1
|
Santos HJ, Nozaki T. The mitosome of the anaerobic parasitic protist Entamoeba histolytica: A peculiar and minimalist mitochondrion-related organelle. J Eukaryot Microbiol 2022; 69:e12923. [PMID: 35588086 PMCID: PMC9796589 DOI: 10.1111/jeu.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The simplest class of mitochondrion-related organelles (MROs) is the mitosome, an organelle present in a few anaerobic protozoan parasites such as Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium parvum. E. histolytica causes amoebiasis in humans, deemed as one of the important, yet neglected tropical infections in the world. Much of the enigma of the E. histolytica mitosome circles around the obvious lack of a majority of known mitochondrial components and functions exhibited in other organisms. The identification of enzymes responsible for sulfate activation (AS, IPP, and APSK) and a number of lineage-specific proteins such as the outer membrane beta-barrel protein (MBOMP30), and transmembrane domain-containing proteins that bind to various organellar proteins (ETMP1, ETMP30, EHI_170120, and EHI_099350) showcased the remarkable divergence of this organelle compared to the other MROs of anaerobic protozoa. Here, we summarize the findings regarding the biology of the mitosomes in E. histolytica, from their discovery up to the present understanding of its roles and interactions. We also include current advances and future perspectives on the biology, biochemistry, and evolution of the mitosomes of E. histolytica.
Collapse
Affiliation(s)
- Herbert J. Santos
- Department of Biomedical Chemistry, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Xu R. Reinforcement learning approach to shortcuts between thermodynamic states with minimum entropy production. Phys Rev E 2022; 105:054123. [PMID: 35706200 DOI: 10.1103/physreve.105.054123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
We propose a systematic method based on reinforcement learning (RL) techniques to find the optimal path to minimize the total entropy production between two equilibrium states of open systems at the same temperature in a given fixed period. Benefiting from the generalization of the deep RL techniques, we provide a powerful tool to address this problem in quantum systems even with two-dimensional continuous controllable parameters. We successfully apply our method to the classical and quantum two-level systems.
Collapse
Affiliation(s)
- Rongxing Xu
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan Mathematical Science Team, RIKEN Center for Advanced Inelligence Project (AIP), 1-4-1 Nihonbashi, Chuo-Ku, Tokyo 103-0027, Japan
| |
Collapse
|
3
|
Abstract
Interorganellar cross talk is often mediated by membrane contact sites (MCSs), which are zones where participating membranes come within 30 nm of one another. MCSs have been found in organelles, including the endoplasmic reticulum, Golgi bodies, endosomes, and mitochondria. Despite its seeming ubiquity, reports of MCS involving mitochondrion-related organelles (MROs) present in a few anaerobic parasitic protozoa remain lacking. Entamoeba histolytica, the etiological agent of amoebiasis, possesses an MRO called the mitosome. We previously discovered several Entamoeba-specific transmembrane mitosomal proteins (ETMPs) from in silico and cell-biological analyses. One of them, ETMP1 (EHI_175060), was predicted to have one transmembrane domain and two coiled-coil regions and was demonstrated to be mitosome membrane integrated based on carbonate fractionation and immunoelectron microscopy (IEM) data. Immunoprecipitation analysis detected a candidate interacting partner, EH domain-containing protein (EHD1; EHI_105270). We expressed hemagglutinin (HA)-tagged EHD1 in E. histolytica, and subsequent immunofluorescence and IEM data indicated an unprecedented MCS between the mitosome and the endosome. Live imaging of a green fluorescent protein (GFP)-EHD1-expressing strain demonstrated that EHD1 is involved in early endosome formation and is observed in MCS between endosomes of various sizes. In vitro assays using recombinant His-EHD1 demonstrated ATPase activity. MCSs are involved in lipid transfer, ion homeostasis, and organelle dynamics. The serendipitous discovery of the ETMP1-interacting partner EHD1 led to the observation of the mitosome-endosome contact site in E. histolytica. It opened a new view of how the relic mitochondria of Entamoeba may likewise be involved in organelle cross talk, a conserved feature of mitochondria and other organelles in general.
