1
|
Peng L, Yang F, Shi J, Liu Y, Pan L, Mao D, Luo Y. Insights into the panorama of multiple DNA viruses in municipal wastewater and recycled sludge in Tianjin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124215. [PMID: 38797349 DOI: 10.1016/j.envpol.2024.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Environmental viruses in wastewater and sludge are widely recognized for their roles in waterborne diseases. However, previous studies mainly focused on RNA viruses, and little is known about the diversity of DNA viral communities and their driving factors in municipal wastewater treatment environments. Herein, we conducted a pilot study to explore DNA virus profiles in municipal wastewater and recycled sludge by metagenomics method, and track their temporal changes in northern China. Results showed that 467 viral species were co-shared among all the samples. We identified six families of human viruses with a prevalence of 0.1%, which were rare but relatively stable in wastewater and sludge for six months. Adenoviridae, Parvoviridae, and Herpersviridae were the most dominant human viral families in municipal wastewater and recycled sludge. A time series of samples revealed that the dynamic changes of human DNA viruses were stable based on qPCR results, particularly for high-risk fecal-oral transmission viruses of adenovirus, bocavirus, polyomavirus, human gamma herpesvirus, human papillomavirus, and hepatitis B virus. Concentrations of Adenovirus (5.39-7.48 log10 copies/L) and bocavirus (4.36-7.48 log10 copies/L) were observed to be the highest in these samples compared to other viruses. Our findings demonstrated the DNA viruses' high prevalence and persistence in municipal wastewater treatment environments, highlighting the value of enhancing public health responses based on wastewater-based epidemiology.
Collapse
Affiliation(s)
- Liang Peng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - YiXin Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liuzhu Pan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
2
|
Andrianjakarivony FH, Bettarel Y, Cecchi P, Bouchard S, Chase E, Desnues C. Decoding the DNA and RNA viromes of a tropical urban lagoon. Environ Microbiol 2023; 25:2368-2387. [PMID: 37431274 DOI: 10.1111/1462-2920.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Human and livestock sewage is one of the major causes of excess nutrients, leading to the eutrophication of aquatic ecosystems and potentially to the emergence or spread of pathogenic viruses. This study aimed to investigate the composition and diversity of aquatic viromes in a highly anthropized lagoon, to identify the presence of pathogenic taxa and to explore their use as possible viral indicators of faecal contamination. For this, water and sediment samples were collected in the Ebrié Lagoon (Ivory Coast) at seven stations with contrasting levels of eutrophication. The DNA viromes of the planktonic and the benthic compartments were highly divergent, but were not influenced by the level of eutrophication. Conversely, the RNA viromes in the water column were comparable to those found in sediment, but showed significant differences between the stations. We detected the presence of viral DNA and RNA sequences we had assigned as indicators of faecal contamination (smacovirus, pecovirus and pepper mild mottle virus) as well as human pathogens (human cyclovirus, coxsackie B virus and picobirnavirus), which were all enriched in the most eutrophicated sites. These findings suggest that the examination of viromes represents a promising tool for assessing the state of human-induced contamination of aquatic ecosystems.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Yvan Bettarel
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Philippe Cecchi
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sonia Bouchard
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Emily Chase
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
3
|
