1
|
Miao K, Liu W, Xu J, Qian Z, Zhang Q. Harnessing the power of traditional Chinese medicine monomers and compound prescriptions to boost cancer immunotherapy. Front Immunol 2023; 14:1277243. [PMID: 38035069 PMCID: PMC10684919 DOI: 10.3389/fimmu.2023.1277243] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
At present, cancer is the largest culprit that endangers human health. The current treatment options for cancer mainly include surgical resection, adjuvant radiotherapy and chemotherapy, but their therapeutic effects and long-term prognosis are unsatisfactory. Immunotherapy is an emerging therapy that has completely transformed the therapeutic landscape of advanced cancers, and has tried to occupy a place in the neoadjuvant therapy of resectable tumors. However, not all patients respond to immunotherapy due to the immunological and molecular features of the tumors. Traditional Chinese Medicine (TCM) provides a new perspective for cancer treatment and is considered to have the potential as promising anti-tumor drugs considering its immunoregulatory properties. This review concludes commonly used TCM monomers and compounds from the perspective of immune regulatory pathways, aiming to clearly introduce the basic mechanisms of TCM in boosting cancer immunotherapy and mechanisms of several common TCM. In addition, we also summarized closed and ongoing trials and presented prospects for future development. Due to the significant role of immunotherapy in the treatment of non-small cell lung cancer (NSCLC), TCM combined with immunotherapy should be emphasized in NSCLC.
Collapse
Affiliation(s)
- Keyan Miao
- Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jingtong Xu
- The First School of Clinical Medicine, Nanjing Medical University. Nanjing, Jiangsu, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, Jiangsu, China
| | - Qinglin Zhang
- Department of Gastroenterology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Iweala EJ, Oluwapelumi AE, Dania OE, Ugbogu EA. Bioactive Phytoconstituents and Their Therapeutic Potentials in the Treatment of Haematological Cancers: A Review. Life (Basel) 2023; 13:1422. [PMID: 37511797 PMCID: PMC10381774 DOI: 10.3390/life13071422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 07/30/2023] Open
Abstract
Haematological (blood) cancers are the cancers of the blood and lymphoid forming tissues which represents approximately 10% of all cancers. It has been reported that approximately 60% of all blood cancers are incurable. Despite substantial improvement in access to detection/diagnosis, chemotherapy and bone marrow transplantation, there is still high recurrence and unpredictable but clearly defined relapses indicating that effective therapies are still lacking. Over the past two decades, medicinal plants and their biologically active compounds are being used as potential remedies and alternative therapies for the treatment of cancer. This is due to their anti-oxidant, anti-inflammatory, anti-mutagenic, anti-angiogenic, anti-cancer activities and negligible side effects. These bioactive compounds have the capacity to reduce proliferation of haematological cancers via various mechanisms such as promoting apoptosis, transcription regulation, inhibition of signalling pathways, downregulating receptors and blocking cell cycle. This review study highlights the mechanistic and beneficial effects of nine bioactive compounds (quercetin, ursolic acid, fisetin, resveratrol, epigallocatechin gallate, curcumin, gambogic acid, butein and celastrol) as potential remedies for chemoprevention of haematological cancers. The study provides useful insights on the effectiveness of the use of bioactive compounds from plants for chemoprevention of haematological cancers.