Collapse
|
4
|
Import of Entamoeba histolytica Mitosomal ATP Sulfurylase Relies on Internal Targeting Sequences. Microorganisms 2020; 8:microorganisms8081229. [PMID: 32806678 PMCID: PMC7465240 DOI: 10.3390/microorganisms8081229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial matrix proteins synthesized in the cytosol often contain amino (N)-terminal targeting sequences (NTSs), or alternately internal targeting sequences (ITSs), which enable them to be properly translocated to the organelle. Such sequences are also required for proteins targeted to mitochondrion-related organelles (MROs) that are present in a few species of anaerobic eukaryotes. Similar to other MROs, the mitosomes of the human intestinal parasite Entamoeba histolytica are highly degenerate, because a majority of the components involved in various processes occurring in the canonical mitochondria are either missing or modified. As of yet, sulfate activation continues to be the only identified role of the relic mitochondria of Entamoeba. Mitosomes influence the parasitic nature of E. histolytica, as the downstream cytosolic products of sulfate activation have been reported to be essential in proliferation and encystation. Here, we investigated the position of the targeting sequence of one of the mitosomal matrix enzymes involved in the sulfate activation pathway, ATP sulfurylase (AS). We confirmed by immunofluorescence assay and subcellular fractionation that hemagluttinin (HA)-tagged EhAS was targeted to mitosomes. However, its ortholog in the δ-proteobacterium Desulfovibrio vulgaris, expressed as DvAS-HA in amoebic trophozoites, indicated cytosolic localization, suggesting a lack of recognizable mitosome targeting sequence in this protein. By expressing chimeric proteins containing swapped sequences between EhAS and DvAS in amoebic cells, we identified the ITSs responsible for mitosome targeting of EhAS. This observation is similar to other parasitic protozoans that harbor MROs, suggesting a convergent feature among various MROs in favoring ITS for the recognition and translocation of targeted proteins.
Collapse
|
5
|
Watanabe N, Nakada-Tsukui K, Maehama T, Nozaki T. Dynamism of PI4-Phosphate during Interactions with Human Erythrocytes in Entamoeba histolytica. Microorganisms 2020; 8:microorganisms8071050. [PMID: 32679800 PMCID: PMC7409237 DOI: 10.3390/microorganisms8071050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
Phosphatidylinositol phosphates (PIPs) are involved in many cellular events as important secondary messengers. In Entamoeba histolytica, a human intestinal protozoan parasite, virulence-associated mechanisms such as cell motility, vesicular traffic, trogo- and phagocytosis are regulated by PIPs. It has been well established that PI3P, PI4P, and PI(3,4,5)P3 play specific roles during amoebic trogo- and phagocytosis. In the present study, we demonstrated the nuclear localization of PI4P in E. histolytica trophozoites in steady state with immunofluorescence imaging and immunoelectron microscopy, using anti-PI4P antibodies and PI4P biosensors [substrate of the Icm/ Dot type IV secretion system (SidM)]. We further showed that the nuclear PI4P decreased after a co-culture with human erythrocytes or Chinese hamster ovary (CHO) cells. However, concomitant changes in the localization and the amount of PI(4,5)P2, which is the expected major metabolized (phosphorylated) product of PI4P, were not observed. This phenomenon was specifically caused by whole or ghost erythrocytes and CHO cells, but not artificial beads. The amount of PIP2 and PIP, biochemically estimated by [32P]-phosphate metabolic labeling and thin layer chromatography, was decreased upon erythrocyte adherence. Altogether, our data indicate for the first time in eukaryotes that erythrocyte attachment leads to the metabolism of nuclear PIPs, and metabolites other than PI(4,5)P2 may be involved in the regulation of downstream cellular events such as cytoskeleton rearrangement or transcriptional regulation.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan;
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
- Correspondence: ; Tel.: +81-3-5841-3526
| |
Collapse
|
6
|
Suzuki K, Inoue H, Matsuoka S, Tero R, Hirano-Iwata A, Tozawa Y. Establishment of a cell-free translation system from rice callus extracts. Biosci Biotechnol Biochem 2020; 84:2028-2036. [PMID: 32543982 DOI: 10.1080/09168451.2020.1779024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eukaryotic in vitro translation systems require large numbers of protein and RNA components and thereby rely on the use of cell extracts. Here we established a new in vitro translation system based on rice callus extract (RCE). We confirmed that RCE maintains its initial activity even after five freeze-thaw cycles and that the optimum temperature for translation is around 20°C. We demonstrated that the RCE system allows the synthesis of hERG, a large membrane protein, in the presence of liposomes. We also showed that the introduction of a bicistronic mRNA based on 2A peptide to RCE allowed the production of two distinct proteins from a single mRNA. Our new method thus facilitates laboratory-scale production of cell extracts, making it a useful tool for the in vitro synthesis of proteins for biochemical studies.
