Public Policy, City University of Hong Kong, Hong Kong, China
| | - Chen Jin
- Department of Economics, The George Washington University, Washington DC, 20052, United States
| | - Qiyu Ren
- School of Economics and Management, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
32
|
Abstract
In this paper, we investigate the five-species Jungle game in the framework of evolutionary game theory. We address the coexistence and biodiversity of the system using mean-field theory and Monte Carlo simulations. Then, we find that the inhibition from the bottom-level species to the top-level species can be critical factors that affect biodiversity, no matter how it is distributed, whether homogeneously well mixed or structured. We also find that predators' different preferences for food affect species' coexistence.
Collapse
Affiliation(s)
- Yibin Kang
- School of Mathematical Science, Dalian University of Technology, Dalian, 116024, China
| | - Qiuhui Pan
- School of Mathematical Science, Dalian University of Technology, Dalian, 116024, China
- School of Innovation Experiment, Dalian University of Technology, Dalian, 116024, China
| | - Xueting Wang
- School of Mathematical Science, Dalian University of Technology, Dalian, 116024, China
| | - Mingfeng He
- School of Mathematical Science, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
33
|
Daly AJ, Baetens JM, De Baets B. The impact of initial evenness on biodiversity maintenance for a four-species in silico bacterial community. J Theor Biol 2015; 387:189-205. [DOI: 10.1016/j.jtbi.2015.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/15/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
|
34
|
Information Transfer between Generations Linked to Biodiversity in Rock-Paper-Scissors Games. ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/128980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ecological processes, such as reproduction, mobility, and interaction between species, play important roles in the maintenance of biodiversity. Classically, the cyclic dominance of species has been modelled using the nonhierarchical interactions among competing species, represented by the “Rock-Paper-Scissors” (RPS) game. Here we propose a cascaded channel model for analyzing the existence of biodiversity in the RPS game. The transition between successive generations is modelled as communication of information over a noisy communication channel. The rate of transfer of information over successive generations is studied using mutual information and it is found that “greedy” information transfer between successive generations may lead to conditions for extinction. This generalized framework can be used to study biodiversity in any number of interacting species, ecosystems with unequal rates for different species, and also competitive networks.
Collapse
|
35
|
Intoy B, Pleimling M. Synchronization and extinction in cyclic games with mixed strategies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052135. [PMID: 26066147 DOI: 10.1103/physreve.91.052135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Indexed: 06/04/2023]
Abstract
We consider cyclic Lotka-Volterra models with three and four strategies where at every interaction agents play a strategy using a time-dependent probability distribution. Agents learn from a loss by reducing the probability to play a losing strategy at the next interaction. For that, an agent is described as an urn containing β balls of three and four types, respectively, where after a loss one of the balls corresponding to the losing strategy is replaced by a ball representing the winning strategy. Using both mean-field rate equations and numerical simulations, we investigate a range of quantities that allows us to characterize the properties of these cyclic models with time-dependent probability distributions. For the three-strategy case in a spatial setting we observe a transition from neutrally stable to stable when changing the level of discretization of the probability distribution. For large values of β, yielding a good approximation to a continuous distribution, spatially synchronized temporal oscillations dominate the system. For the four-strategy game the system is always neutrally stable, but different regimes emerge, depending on the size of the system and the level of discretization.
Collapse
Affiliation(s)
- Ben Intoy
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | - Michel Pleimling
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| |
Collapse
|