Collapse
Affiliation(s)
- Emeka J Iweala
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
- Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | - Adurosakin E Oluwapelumi
- Department of Microbiology, Ladoke Akintola University of Technology, Ogbomoso PMB 4000, Oyo State, Nigeria
| | - Omoremime E Dania
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Ogun State, Nigeria
| | | |
Collapse
|
3
|
Liu J, Fan S, Xiang Y, Xia J, Jin H, Xu JF, Yang F, Cai J, Pi J. Nanoscale Features of Gambogic Acid Induced ROS-Dependent Apoptosis in Esophageal Cancer Cells Imaged by Atomic Force Microscopy. SCANNING 2022; 2022:1422185. [PMID: 35937670 PMCID: PMC9337977 DOI: 10.1155/2022/1422185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/07/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Gambogic acid (GA), a kind of polyprenylated xanthone derived from Garcinia hanburyi tree, has showed spectrum anticancer effects both in vitro and in vivo with low toxicity. However, up to now, there is little information about the effects of GA on esophageal cancer. In this study, we aim to test the anticancer effects of GA on esophageal cancer EC9706 cells. We established a nanoscale imaging method based on AFM to evaluate the reactive oxygen species- (ROS-) mediated anticancer effects of GA on esophageal cancer regarding the morphological and ultrastructural changes of esophageal cancer cells. The obtained results demonstrated that GA could inhibit cell proliferation, induce apoptosis, induce cell cycle arrest, and induce mitochondria membrane potential disruption in a ROS-dependent way. And using AFM imaging, we also found that GA could induce the damage of cellular morphology and increase of membrane height distribution and membrane roughness in EC9706 cells, which could be reversed by the removal of GA-induced excessive intracellular ROS. Our results not only demonstrated the anticancer effects of GA on EC9706 cells in ROS-dependent mechanism but also strongly suggested AFM as a powerful tool for the detection of ROS-mediated cancer cell apoptosis on the basis of imaging.
Collapse
Affiliation(s)
- Jianxin Liu
- Hunan Provincial Key Laboratory of Dong Medicine, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Shuhao Fan
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yinhong Xiang
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jiaojiao Xia
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jun-fa Xu
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Fen Yang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Jiang Pi
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
4
|
Liu Y, Chen Y, Lin L, Li H. Gambogic Acid as a Candidate for Cancer Therapy: A Review. Int J Nanomedicine 2020; 15:10385-10399. [PMID: 33376327 PMCID: PMC7764553 DOI: 10.2147/ijn.s277645] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gambogic acid (GA), a kind of dry resin secreted by the Garcinia hanburyi tree, is a natural active ingredient with various biological activities, such as anti-cancer, anti-inflammatory, antioxidant, anti-bacterial effects, etc. An increasing amount of evidence indicates that GA has obvious anti-cancer effects via various molecular mechanisms, including the induction of apoptosis, autophagy, cell cycle arrest and the inhibition of invasion, metastasis, angiogenesis. In order to improve the efficacy in cancer treatment, nanometer drug delivery systems have been employed to load GA and form micelles, nanoparticles, nanofibers, and so on. In this review, we aim to offer a summary of chemical structure and properties, anti-cancer activities, drug delivery systems and combination therapy of GA, which might provide a reference to promote the development and clinical application of GA.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yingchong Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Jiang L, Wen C, He Q, Sun Y, Wang J, Lan X, Rohondia S, Dou QP, Shi X, Liu J. Pseudolaric acid B induces mitotic arrest and apoptosis in both imatinib-sensitive and -resistant chronic myeloid leukaemia cells. Eur J Pharmacol 2020; 876:173064. [PMID: 32179085 DOI: 10.1016/j.ejphar.2020.173064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
The selective BCR-ABL tyrosine kinase inhibitor imatinib is one of the first-line therapies in the management of chronic myeloid leukaemia (CML). However, acquired resistance to this inhibitor, which is especially conferred by the T315I point mutation in BCR-ABL, impedes the efficacy of imatinib therapy. Therefore, the discovery and development of novel agents to overcome imatinib resistance is urgently needed. Pseudolaric acid B (PAB), a small molecule isolated from the traditional Chinese medicine Cortex pseudolaricis, has been reported to be a potential candidate for immune disorders and cancer treatment. However, its effects on CML and the involved molecular mechanism have not been reported. In the current study, by performing both in vitro and in vivo experiments in CML cells, we showed that PAB blocked the cell cycle at G2/M phase and subsequently activated the caspase pathway, cleaved the BCR-ABL protein and inhibited the BCR-ABL downstream pathways, ultimately leading to cell proliferation inhibition, cytotoxicity and apoptosis. These events were observed in both imatinib-sensitive and imatinib-insensitive CML cell lines. Moreover, PAB decreased the viability of primary blood mononuclear cells from CML patients and induced apoptosis in these cells. Our findings suggest that PAB could be used as a novel agent to sensitize imatinib-resistant CML.