Collapse
Affiliation(s)
- Kakeru Suzuki
- Graduate School of Science and Engineering, Saitama University , Saitama, Japan
| | - Haruka Inoue
- Graduate School of Science and Engineering, Saitama University , Saitama, Japan
| | - Satoshi Matsuoka
- Graduate School of Science and Engineering, Saitama University , Saitama, Japan
| | - Ryugo Tero
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology , Toyohashi, Japan
| | - Ayumi Hirano-Iwata
- Advanced Institute for Materials Research, Tohoku University , Sendai, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University , Saitama, Japan
| |
Collapse
|
7
|
Hepler RW, Nahas DD, Lucas B, Kaufhold R, Flynn JA, Galli JD, Swoyer R, Wagner JM, Espeseth AS, Joyce JG, Cook JC, Durr E. Spectroscopic analysis of chlamydial major outer membrane protein in support of structure elucidation. Protein Sci 2019; 27:1923-1941. [PMID: 30144190 PMCID: PMC6201732 DOI: 10.1002/pro.3501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/17/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022]
Abstract
Chlamydial major outer membrane protein (MOMP) is the major protein constituent of the bacterial pathogen Chlamydia trachomatis. Chlamydia trachomatis Serovars D–K are the leading cause of genital tract infections which can lead to infertility or ectopic pregnancies. A vaccine against Chlamydia is highly desirable but currently not available. MOMP accounts for ~ 60% of the chlamydial protein mass and is considered to be one of the lead vaccine candidates against C. trachomatis. We report on the spectroscopic analysis of C. trachomatis native MOMP Serovars D, E, F, and J as well as C. muridarum MOMP by size exclusion chromatography multi angle light scattering (SEC MALS), circular dichroism (CD) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR). MOMP was purified from the native bacterium grown in either adherent HeLa cells or in different suspension cell lines. Our results confirm that MOMP forms homo‐trimers in detergent micelles. The secondary structure composition of C. trachomatis MOMP was conserved across serovars, but different from composition of C. muridarum MOMP with a 13% (CD) to 18% (ATR‐FTIR) reduction in β‐sheet conformation for C. trachomatis MOMP. When Serovar E MOMP was isolated from suspension cell lines the α‐helix content increased by 7% (CD) to 13% (ATIR‐FTIR). Maintenance of a native‐like tertiary and quaternary structure in subunit vaccines is important for the generation of protective antibodies. This biophysical characterization of MOMP presented here serves, in the absence of functional assays, as a method for monitoring the structural integrity of MOMP.
Collapse
Affiliation(s)
- Robert W Hepler
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Debbie D Nahas
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Bob Lucas
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Robin Kaufhold
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Jessica A Flynn
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Jennifer D Galli
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Ryan Swoyer
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - James M Wagner
- Vaccine Process Development, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Amy S Espeseth
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Joseph G Joyce
- Vaccine Process Development, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - James C Cook
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | - Eberhard Durr
- Infectious Diseases and Vaccines Discovery, MRL, Merck & Co., Inc., Kenilworth, New Jersey
| |
Collapse
|
8
|
Tomii K, Santos HJ, Nozaki T. Genome-Wide Analysis of Known and Potential Tetraspanins in Entamoeba histolytica. Genes (Basel) 2019; 10:genes10110885. [PMID: 31684194 PMCID: PMC6895871 DOI: 10.3390/genes10110885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Tetraspanins are membrane proteins involved in intra- and/or intercellular signaling, and membrane protein complex formation. In some organisms, their role is associated with virulence and pathogenesis. Here, we investigate known and potential tetraspanins in the human intestinal protozoan parasite Entamoeba histolytica. We conducted sequence similarity searches against the proteome data of E. histolytica and newly identified nine uncharacterized proteins as potential tetraspanins in E. histolytica. We found three subgroups within known and potential tetraspanins, as well as subgroup-associated features in both their amino acid and nucleotide sequences. We also examined the subcellular localization of a few representative tetraspanins that might be potentially related to pathogenicity. The results in this study could be useful resources for further understanding and downstream analyses of tetraspanins in Entamoeba.