Diversity of CRESS DNA Viruses in Squamates Recapitulates Hosts Dietary and Environmental Sources of Exposure. Microbiol Spectr 2022; 10:e0078022. [PMID: 35616383 PMCID: PMC9241739 DOI: 10.1128/spectrum.00780-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses comprise viruses with covalently closed, circular, single-stranded DNA (ssDNA) genomes, and are considered the smallest known autonomously replicating, capsid-encoding animal pathogens. CRESS DNA viruses (phylum Cressdnaviricota) encompass several viral families including Circoviridae. Circoviruses are classified into two genera, Circovirus and Cyclovirus, and they are known to cause fatal diseases in birds and pigs. Circoviruses have also been identified in human stools, blood, and cerebrospinal fluid (CSF), as well as in various wild and domestic vertebrates, including reptiles. The synanthropic presence of Squamata reptiles has increased in the last century due to the anthropic pressure, which has shifted forested animal behavior to an urban and peri-urban adaptation. In this paper, we explored the diversity of CRESS DNA viruses in Squamata reptiles from different Italian areas representative of the Mediterranean basin. CRESS DNA viruses were detected in 31.7% (33/104) of sampled lizards and geckoes. Different CRESS DNA viruses likely reflected dietary composition or environmental contamination and included avian-like (n = 3), dog (n = 4), bat-like (n = 1), goat-like (n = 1), rodent-like (n = 4), and insect-like (n = 2) viruses. Rep sequences of at least two types of human-associated cycloviruses (CyV) were identified consistently, regardless of geographic location, namely, TN9-like (n = 11) and TN12-like (n = 6). A third human-associated CyV, TN25-like, was detected in a single sample. The complete genome of human-like CyVs, of a rodent-like, insect-like, and of a bat-like virus were generated. Collectively, the results recapitulate hosts dietary and environmental sources of exposure and may suggest unexpected ecological niches for some CRESS DNA viruses. IMPORTANCE CRESS DNA viruses are significant pathogens of birds and pigs and have been detected repeatedly in human samples (stools, serum, and cerebrospinal fluid), both from healthy individuals and from patients with neurological disease, eliciting in 2013 a risk assessment by the European Centre for Disease Prevention and Control (ECDC). Sequences of CRESS DNA viruses previously reported in humans (TN9, TN12, and TN25), and detected in different animal species (e.g., birds, dogs, and bats) were herein detected in fecal samples of synanthropic squamates (geckos and lizards). The complete genome sequence of six viruses was generated. This study extends the information on the genetic diversity and ecology of CRESS DNA viruses. Because geckos and lizards are synanthropic animals, a role in sustaining CRESS DNA virus circulation and increasing viral pressure in the environment is postulated.
Collapse
|
4
|
Serology- and Blood-PCR-Based Screening for Schistosomiasis in Pregnant Women in Madagascar-A Cross-Sectional Study and Test Comparison Approach. Pathogens 2021; 10:pathogens10060722. [PMID: 34201231 PMCID: PMC8229283 DOI: 10.3390/pathogens10060722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 12/17/2022] Open
Abstract
This work was conducted as a cross sectional study to define the disease burden of schistosomiasis in pregnant Madagascan women and to evaluate serological and molecular diagnostic assays. A total of 1154 residual EDTA blood samples from pregnant Madagascan women were assessed. The nucleic acid extractions were subjected to in-house real-time PCRs specifically targeting S. mansoni complex, S. haematobium complex, and African Schistosoma spp. on genus level, while the EDTA plasma samples were analyzed using Schistosoma-specific IgG and IgM commercial ELISA and immunofluorescence assays. The analyses indicated an overall prevalence of schistosomiasis in Madagascan pregnant women of 40.4%, with only minor regional differences and differences between serology- and blood PCR-based surveillance. The S. mansoni specific real-time PCR showed superior sensitivity of 74% (specificity 80%) compared with the genus-specific real-time PCR (sensitivity 13%, specificity 100%) in blood. The laborious immunofluorescence (sensitivity IgM 49%, IgG 87%, specificity IgM 85%, IgG 96%) scored only slightly better than the automatable ELISA (sensitivity IgM 38%, IgG 88%, specificity IgM 78%, IgG 91%). Infections with S. mansoni were detected only. The high prevalence of schistosomiasis recorded here among pregnant women in Madagascar calls for actions in order to reduce the disease burden.