Collapse
Affiliation(s)
- Liling Jiang
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuangyu Wen
- Department of Obstetrics and Gynaecology, Dongguan Affiliated Hospital, Southern Medical University, Dongguan, Guangdong, China
| | - Qingyan He
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuening Sun
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinxiang Wang
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoying Lan
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sagar Rohondia
- The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Q Ping Dou
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Xianping Shi
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jinbao Liu
- Guangzhou Municiple and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Wang Y, Zhang Q, Chen Y, Liang CL, Liu H, Qiu F, Dai Z. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed Pharmacother 2019; 121:109570. [PMID: 31710893 DOI: 10.1016/j.biopha.2019.109570] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/07/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been traditionally used to treat patients with cancers in China. It not only alleviates the symptoms of tumor patients and improves their quality of life, but also controls the size of tumors and prolongs the survival of tumor patients. While some herbs of TCM may exert therapeutic effects by directly targeting cancer cells or reducing side effects caused by antitumor drugs, others can control tumor growth and metastasis via enhancing antitumor immunity. In particular, TCM can exert antitumor effects by upregulating immune responses even in immunosuppressive tumor microenvironment. For instance, it reduces the number of M2-type macrophages and Treg cells in the tumor tissue. Although extensive reviews on directly killing cancer cells by TCM have been conducted, a review of anticancer activity of TCM solely based on its immunity-enhancing capacity is unusual. This review will summarize research progress of antitumor TCM that regulates the immune system, including both innate immunity, such as macrophages, dendritic cells, natural killer cells and MDSCs, and adaptive immunity, including CD4+/CD8+ T lymphocytes, regulatory T cells (Tregs) and B cells. As cancer immunotherapy has recently achieved certain success, it is expected that the clinical applications of immunity-enhancing TCM or traditional medicine for treating various cancer patients will be expanded. Further studies on the mechanisms by which TCM regulates immunity will provide new insights into how TCM controls tumor growth and metastasis, and may help improve its therapeutic effects on various cancers in clinic.
Collapse
Affiliation(s)
- Yeshu Wang
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Qunfang Zhang
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Chun-Ling Liang
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
7
|
Wan L, Zhang Q, Wang S, Gao Y, Chen X, Zhao Y, Qian X. Gambogic acid impairs tumor angiogenesis by targeting YAP/STAT3 signaling axis. Phytother Res 2019; 33:1579-1591. [PMID: 31033039 DOI: 10.1002/ptr.6350] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/26/2019] [Accepted: 03/01/2019] [Indexed: 01/22/2023]
Abstract
Angiogenesis is central to a wide range of physiological and pathological processes including wound healing, macular degeneration, and cancer. Excessive or inappropriate vascular supply of tumors is one of the main targets for cancer therapy. Recently, critical and selective transcriptional factors such as yes-associated protein (YAP) that control the expression of angiogenesis factors have gained increasing attention in antiangiogenic therapy. In this study, we have identified and characterized a novel inhibitor of YAP, gambogic acid (GA), which exerted striking antiangiogenic effects both in vitro and in vivo. We demonstrated that GA remarkably inhibited a variety of vascular endothelial growth factor-induced angiogenesis processes including proliferation, migration, sprouting, and tube formation of endothelial cells in vitro. In addition, GA resulted in decreased neo-vessel formation in Matrigel plugs of mice and chick chorioallantoic membrane. More importantly, we showed that GA limited tumor growth via preventing tumor angiogenesis and vascular maturation. Further mechanistic studies illustrated that GA directly targeted YAP/STAT3 signaling axis, which is critical for the transcriptional regulation of a series of angiogenic factors. Taken together, these preclinical findings suggest that GA significantly repressed tumor angiogenesis and may serve as a promising drug candidate against cancer.
