1
|
Tian J, Qiao R, Xiong K, Zhang W, Chen L. A bioinspired Au-Cu 1.97S/Cu 2S film with efficient low-angle-dependent and thermal-assisted photodetection properties. iScience 2021; 24:102167. [PMID: 33718826 PMCID: PMC7920830 DOI: 10.1016/j.isci.2021.102167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/03/2020] [Accepted: 02/05/2021] [Indexed: 12/02/2022] Open
Abstract
Inspired by the geological processes, this study develops an innovative low-concentration-ratio H2 reduction method to reduce the stoichiometric Au-CuS nanoparticles to produce completely reduced stoichiometric Cu2S with "invisible" Au achieved for solid solution Au enhancement. A stable Au-Cu1.97S/Cu2S micro/nano-composite is then formed by spontaneous oxidation. From this composite, in combination with biomimetic technology, an omnidirectional photoabsorption and thermoregulated film (Au-Cu1.97S/Cu2S-C-T_FW) is designed and fabricated as a photothermal-assisted and temperature-autoregulated photodetector for broadband and low-angle-dependent photodetection that presents good performance with high responsivity (26.37 mA/W), detectivity (1.25×108 Jones), and good stability at low bias (0.5 V). Solid solution Au exhibits significantly enhanced photodetection (1,000 times). This study offers a new concept for improving the stability and photoelectric properties of copper chalcogenides. Moreover, it opens up a new avenue toward enhancing the performance of optoelectronic and photovoltaic devices using solid solution metal atoms and thermal-assisted, anti-overheating temperature autoregulation.
Collapse
Affiliation(s)
- Junlong Tian
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronic, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ruyi Qiao
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronic, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Kai Xiong
- College of Materials Science and Engineering, Yunnan University, Kunming, Yunnan 650091, China
| | - Wang Zhang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lulu Chen
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronic, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
2
|
Dou S, Xu H, Zhao J, Zhang K, Li N, Lin Y, Pan L, Li Y. Bioinspired Microstructured Materials for Optical and Thermal Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000697. [PMID: 32686250 DOI: 10.1002/adma.202000697] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Precise optical and thermal regulatory systems are found in nature, specifically in the microstructures on organisms' surfaces. In fact, the interaction between light and matter through these microstructures is of great significance to the evolution and survival of organisms. Furthermore, the optical regulation by these biological microstructures is engineered owing to natural selection. Herein, the role that microstructures play in enhancing optical performance or creating new optical properties in nature is summarized, with a focus on the regulation mechanisms of the solar and infrared spectra emanating from the microstructures and their role in the field of thermal radiation. The causes of the unique optical phenomena are discussed, focusing on prevailing characteristics such as high absorption, high transmission, adjustable reflection, adjustable absorption, and dynamic infrared radiative design. On this basis, the comprehensive control performance of light and heat integrated by this bioinspired microstructure is introduced in detail and a solution strategy for the development of low-energy, environmentally friendly, intelligent thermal control instruments is discussed. In order to develop such an instrument, a microstructural design foundation is provided.
Collapse
Affiliation(s)
- Shuliang Dou
- National Key Laboratory of Science and Technology on Advanced Composites, Harbin Institute of Technology, Harbin, 150006, China
| | - Hongbo Xu
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiupeng Zhao
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ke Zhang
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Na Li
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yipeng Lin
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Pan
- National Key Laboratory of Science and Technology on Advanced Composites, Harbin Institute of Technology, Harbin, 150006, China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
3
|
Wang Y, Xiong DB, Zhang W, Su H, Liu Q, Gu J, Zhu S, Zhang D. Surface plasmon resonance of gold nanocrystals coupled with slow-photon-effect of biomorphic TiO 2 photonic crystals for enhanced photocatalysis under visible-light. Catal Today 2016. [DOI: 10.1016/j.cattod.2016.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Liu Q, Zheng X, He J, Wang W, Fu M, Cao Y, Li H, Wu Y, Chen T, Zhang C, Chen X, Yu B, Li S, Kang J, Wu Z. Enhanced magneto-optical effects in composite coaxial nanowires embedded with Ag nanoparticles. Sci Rep 2016; 6:29170. [PMID: 27403716 PMCID: PMC4941400 DOI: 10.1038/srep29170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/15/2016] [Indexed: 11/30/2022] Open
Abstract
Nanostructures decorated with noble metal nanoparticles (NPs) exhibit potential for use in highly sensitive optoelectronic devices through the localized surface plasmon resonance (LSPR) effect. In this study, Faraday rotation was significantly enhanced through the structural optimization of ferromagnetic (FM)/semiconductor composite nanostructures. Experimental and theoretical results revealed that the position of noble metal NPs significantly influenced the coupling of the LSPR-enhanced electromagnetic field with FM materials. Furthermore, nanostructures embedded with noble metals demonstrated an improved capability to efficiently use the electromagnetic field compared to other structures. The Faraday rotation of ZnO/Ag(NPs)/Fe was enhanced 58 fold compared to that of the ZnO(film)/Fe. This work provides a basis for the design of nanoarchitectures for miniaturized high-performance magneto-optical devices.
Collapse
Affiliation(s)
- Qianwen Liu
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Xuanli Zheng
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Jialun He
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Weiping Wang
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Mingming Fu
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Yiyan Cao
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Heng Li
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Yaping Wu
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Ting Chen
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Chunmiao Zhang
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaohong Chen
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Binbin Yu
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Shuping Li
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Junyong Kang
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Zhiming Wu
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, P. R. China.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA
| |
Collapse
|