Collapse
|
5
|
Prades Y, Pizarro R, Ruiz M, Moreno C, Avendaño LF, Luchsinger V. Cyclovirus detection in Chilean adults with and without community-acquired pneumonia. J Med Virol 2021; 93:4786-4793. [PMID: 34080215 DOI: 10.1002/jmv.27080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022]
Abstract
Cycloviruses (CyV) (genus Cyclovirus, family Circoviridae) are nonenveloped DNA viruses. The first report in humans was in 2010 and research has focused only on disease-associated human sample detection. The only HuACyV (CyCV-ChileNPA1, HuACyV10) reported in the Chilean population was in children (3.3%) with an acute respiratory infection. Its detection in respiratory samples from adults, with/without respiratory disease remains unknown. The aim of this study was to detect HuACyV10 in adults with and without respiratory disease. HuACyV10 was studied in nasopharyngeal swabs from 105 hospitalized adults with community-acquired pneumonia (CAP) and 104 adults without respiratory symptoms. Total nucleic acids were extracted, and viral rep and cp gene fragments were amplified by real-time polymerase chain reaction. HuACyV10 was detected in 19.05% adults with CAP and in 0.96% asymptomatic adults, being significantly higher in adult CAP than asymptomatic (n = 1) ones (p = 0.0001). C t values were between 26.7 and 39.6, and the median was 34.1 for rep and 33.8 for the CAP in adults CAP (p = 0.68), and 35.7 and 36.0, respectively, in the asymptomatic case. HuACyV10 detection in CAP adults concentrated in the Autumn-Winter season of the Southern hemisphere. The only asymptomatic adult with HuACyV10 was detected in the Spring-Summer period. In this first report of HuACyV10 in respiratory samples from adults, detection was significantly higher in CAP than in asymptomatic adults. As the sensitivity of both rep and cp genes was similar, both can be applied for detecting HuACyV10. It would be advisable to investigate the pathogenic role of HuACyV10 in adult respiratory infections. .
Collapse
Affiliation(s)
- Yara Prades
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rolando Pizarro
- Servicio Clínico, Hospital de Enfermedades Infecciosas Dr. L. Córdova, Santiago, Chile
| | - Mauricio Ruiz
- Departamento de Medicina Norte, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Cristian Moreno
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis F Avendaño
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Vivian Luchsinger
- Programa de Virología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Shahhosseini N, Frederick C, Letourneau-Montminy MP, Marie-Odile BB, Kobinger GP, Wong G. Computational genomics of Torque teno sus virus and Porcine circovirus in swine samples from Canada. Res Vet Sci 2020; 134:171-180. [PMID: 33387757 DOI: 10.1016/j.rvsc.2020.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 11/26/2022]
Abstract
Emerging viral diseases include pathogens that can threaten the health of the Canadian swineherd. Anelloviruses and Circoviruses comprise of pathogens with veterinary significance. The aim of this study was to determine the genomic organization and phylogenetic relationships of Torque teno sus virus (TTsusV) and Porcine circovirus (PCV) from Canadian pig samples. Fecal and tissue specimens were collected during the winter, spring and summer of 2018. We utilized either virus- or genus-specific PCR assays to characterize the occurrence and genetic diversity of TTsusV and PCV in Canadian pigs. Pairwise comparison of all partial sequences and identity calculation was performed using MAFFT algorithm implemented in Sequence Demarcation Tool (SDT). The obtained full-length sequences were aligned using ClustalW, and phylogeny was inferred using a Maximum likelihood (ML) method by Geneious software. The PCR detection results revealed that the overall positive rate of TTsusV type-1 and type-2 was 45.6% and 32.6%, respectively. The TTsusV isolate MK990454 from Canada clustered in the subtype TTsusV1b, while the TTsusV isolate MK872392 fell in the subtype TTsusV2c, and all showed similarity to known American and Chinese isolates. In addition, our screening PCR showed that 2.7% of stool samples were positive for PCV1. Phylogenetic analysis using the full-length sequence demonstrated that PCV1 (MK872393) isolated from Quebec clustered with other Chinese PCV1 strains. Despite the far geographical distance between Canada and China, the close similarity between Canadian and Chinese TTsusV1 and 2, and PCV1 sequences may be explained by a considerable amount of pig trade between these two nations.