Collapse
Affiliation(s)
- Li Wan
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Clinical Oncology, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Qun Zhang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute, Nanjing University, Nanjing, China
| | - Sheng Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Yong Gao
- Department of Clinical Oncology, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Xiaofei Chen
- Department of Clinical Oncology, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Yang Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoping Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Ren Y, Carcache de Blanco EJ, Fuchs JR, Soejarto DD, Burdette JE, Swanson SM, Kinghorn AD. Potential Anticancer Agents Characterized from Selected Tropical Plants. JOURNAL OF NATURAL PRODUCTS 2019; 82:657-679. [PMID: 30830783 PMCID: PMC6441492 DOI: 10.1021/acs.jnatprod.9b00018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants are well known for their value in affording clinically useful anticancer agents, with such compounds acting against cancer cells by a range of mechanisms of action. There remains a strong interest in the discovery and development of plant secondary metabolites as additional cancer chemotherapeutic lead compounds. In the present review, progress on the discovery of plant-derived compounds of the biflavonoid, lignan, sesquiterpene, steroid, and xanthone structural types is presented. Several potential anticancer leads of these types have been characterized from tropical plants collected in three countries as part of our ongoing collaborative multi-institutional project. Preliminary structure-activity relationships and work on in vivo testing and cellular mechanisms of action are also discussed. In addition, the relevant work reported by other groups on the same compound classes is included herein.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Esperanza J. Carcache de Blanco
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Djaja D. Soejarto
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
- Science and Education, Field Museum of Natural History, Chicago, IL 60605, United States
| | - Joanna E. Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Steven M. Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
9
|
Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis. Cell Death Dis 2019; 10:187. [PMID: 30796201 PMCID: PMC6385239 DOI: 10.1038/s41419-019-1360-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/25/2018] [Accepted: 01/09/2019] [Indexed: 11/08/2022]
Abstract
Gambogic acid (GA), a xanthonoid extracted from the resin of the tree, Garcinia hanburyi, was recently shown to exert anticancer activity in multiple studies, but the underlying action mechanism remains unclear. Here, we show that GA induces cancer cell death accompanied by vacuolation in vitro and in vivo. This GA-induced vacuolation in various cancer cells was derived from dilation of the endoplasmic reticulum (ER) and mitochondria, and was blocked by cycloheximide. These findings suggest that GA kills cancer cells by inducing paraptosis, a vacuolization-associated cell death. We found that megamitochondria formation, which arose from the fusion of swollen mitochondria, preceded the fusion of ER-derived vacuoles. GA-induced proteasomal inhibition was found to contribute to the ER dilation and ER stress seen in treated cancer cells, and megamitochondria formation was followed by mitochondrial membrane depolarization. Interestingly, GA-induced paraptosis was effectively blocked by various thiol-containing antioxidants, and this effect was independent of ROS generation. We observed that GA can react with cysteinyl thiol to form Michael adducts, suggesting that the ability of GA to covalently modify the nucleophilic cysteinyl groups of proteins may cause protein misfolding and subsequent accumulation of misfolded proteins within the ER and mitochondria. Collectively, our findings show that disruption of thiol proteostasis and subsequent paraptosis may critically contribute to the anti-cancer effects of GA.
Collapse
|
10
|
|
11
|
Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery. Biomaterials 2018. [DOI: 10.1016/j.biomaterials.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Soave CL, Guerin T, Liu J, Dou QP. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev 2017; 36:717-736. [PMID: 29047025 PMCID: PMC5722705 DOI: 10.1007/s10555-017-9705-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past 15 years, the proteasome has been validated as an anti-cancer drug target and 20S proteasome inhibitors (such as bortezomib and carfilzomib) have been approved by the FDA for the treatment of multiple myeloma and some other liquid tumors. However, there are shortcomings of clinical proteasome inhibitors, including severe toxicity, drug resistance, and no effect in solid tumors. At the same time, extensive research has been conducted in the areas of natural compounds and old drug repositioning towards the goal of discovering effective, economical, low toxicity proteasome-inhibitory anti-cancer drugs. A variety of dietary polyphenols, medicinal molecules, metallic complexes, and metal-binding compounds have been found to be able to selectively inhibit tumor cellular proteasomes and induce apoptotic cell death in vitro and in vivo, supporting the clinical success of specific 20S proteasome inhibitors bortezomib and carfilzomib. Therefore, the discovery of natural proteasome inhibitors and researching old drugs with proteasome-inhibitory properties may provide an alternative strategy for improving the current status of cancer treatment and even prevention.
Collapse
Affiliation(s)
- Claire L Soave
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA
| | - Tracey Guerin
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA
| | - Jinbao Liu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA.