Collapse
Affiliation(s)
- Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | - Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
9
|
Santos HJ, Imai K, Makiuchi T, Tomii K, Horton P, Nozawa A, Okada K, Tozawa Y, Nozaki T. Novel lineage-specific transmembrane β-barrel proteins in the endoplasmic reticulum of Entamoeba histolytica. FEBS J 2019; 286:3416-3432. [PMID: 31045303 DOI: 10.1111/febs.14870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
β-barrel outer membrane proteins (BOMPs) are essential components of outer membranes of Gram-negative bacteria and endosymbiotic organelles, usually involved in the transport of proteins and substrates across the membrane. Based on the analysis of our in silico BOMP predictor data for the Entamoeba histolytica genome, we detected a new transmembrane β-barrel domain-containing protein, EHI_192610. Sequence analysis revealed that this protein is unique to Entamoeba species, and it exclusively clusters with a homolog, EHI_099780, which is similarly lineage specific. Both proteins possess an N-terminal signal peptide sequence as well as multiple repeats that contain dyad hydrophobic periodicities. Data from immunofluorescence assay of trophozoites expressing the respective candidates showed the absence of colocalization with mitosomal marker, and interestingly demonstrated partial colocalization with endoplasmic reticulum (ER) proteins instead. Integration to organellar membrane was supported by carbonate fractionation assay and immunoelectron microscopy. CD analysis of reconstituted proteoliposomes containing EHI_192610 showed a spectrum demonstrating a predominant β-sheet structure, suggesting that this protein is β-strand rich. Furthermore, the presence of repeat regions with predicted transmembrane β-strand pairs in both EHI_192610 and EHI_099780, is consistent with the hypothesis that BOMPs originated from the amplification of ββ-hairpin modules, suggesting that the two Entamoeba-specific proteins are novel β-barrels, intriguingly localized partially to the ER membrane.
Collapse
Affiliation(s)
- Herbert J Santos
- Graduate School of Medicine, The University of Tokyo, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kenichiro Imai
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Japan
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Paul Horton
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Kenta Okada
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
10
|
Santos HJ, Hanadate Y, Imai K, Nozaki T. An Entamoeba-Specific Mitosomal Membrane Protein with Potential Association to the Golgi Apparatus. Genes (Basel) 2019; 10:genes10050367. [PMID: 31086122 PMCID: PMC6563013 DOI: 10.3390/genes10050367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/13/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
The aerobic mitochondrion had undergone evolutionary diversification, most notable among lineages of anaerobic protists. Entamoeba is one of the genera of parasitic protozoans that lack canonical mitochondria, and instead possess mitochondrion-related organelles (MROs), specifically mitosomes. Entamoeba mitosomes exhibit functional reduction and divergence, most exemplified by the organelle’s inability to produce ATP and synthesize iron-sulfur cluster. Instead, this organelle is capable of sulfate activation, which has been linked to amoebic stage conversion. In order to understand other unique features and components of this MRO, we utilized an in silico prediction tool to screen transmembrane domain containing proteins in the mitosome proteome. Here, we characterize a novel lineage-specific mitosomal membrane protein, named Entamoeba transmembrane mitosomal protein of 30 kDa (ETMP30; EHI_172170), predicted to contain five transmembrane domains. Immunofluorescence analysis demonstrated colocalization of hemagglutinin (HA)-tagged ETMP30 with the mitosomal marker, adenosine-5’-phosphosulfate kinase. Mitosomal membrane localization was indicated by immunoelectron microscopy analysis, which was supported by carbonate fractionation assay. Transcriptional gene silencing successfully repressed RNA expression by 60%, and led to a defect in growth and partial elongation of mitosomes. Immunoprecipitation of ETMP30 from ETMP30-HA-expressing transformant using anti-HA antibody pulled down one interacting protein of 126 kDa. Protein sequencing by mass spectrometry revealed this protein as a cation-transporting P-type ATPase, previously reported to localize to vacuolar compartments/Golgi-like structures, hinting at a possible mitosome-vacuole/Golgi contact site.