Collapse
Affiliation(s)
- Nariman Shahhosseini
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec City, Québec, Canada
| | - Christina Frederick
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec City, Québec, Canada
| | | | - Benoit-Biancamano Marie-Odile
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Gary P Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec City, Québec, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Gary Wong
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec City, Québec, Canada; Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
7
|
Thannesberger J, Rascovan N, Eisenmann A, Klymiuk I, Zittra C, Fuehrer HP, Scantlebury-Manning T, Gittens-St.Hilaire M, Austin S, Landis RC, Steininger C. Highly Sensitive Virome Characterization of Aedes aegypti and Culex pipiens Complex from Central Europe and the Caribbean Reveals Potential for Interspecies Viral Transmission. Pathogens 2020; 9:E686. [PMID: 32839419 PMCID: PMC7559857 DOI: 10.3390/pathogens9090686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/31/2022] Open
Abstract
Mosquitoes are the most important vectors for arthropod-borne viral diseases. Mixed viral infections of mosquitoes allow genetic recombination or reassortment of diverse viruses, turning mosquitoes into potential virologic mixing bowls. In this study, we field-collected mosquitoes of different species (Aedes aegypti and Culex pipiens complex), from different geographic locations and environments (central Europe and the Caribbean) for highly sensitive next-generation sequencing-based virome characterization. We found a rich virus community associated with a great diversity of host species. Among those, we detected a large diversity of novel virus sequences that we could predominately assign to circular Rep-encoding single-stranded (CRESS) DNA viruses, including the full-length genome of a yet undescribed Gemykrogvirus species. Moreover, we report for the first time the detection of a potentially zoonotic CRESS-DNA virus (Cyclovirus VN) in mosquito vectors. This study expands the knowledge on virus diversity in medically important mosquito vectors, especially for CRESS-DNA viruses that have previously been shown to easily recombine and jump the species barrier.
Collapse
Affiliation(s)
- Jakob Thannesberger
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, 1090 Vienna, Austria; (J.T.); (A.E.)
| | - Nicolas Rascovan
- Department of Genomes & Genetics, Institut Pasteur, 75015 Paris, France;
| | - Anna Eisenmann
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, 1090 Vienna, Austria; (J.T.); (A.E.)
| | - Ingeborg Klymiuk
- Center for Medical Research, Core Facility Molecular Biology, Medical University of Graz, 8036 Graz, Austria;
| | - Carina Zittra
- Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (C.Z.); (H.-P.F.)
- Unit Limnology, Department of Functional and Evolutionary Ecology, University of Vienna, 1010 Vienna, Austria
| | - Hans-Peter Fuehrer
- Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (C.Z.); (H.-P.F.)
| | - Thea Scantlebury-Manning
- Department of Biological and Chemical Sciences, Faculty of Science and Technology, Cave Hill Campus, The University of the West Indies, Bridgetown BB11000, Barbados; (T.S.-M.); (S.A.)
| | - Marquita Gittens-St.Hilaire
- Faculty of Medical Sciences, University of the West Indies, Queen Elizabeth Hospital, St. Michael BB14004, Barbados;
| | - Shane Austin
- Department of Biological and Chemical Sciences, Faculty of Science and Technology, Cave Hill Campus, The University of the West Indies, Bridgetown BB11000, Barbados; (T.S.-M.); (S.A.)
| | - Robert Clive Landis
- Edmund Cohen Laboratory for Vascular Research, George Alleyne Chronic Disease Research Centre, The University of the West Indies, Bridgetown BB11115, Barbados;
| | - Christoph Steininger
- Division of Infectious Diseases, Department of Medicine 1, Medical University of Vienna, 1090 Vienna, Austria; (J.T.); (A.E.)
| |
Collapse
|
8
|
Mourya DT, Yadav PD, Ullas P, Bhardwaj SD, Sahay RR, Chadha MS, Shete AM, Jadhav S, Gupta N, Gangakhedkar RR, Khasnobis P, Singh SK. Emerging/re-emerging viral diseases & new viruses on the Indian horizon. Indian J Med Res 2019; 149:447-467. [PMID: 31411169 PMCID: PMC6676836 DOI: 10.4103/ijmr.ijmr_1239_18] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
Infectious diseases remain as the major causes of human and animal morbidity and mortality leading to significant healthcare expenditure in India. The country has experienced the outbreaks and epidemics of many infectious diseases. However, enormous successes have been obtained against the control of major epidemic diseases, such as malaria, plague, leprosy and cholera, in the past. The country's vast terrains of extreme geo-climatic differences and uneven population distribution present unique patterns of distribution of viral diseases. Dynamic interplays of biological, socio-cultural and ecological factors, together with novel aspects of human-animal interphase, pose additional challenges with respect to the emergence of infectious diseases. The important challenges faced in the control and prevention of emerging and re-emerging infectious diseases range from understanding the impact of factors that are necessary for the emergence, to development of strengthened surveillance systems that can mitigate human suffering and death. In this article, the major emerging and re-emerging viral infections of public health importance have been reviewed that have already been included in the Integrated Disease Surveillance Programme.