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
13
|
Huang H, Liu N, Liao Y, Liu N, Cai J, Xia X, Guo Z, Li Y, Wen Q, Yin Q, Liu Y, Wu Q, Rajakumar D, Sheng X, Liu J. Platinum-containing compound platinum pyrithione suppresses ovarian tumor proliferation through proteasome inhibition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:79. [PMID: 28619062 PMCID: PMC5471884 DOI: 10.1186/s13046-017-0547-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ovarian carcinoma is one of the most aggressive gynecological malignant neoplasms and makes up 25-30% of all cancer cases of the female genital tract. Currently, resistance to traditional chemotherapy is a great challenge for patients with Epithelial ovarian cancer (EOC). Therefore, identifying novel agents for EOC treatment is essential and urgent. METHOD MTS assay was used to analyze the cell viability and proliferation of cancer cells. Flow cytometry was employed to analyze cell cycle distribution and cell apoptosis. Protein signaling pathways were detected by western blot and immunohistochemical staining. Nude mouse experiment was performed to test the in vivo effect of platinum pyrithione (PtPT). RESULTS PtPT is a chemically well-characterized synthetic complex of platinum that potently inhibits proteasome-associated deubiquitinases USP14 and UCHL5 activity and shows selective cytotoxicity to multiple cancer cells without damaging DNA. We found that PtPT significantly accumulated ubquitinated-proteins and suppressed the proliferation of multiple EOC cells. Additionally, PtPT induced G2 phase arrest and apoptosis in both A2780 and SKOV3 cells. More importantly, animal experiments showed that PtPT dramatically suppressed the growth of EOC xenografts without obvious side effects. CONCLUSION These results suggest that through proteasome inhibition, PtPT significantly suppressed the proliferation of EOC in vitro and in vivo and could be developed as a novel agent for EOC treatment in the future.
Collapse
Affiliation(s)
- Hongbiao Huang
- Key Laboratory of Protein Modification and Degradation, Department of Obsterics and Gynecology, The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, 510510, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences and Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Ni Liu
- Key Laboratory of Protein Modification and Degradation, Department of Obsterics and Gynecology, The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, 510510, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences and Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yuning Liao
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences and Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Ningning Liu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences and Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.,Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Jianyu Cai
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences and Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Xiaohong Xia
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences and Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zhiqiang Guo
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences and Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yanling Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences and Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Qirong Wen
- Key Laboratory of Protein Modification and Degradation, Department of Obsterics and Gynecology, The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, 510510, China
| | - Qi Yin
- Key Laboratory of Protein Modification and Degradation, Department of Obsterics and Gynecology, The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, 510510, China
| | - Yan Liu
- Key Laboratory of Protein Modification and Degradation, Department of Obsterics and Gynecology, The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, 510510, China
| | - Qingxia Wu
- Key Laboratory of Protein Modification and Degradation, Department of Obsterics and Gynecology, The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, 510510, China
| | - Dhivya Rajakumar
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences and Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Xiujie Sheng
- Key Laboratory of Protein Modification and Degradation, Department of Obsterics and Gynecology, The Third Affiliated Hospital, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, Guangdong, 510510, China.
| | - Jinbao Liu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences and Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
14
|
Zhang D, Zou Z, Ren W, Qian H, Cheng Q, Ji L, Liu B, Liu Q. Gambogic acid-loaded PEG–PCL nanoparticles act as an effective antitumor agent against gastric cancer. Pharm Dev Technol 2017; 23:33-40. [PMID: 29069711 DOI: 10.1080/10837450.2017.1295068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dinghu Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyun Zou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Wei Ren
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Qianfeng Cheng
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Liulian Ji
- The Comprehensive Cancer Centre of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Xu X, Wu Y, Hu M, Li X, Bao Q, Bian J, You Q, Zhang X. Novel Natural Product-like Caged Xanthones Bearing a Carbamate Moiety Exhibit Antitumor Potency and Anti-Angiogenesis Activity In vivo. Sci Rep 2016; 6:35771. [PMID: 27767192 PMCID: PMC5073322 DOI: 10.1038/srep35771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023] Open
Abstract
DDO-6101, a simplified structure obtained from the Garcinia natural product (NP) gambogic acid (GA), has been previously shown to possess high cytotoxicity to a variety of human tumour cell lines. To improve its physicochemical properties and in vivo cytotoxic potency, a series of novel carbamate-bearing derivatives based on DDO-6101 was synthesized and characterized. The structural modifications revealed that the presence of a carbamate moiety was useful for obtaining comparable cytotoxicity and improved aqueous solubility and permeability. 8n, which contains a bipiperidine carbamate moiety, displayed better drug properties and potential in in vivo antitumor activity. In addition, an antitumor mechanistic study suggested that 8n (DDO-6337) inhibited the ATPase activity of Hsp90 (Heat shock protein 90), leading to the inhibition of HIF-1a and ultimately contributing to its anti-angiogenesis and antitumor properties.