Collapse
Affiliation(s)
- Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Yuki Hanadate
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kenichiro Imai
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
11
|
Santos HJ, Makiuchi T, Nozaki T. Reinventing an Organelle: The Reduced Mitochondrion in Parasitic Protists. Trends Parasitol 2018; 34:1038-1055. [PMID: 30201278 DOI: 10.1016/j.pt.2018.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria originated from the endosymbiotic event commencing from the engulfment of an ancestral α-proteobacterium by the first eukaryotic ancestor. Establishment of niches has led to various adaptations among eukaryotes. In anaerobic parasitic protists, the mitochondria have undergone modifications by combining features shared from the aerobic mitochondria with lineage-specific components and mechanisms; a diversified class of organelles emerged and are generally called mitochondrion-related organelles (MROs). In this review we summarize and discuss the recent advances in the knowledge of MROs from parasitic protists, particularly the themes such as metabolic functions, contribution to parasitism, dynamics, protein targeting, and novel lineage- specific proteins, with emphasis on the diversity among these organelles.
Collapse
Affiliation(s)
- Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
12
|
Puiggalí-Jou A, Pawlowski J, del Valle LJ, Michaux C, Perpète EA, Sek S, Alemán C. Properties of Omp2a-Based Supported Lipid Bilayers: Comparison with Polymeric Bioinspired Membranes. ACS OMEGA 2018; 3:9003-9019. [PMID: 31459033 PMCID: PMC6645002 DOI: 10.1021/acsomega.8b00913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/19/2018] [Indexed: 05/31/2023]
Abstract
Omp2a β-barrel outer membrane protein has been reconstituted into supported lipid bilayers (SLBs) to compare the nanomechanical properties (elastic modulus, adhesion forces, and deformation) and functionality of the resulting bioinspired system with those of Omp2a-based polymeric nanomembranes (NMs). Protein reconstitution into lipid bilayers has been performed using different strategies, the most successful one consisting of a detergent-mediated process into preformed liposomes. The elastic modulus obtained for the lipid bilayer and Omp2a are ∼19 and 10.5 ± 1.7 MPa, respectively. Accordingly, the protein is softer than the lipid bilayer, whereas the latter exhibits less mechanical strength than polymeric NMs. Besides, the function of Omp2a in the SLB is similar to that observed for Omp2a-based polymeric NMs. Results open the door to hybrid bioinspired substrates based on the integration of Omp2a-proteoliposomes and nanoperforated polymeric freestanding NMs.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| | - Jan Pawlowski
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Luis J. del Valle
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| | - Catherine Michaux
- Laboratoire
de Chimie Physique des Biomolécules, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Eric A. Perpète
- Laboratoire
de Chimie Physique des Biomolécules, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Slawomir Sek
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Carlos Alemán
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| |
Collapse
|
13
|
Wojtkowska M, Buczek D, Suzuki Y, Shabardina V, Makałowski W, Kmita H. The emerging picture of the mitochondrial protein import complexes of Amoebozoa supergroup. BMC Genomics 2017; 18:997. [PMID: 29284403 PMCID: PMC5747110 DOI: 10.1186/s12864-017-4383-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/14/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The existence of mitochondria-related organelles (MROs) is proposed for eukaryotic organisms. The Amoebozoa includes some organisms that are known to have mitosomes but also organisms that have aerobic mitochondria. However, the mitochondrial protein apparatus of this supergroup remains largely unsampled, except for the mitochondrial outer membrane import complexes studied recently. Therefore, in this study we investigated the mitochondrial inner membrane and intermembrane space complexes, using the available genome and transcriptome sequences. RESULTS When compared with the canonical cognate complexes described for the yeast Saccharomyces cerevisiae, amoebozoans with aerobic mitochondria, display lower differences in the number of subunits predicted for these complexes than the mitochondrial outer membrane complexes, although the predicted subunits appear to display different levels of diversity in regard to phylogenetic position and isoform numbers. For the putative mitosome-bearing amoebozoans, the number of predicted subunits suggests the complex elimination distinctly more pronounced than in the case of the outer membrane ones. CONCLUSION The results concern the problem of mitochondrial and mitosome protein import machinery structural variability and the reduction of their complexity within the currently defined supergroup of Amoebozoa. This results are crucial for better understanding of the Amoebozoa taxa of both biomedical and evolutionary importance.