Collapse
Affiliation(s)
| | | | - P.T. Ullas
- Maximum Containment Laboratory, Pune, India
| | | | | | | | | | | | - Nivedita Gupta
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Raman R. Gangakhedkar
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | | | | |
Collapse
|
9
|
Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv Virus Res 2018; 103:71-133. [PMID: 30635078 DOI: 10.1016/bs.aivir.2018.10.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
10
|
Sauvage V, Gomez J, Barray A, Vandenbogaert M, Boizeau L, Tagny CT, Rakoto O, Bizimana P, Guitteye H, Ciré BB, Soumana H, Tchomba JBS, Caro V, Laperche S. High prevalence of cyclovirus Vietnam (CyCV-VN) in plasma samples from Madagascan healthy blood donors. INFECTION GENETICS AND EVOLUTION 2018; 66:9-12. [DOI: 10.1016/j.meegid.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
|
11
|
Gu X, Tay QXM, Te SH, Saeidi N, Goh SG, Kushmaro A, Thompson JR, Gin KYH. Geospatial distribution of viromes in tropical freshwater ecosystems. WATER RESEARCH 2018; 137:220-232. [PMID: 29550725 PMCID: PMC7112100 DOI: 10.1016/j.watres.2018.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/02/2018] [Accepted: 03/07/2018] [Indexed: 05/05/2023]
Abstract
This study seeks to understand the general distribution of virome abundance and diversity in tropical freshwater ecosystems in Singapore and the geospatial distribution of the virome under different landuse patterns. Correlations between diversity, environmental parameters and land use patterns were analyzed and significant correlations were highlighted. Overall, the majority (65.5%) of the annotated virome belonged to bacteriophages. The percentage of Caudovirales was higher in reservoirs whereas the percentages of Dicistroviridae, Microviridae and Circoviridae were higher in tributaries. Reservoirs showed a higher Shannon-index virome diversity compared to upstream tributaries. Land use (urbanized, agriculture and parkland areas) influenced the characteristics of the virome distribution pattern. Dicistroviridae and Microviridae were enriched in urbanized tributaries while Mimiviridae, Phycodnaviridae, Siphoviridae and Podoviridae were enriched in parkland reservoirs. Several sequences closely related to the emerging zoonotic virus, cyclovirus, and the human-related virus (human picobirnavirus), were also detected. In addition, the relative abundance of PMMoV (pepper mild mottle virus) sequences was significantly correlated with RT-qPCR measurements (0.588 < r < 0.879, p < 0.05). This study shows that spatial factors (e.g., reservoirs/tributaries, land use) are the main drivers of the viral community structure in tropical freshwater ecosystems.
Collapse
Affiliation(s)
- Xiaoqiong Gu
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 1, T-lab Building, TL08-03, 117576, Singapore
| | | | - Shu Harn Te
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 1, T-lab Building, TL08-03, 117576, Singapore
| | - Nazanin Saeidi
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 1, T-lab Building, TL08-03, 117576, Singapore
| | - Shin Giek Goh
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 1, T-lab Building, TL08-03, 117576, Singapore
| | - Ariel Kushmaro
- School of Material Science and Engineering, Nanyang Technological University, 637819, Singapore
| | | | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Engineering Drive 1, T-lab Building, TL08-03, 117576, Singapore.