Collapse
Affiliation(s)
- Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Yue Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingyang Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiang Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Qichao Bao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinlei Bian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
16
|
Steroid receptor coactivator-3 is a pivotal target of gambogic acid in B-cell Non-Hodgkin lymphoma and an inducer of histone H3 deacetylation. Eur J Pharmacol 2016; 789:46-59. [PMID: 27370960 DOI: 10.1016/j.ejphar.2016.06.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022]
Abstract
Gambogic acid (GA), the active ingredient from gamboges, has been verified as a potent anti-tumor agent in many cancer cells. Nevertheless, its function in lymphoma, especially in B-cell Non-Hodgkin lymphoma (NHL), remains unclear. Amplification and/or overexpression of steroid receptor coactivator-3 (SRC-3) have been detected in multiple tumors and have confirmed its critical roles in carcinogenesis, progression, metastasis and therapy resistance in these cancers. However, no clinical data have revealed the overexpression of SRC-3 and its role in B-cell NHL. In this study, we demonstrated the anti-tumor effects of GA, which included cell growth inhibition, G1/S phase cell cycle arrest and apoptosis in B-cell NHL. We also verified that SRC-3 was overexpressed in B-cell NHL in both cell lines and lymph node samples from patients. The overexpressed SRC-3 was a central drug target of GA, and its down-regulation subsequently modulated down-stream gene expression, ultimately contributing to apoptosis. Silencing SRC-3 decreased the expression of Bcl-2, Bcl-6 and cyclin D3, but not of NF-κB and IκB-α. GA treatment did not inhibit the activation of AKT signaling pathway, but induced the deacetylation of histone H3 at lysine 9 and lysine 27. Down-regulated SRC-3 was observed to interact with more HDAC1 to mediate the deacetylation of H3. As the component of E3 ligase, Cullin3 was up-regulated and mediated the degradation of SRC-3. Our results demonstrate that GA is a potent anti-tumor agent that can be used for therapy against B-cell NHL, especially against those with an abundance of SRC-3.
Collapse
|
17
|
A novel nickel complex works as a proteasomal deubiquitinase inhibitor for cancer therapy. Oncogene 2016; 35:5916-5927. [PMID: 27086925 DOI: 10.1038/onc.2016.114] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/09/2015] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Based on the central role of the ubiquitin-proteasome system (UPS) in the degradation of cellular proteins, proteasome inhibition has been considered an attractive approach for anticancer therapy. Deubiquitinases (DUBs) remove ubiquitin conjugates from diverse substrates; therefore, they are essential regulators of the UPS. DUB inhibitors, especially the inhibitors of proteasomal DUBs are becoming a research hotspot in targeted cancer therapy. Previous studies have shown that metal complexes, such as copper and zinc complexes, can induce cancer cell apoptosis through inhibiting UPS function. Moreover, we have found that copper pyrithione inhibits both 19S proteasome-associated DUBs and 20S proteasome activity with a mechanism distinct from that of the classical 20S proteasome inhibitor bortezomib. In the present study, we reveal that (i) nickel pyrithione complex (NiPT) potently inhibits the UPS via targeting the 19S proteasome-associated DUBs (UCHL5 and USP14), without effecting on the 20S proteasome; (ii) NiPT selectively induces proteasome inhibition and apoptosis in cultured tumor cells and cancer cells from acute myeloid leukemia human patients; and (iii) NiPT inhibits proteasome function and tumor growth in nude mice. This study, for the first time, uncovers a nickel complex as an effective inhibitor of the 19S proteasomal DUBs and suggests a potentially new strategy for cancer treatment.
Collapse
|
18
|
Gambogic Acid and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:375-395. [DOI: 10.1007/978-3-319-41334-1_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Natural products against hematological malignancies and identification of their targets. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1191-201. [DOI: 10.1007/s11427-015-4922-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/16/2015] [Indexed: 01/14/2023]
|