Collapse
Affiliation(s)
- Małgorzata Wojtkowska
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Dorota Buczek
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Strasse 14, 48149 Muenster, Germany
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562 Japan
| | - Victoria Shabardina
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Strasse 14, 48149 Muenster, Germany
| | - Wojciech Makałowski
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, Niels Stensen Strasse 14, 48149 Muenster, Germany
| | - Hanna Kmita
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
14
|
Hetero-oligomer of dynamin-related proteins participates in the fission of highly divergent mitochondria from Entamoeba histolytica. Sci Rep 2017; 7:13439. [PMID: 29044162 PMCID: PMC5647421 DOI: 10.1038/s41598-017-13721-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/27/2017] [Indexed: 11/09/2022] Open
Abstract
Entamoeba histolytica is an anaerobic parasitic protist and possesses mitosomes, one of the most highly divergent mitochondrion-related organelles (MROs). Although unique metabolism and protein/metabolite transport machinery have been demonstrated in Entamoeba mitosomes, the mechanism of mitosomal fusion and fission remains to be elucidated. In this study, we demonstrate that two dynamin-related proteins (DRPs) are cooperatively involved in the fission of Entamoeba mitosomes. Expression of a dominant negative form of EhDrpA and EhDrpB, and alternatively, repression of gene expression of EhDrpA and EhDrpB genes, caused elongation of mitosomes, reflecting inhibition of mitosomal fission. Moreover, EhDrpA and EhDrpB formed an unprecedented hetero-oligomeric complex with an approximate 1:2 to 1:3 ratio, suggesting that the observed elongation of mitosomes is likely caused by the disruption and instability of the complex caused by an imbalance in the two DRPs. Altogether, this is the first report of a hetero-oligomeric DRP complex which participates in the fission of mitochondria and MROs.
Collapse
|
15
|
Santos HJ, Imai K, Hanadate Y, Fukasawa Y, Oda T, Mi-Ichi F, Nozaki T. Screening and discovery of lineage-specific mitosomal membrane proteins in Entamoeba histolytica. Mol Biochem Parasitol 2016; 209:10-17. [PMID: 26792249 DOI: 10.1016/j.molbiopara.2016.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 11/17/2022]
Abstract
Entamoeba histolytica, an anaerobic intestinal parasite causing dysentery and extra-intestinal abscesses in humans, possesses highly reduced and divergent mitochondrion-related organelles (MROs) called mitosomes. This organelle lacks many features associated with canonical aerobic mitochondria and even other MROs such as hydrogenosomes. The Entamoeba mitosome has been found to have a compartmentalized sulfate activation pathway, which was recently implicated to have a role in amebic stage conversion. It also features a unique shuttle system via Tom60, which delivers proteins from the cytosol to the mitosome. In addition, only Entamoeba mitosomes possess a novel subclass of β-barrel outer membrane protein called MBOMP30. With the discoveries of such unique features of mitosomes of Entamoeba, there still remain a number of significant unanswered issues pertaining to this organelle. Particularly, the present understanding of the inner mitosomal membrane of Entamoeba is extremely limited. So far, only a few homologs for transporters of various substrates have been confirmed, while the components of the protein translocation complexes appear to be absent or are yet to be discovered. Employing a similar strategy as in our previous work, we collaborated to screen and discover mitosomal membrane proteins. Using a specialized prediction pipeline, we searched for proteins possessing α-helical transmembrane domains, which are unique to E. histolytica mitosomes. From the prediction algorithm, 25 proteins emerged as candidates, two of which were initially observed to be localized to the mitosomes. Further screening and analysis of the predicted proteins may provide clues to answer key questions on mitosomal evolution, biogenesis, dynamics, and biochemical processes.
Collapse
Affiliation(s)
- Herbert J Santos
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kenichiro Imai
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Yuki Hanadate
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshinori Fukasawa
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Toshiyuki Oda
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Fumika Mi-Ichi
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|