| |
Collapse
|
12
|
Rosario K, Breitbart M, Harrach B, Segalés J, Delwart E, Biagini P, Varsani A. Revisiting the taxonomy of the family Circoviridae: establishment of the genus Cyclovirus and removal of the genus Gyrovirus. Arch Virol 2017; 162:1447-1463. [PMID: 28155197 DOI: 10.1007/s00705-017-3247-y] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/29/2016] [Indexed: 12/19/2022]
Abstract
The family Circoviridae contains viruses with covalently closed, circular, single-stranded DNA (ssDNA) genomes, including the smallest known autonomously replicating, capsid-encoding animal pathogens. Members of this family are known to cause fatal diseases in birds and pigs and have been historically classified in one of two genera: Circovirus, which contains avian and porcine pathogens, and Gyrovirus, which includes a single species (Chicken anemia virus). However, over the course of the past six years, viral metagenomic approaches as well as degenerate PCR detection in unconventional hosts and environmental samples have elucidated a broader host range, including fish, a diversity of mammals, and invertebrates, for members of the family Circoviridae. Notably, these methods have uncovered a distinct group of viruses that are closely related to members of the genus Circovirus and comprise a new genus, Cyclovirus. The discovery of new viruses and a re-evaluation of genomic features that characterize members of the Circoviridae prompted a revision of the classification criteria used for this family of animal viruses. Here we provide details on an updated Circoviridae taxonomy ratified by the International Committee on the Taxonomy of Viruses in 2016, which establishes the genus Cyclovirus and reassigns the genus Gyrovirus to the family Anelloviridae, a separate lineage of animal viruses that also contains circular ssDNA genomes. In addition, we provide a new species demarcation threshold of 80% genome-wide pairwise identity for members of the family Circoviridae, based on pairwise identity distribution analysis, and list guidelines to distinguish between members of this family and other eukaryotic viruses with circular, ssDNA genomes.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, 33701, USA.
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, 33701, USA
| | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Philippe Biagini
- Viral Emergence and Co-evolution Unit, ADES, UMR 7268, Aix-Marseille University, CNRS, EFS, 27 Bd. Jean Moulin, 13005, Marseille, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, Tempe, AZ, 85287-5001, USA.
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
| |
Collapse
|
13
|
Kisseljov FL, Vinokurova SV, Kisseljova NP. Novel human DNA viruses and their putative associations with human diseases. Mol Biol 2016. [DOI: 10.1134/s0026893316040063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Macera L, Focosi D, Vatteroni ML, Manzin A, Antonelli G, Pistello M, Maggi F. Cyclovirus Vietnam DNA in immunodeficient patients. J Clin Virol 2016; 81:12-5. [PMID: 27270127 DOI: 10.1016/j.jcv.2016.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cyclovirus Vietnam (CyCV-VN) is a CyCV detected in 2013 from cerebrospinal fluid (CSF) samples of patients with neurological disorders. Information on prevalence, pathogenesis and disease association of CyCV-VN is still very patchy. OBJECTIVES AND STUDY DESIGN In this study, we have used a PCR assay targeting the Rep gene to investigate the prevalence of CyCV-VN infection in blood and CSF samples of 346 Italian subjects. RESULTS Overall, 7% of blood samples were positive for CyCV-VN while the virus was not detected in any of the CSF samples. The prevalence of CyCV-VN was relatively high in HIV positive patients (21%), modest in patients with HBV or HCV infection (6%), and low in transplant recipient patients (2%). Positive patients showed low levels of CyCV-VN viremia. The virus was not detected in serum samples from healthy individuals. Longitudinal analysis of serum samples obtained from selected patients showed a stable or transient presence of circulating CyCV-VN. CONCLUSIONS The present study is the first to demonstrate CyCV-VN DNA circulation in Italy and to cast light on some biological aspects of this novel virus of men.
Collapse
Affiliation(s)
- Lisa Macera
- Virology Unit, Pisa University Hospital, Pisa, Italy; Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, Italy; Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Italy
| | - Daniele Focosi
- Division of Transfusion Medicine and Transplant Biology, Pisa University Hospital, Pisa, Italy
| | | | - Aldo Manzin
- Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, Italy
| | - Guido Antonelli
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Italy
| | - Mauro Pistello
- Virology Unit, Pisa University Hospital, Pisa, Italy; Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Italy
| | | |
Collapse
|
15
|
Kim Y, Aw TG, Rose JB. Transporting Ocean Viromes: Invasion of the Aquatic Biosphere. PLoS One 2016; 11:e0152671. [PMID: 27055282 PMCID: PMC4824483 DOI: 10.1371/journal.pone.0152671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/17/2016] [Indexed: 11/18/2022] Open
Abstract
Studies of marine viromes (viral metagenomes) have revealed that DNA viruses are highly diverse and exhibit biogeographic patterns. However, little is known about the diversity of RNA viruses, which are mostly composed of eukaryotic viruses, and their biogeographic patterns in the oceans. A growth in global commerce and maritime traffic may accelerate spread of diverse and non-cosmopolitan DNA viruses and potentially RNA viruses from one part of the world to another. Here, we demonstrated through metagenomic analyses that failure to comply with mid-ocean ballast water exchange regulation could result in movement of viromes including both DNA viruses and RNA viruses (including potential viral pathogens) unique to geographic and environmental niches. Furthermore, our results showed that virus richness (known and unknown viruses) in ballast water is associated with distance between ballast water exchange location and its nearest shoreline as well as length of water storage time in ballast tanks (voyage duration). However, richness of only known viruses is governed by local environmental conditions and different viral groups have different responses to environmental variation. Overall, these results identified ballast water as a factor contributing to ocean virome transport and potentially increased exposure of the aquatic bioshpere to viral invasion.
Collapse
Affiliation(s)
- Yiseul Kim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - Tiong Gim Aw
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Joan B. Rose
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
16
|
Male MF, Kraberger S, Stainton D, Kami V, Varsani A. Cycloviruses, gemycircularviruses and other novel replication-associated protein encoding circular viruses in Pacific flying fox (Pteropus tonganus) faeces. INFECTION GENETICS AND EVOLUTION 2016; 39:279-292. [PMID: 26873064 DOI: 10.1016/j.meegid.2016.02.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/27/2016] [Accepted: 02/06/2016] [Indexed: 12/13/2022]
Abstract
Viral metagenomic studies have demonstrated that animal faeces can be a good sampling source for exploring viral diversity associated with the host and its environment. As part of an continuing effort to identify novel circular replication-associated protein encoding single-stranded (CRESS) DNA viruses circulating in the Tongan archipelago, coupled with the fact that bats are a reservoir species of a large number of viruses, we used a metagenomic approach to investigate the CRESS DNA virus diversity in Pacific flying fox (Pteropus tonganus) faeces. Faecal matter from four roosting sites located in Ha'avakatolo, Kolovai, Ha'ateiho and Lapaha on Tongatapu Island was collected in April 2014 and January 2015. From these samples we identified five novel cycloviruses representing three putative species, 25 gemycircularviruses representing at least 14 putative species, 17 other CRESS DNA viruses (15 putative species), two circular DNA molecules and a putative novel multi-component virus for which we have identified three cognate molecules. This study demonstrates that there exists a large diversity of CRESS DNA viruses in Pacific flying fox faeces.
Collapse
Affiliation(s)
- Maketalena F Male
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Daisy Stainton
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | | | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, USA.
| |
Collapse
|
17
|
Rosario K, Schenck RO, Harbeitner RC, Lawler SN, Breitbart M. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins. Front Microbiol 2015. [PMID: 26217327 PMCID: PMC4498126 DOI: 10.3389/fmicb.2015.00696] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Viral metagenomics has recently revealed the ubiquitous and diverse nature of single-stranded DNA (ssDNA) viruses that encode a conserved replication initiator protein (Rep) in the marine environment. Although eukaryotic circular Rep-encoding ssDNA (CRESS-DNA) viruses were originally thought to only infect plants and vertebrates, recent studies have identified these viruses in a number of invertebrates. To further explore CRESS-DNA viruses in the marine environment, this study surveyed CRESS-DNA viruses in various marine invertebrate species. A total of 27 novel CRESS-DNA genomes, with Reps that share less than 60.1% identity with previously reported viruses, were recovered from 21 invertebrate species, mainly crustaceans. Phylogenetic analysis based on the Rep revealed a novel clade of CRESS-DNA viruses that included approximately one third of the marine invertebrate associated viruses identified here and whose members may represent a novel family. Investigation of putative capsid proteins (Cap) encoded within the eukaryotic CRESS-DNA viral genomes from this study and those in GenBank demonstrated conserved patterns of predicted intrinsically disordered regions (IDRs), which can be used to complement similarity-based searches to identify divergent structural proteins within novel genomes. Overall, this study expands our knowledge of CRESS-DNA viruses associated with invertebrates and explores a new tool to evaluate divergent structural proteins encoded by these viruses.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida St. Petersburg, FL, USA
| | - Ryan O Schenck
- College of Marine Science, University of South Florida St. Petersburg, FL, USA
| | - Rachel C Harbeitner
- College of Marine Science, University of South Florida St. Petersburg, FL, USA
| | - Stephanie N Lawler
- College of Marine Science, University of South Florida St. Petersburg, FL, USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida St. Petersburg, FL, USA
| |
Collapse
|
18
|
Li L, Giannitti F, Low J, Keyes C, Ullmann LS, Deng X, Aleman M, Pesavento PA, Pusterla N, Delwart E. Exploring the virome of diseased horses. J Gen Virol 2015; 96:2721-2733. [PMID: 26044792 DOI: 10.1099/vir.0.000199] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Metagenomics was used to characterize viral genomes in clinical specimens of horses with various organ-specific diseases of unknown aetiology. A novel parvovirus as well as a previously described hepacivirus closely related to human hepatitis C virus and equid herpesvirus 2 were identified in the cerebrospinal fluid of horses with neurological signs. Four co-infecting picobirnaviruses, including an unusual genome with fused RNA segments, and a divergent anellovirus were found in the plasma of two febrile horses. A novel cyclovirus genome was characterized from the nasal secretion of another febrile animal. Lastly, a small circular DNA genome with a Rep gene, from a virus we called kirkovirus, was identified in the liver and spleen of a horse with fatal idiopathic hepatopathy. This study expands the number of viruses found in horses, and characterizes their genomes to assist future epidemiological studies of their transmission and potential association with various equine diseases.
Collapse
Affiliation(s)
- Linlin Li
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Federico Giannitti
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.,Instituto Nacional de Investigación Agropecuaria, La Estanzuela, Colonia, Uruguay
| | - Jason Low
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Casey Keyes
- Department of Biology, University of San Francisco, San Francisco, CA, USA
| | - Leila S Ullmann
- Department of Microbiology and Immunology, UNESP Sao Paulo State University, Sao Paulo, Brazil
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Monica Aleman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Patricia A Pesavento
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, USA
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
19
|
Phan TG, Mori D, Deng X, Rajindrajith S, Ranawaka U, Fan Ng TF, Bucardo-Rivera F, Orlandi P, Ahmed K, Delwart E. Small circular single stranded DNA viral genomes in unexplained cases of human encephalitis, diarrhea, and in untreated sewage. Virology 2015; 482:98-104. [PMID: 25839169 DOI: 10.1016/j.virol.2015.03.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/16/2015] [Accepted: 03/03/2015] [Indexed: 01/02/2023]
Abstract
Viruses with small circular ssDNA genomes encoding a replication initiator protein can infect a wide range of eukaryotic organisms ranging from mammals to fungi. The genomes of two such viruses, a cyclovirus (CyCV-SL) and gemycircularvirus (GemyCV-SL) were detected by deep sequencing of the cerebrospinal fluids of Sri Lankan patients with unexplained encephalitis. One and three out of 201 CSF samples (1.5%) from unexplained encephalitis patients tested by PCR were CyCV-SL and GemyCV-SL DNA positive respectively. Nucleotide similarity searches of pre-existing metagenomics datasets revealed closely related genomes in feces from unexplained cases of diarrhea from Nicaragua and Brazil and in untreated sewage from Nepal. Whether the tropism of the cyclovirus and gemycircularvirus reported here include humans or other cellular sources in or on the human body remains to be determined.
Collapse
Affiliation(s)
- Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | - Daisuke Mori
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Shaman Rajindrajith
- Department of Pediatrics, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Udaya Ranawaka
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Terry Fei Fan Ng
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | | | | | - Kamruddin Ahmed
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu 879-5593, Japan; Research Promotion Institute, Oita University, Yufu 879-5593, Oita, Japan; Department of Pathobiology and Medical Diagnostics, Faculty of Medicine, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA.
| |
Collapse
|