1
|
Malhotra N, Oh S, Finin P, Medrano J, Andrews J, Goodwin M, Markowitz TE, Lack J, Boshoff HIM, Barry CE. Environmental fungi target thiol homeostasis to compete with Mycobacterium tuberculosis. PLoS Biol 2024; 22:e3002852. [PMID: 39625876 PMCID: PMC11614215 DOI: 10.1371/journal.pbio.3002852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/27/2024] [Indexed: 12/06/2024] Open
Abstract
Mycobacterial species in nature are found in abundance in sphagnum peat bogs where they compete for nutrients with a variety of microorganisms including fungi. We screened a collection of fungi isolated from sphagnum bogs by co-culture with Mycobacterium tuberculosis (Mtb) to look for inducible expression of antitubercular agents and identified 5 fungi that produced cidal antitubercular agents upon exposure to live Mtb. Whole genome sequencing of these fungi followed by fungal RNAseq after Mtb exposure allowed us to identify biosynthetic gene clusters induced by co-culture. Three of these fungi induced expression of patulin, one induced citrinin expression and one induced the production of nidulalin A. The biosynthetic gene clusters for patulin and citrinin have been previously described but the genes involved in nidulalin A production have not been described before. All 3 of these potent electrophiles react with thiols and treatment of Mtb cells with these agents followed by Mtb RNAseq showed that these natural products all induce profound thiol stress suggesting a rapid depletion of mycothiol. The induction of thiol-reactive mycotoxins through 3 different systems in response to exposure to Mtb suggests that fungi have identified this as a highly vulnerable target in a similar microenvironment to that of the caseous human lesion.
Collapse
Affiliation(s)
- Neha Malhotra
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Sangmi Oh
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Peter Finin
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Jessica Medrano
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Jenna Andrews
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Michael Goodwin
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Clifton Earl Barry
- Tuberculosis Research Section, LCIM, NIAID, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Löhr NA, Rakhmanov M, Wurlitzer JM, Lackner G, Gressler M, Hoffmeister D. Basidiomycete non-reducing polyketide synthases function independently of SAT domains. Fungal Biol Biotechnol 2023; 10:17. [PMID: 37542286 PMCID: PMC10401856 DOI: 10.1186/s40694-023-00164-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Non-reducing polyketide synthases (NR-PKSs) account for a major share of natural product diversity produced by both Asco- and Basidiomycota. The present evolutionary diversification into eleven clades further underscores the relevance of these multi-domain enzymes. Following current knowledge, NR-PKSs initiate polyketide assembly by an N-terminal starter unit:acyl transferase (SAT) domain that catalyzes the transfer of an acetyl starter from the acetyl-CoA thioester onto the acyl carrier protein (ACP). RESULTS A comprehensive phylogenetic analysis of NR-PKSs established a twelfth clade from which three representatives, enzymes CrPKS1-3 of the webcap mushroom Cortinarius rufoolivaceus, were biochemically characterized. These basidiomycete synthases lack a SAT domain yet are fully functional hepta- and octaketide synthases in vivo. Three members of the other clade of basidiomycete NR-PKSs (clade VIII) were produced as SAT-domainless versions and analyzed in vivo and in vitro. They retained full activity, thus corroborating the notion that the SAT domain is dispensable for many basidiomycete NR-PKSs. For comparison, the ascomycete octaketide synthase atrochrysone carboxylic acid synthase (ACAS) was produced as a SAT-domainless enzyme as well, but turned out completely inactive. However, a literature survey revealed that some NR-PKSs of ascomycetes carry mutations within the catalytic motif of the SAT domain. In these cases, the role of the domain and the origin of the formal acetate unit remains open. CONCLUSIONS The role of SAT domains differs between asco- and basidiomycete NR-PKSs. For the latter, it is not part of the minimal set of NR-PKS domains and not required for function. This knowledge may help engineer compact NR-PKSs for more resource-efficient routes. From the genomic standpoint, seemingly incomplete or corrupted genes encoding SAT-domainless NR-PKSs should not automatically be dismissed as non-functional pseudogenes, but considered during genome analysis to decipher the potential arsenal of natural products of a given fungus.
Collapse
Affiliation(s)
- Nikolai A Löhr
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Malik Rakhmanov
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Jacob M Wurlitzer
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Gerald Lackner
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
3
|
Mund NK, Čellárová E. Recent advances in the identification of biosynthetic genes and gene clusters of the polyketide-derived pathways for anthraquinone biosynthesis and biotechnological applications. Biotechnol Adv 2023; 63:108104. [PMID: 36716800 DOI: 10.1016/j.biotechadv.2023.108104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Natural anthraquinones are represented by a large group of compounds. Some of them are widespread across the kingdoms, especially in bacteria, fungi and plants, while the others are restricted to certain groups of organisms. Despite the significant pharmacological potential of several anthraquinones (hypericin, skyrin and emodin), their biosynthetic pathways and candidate genes coding for key enzymes have not been experimentally validated. Understanding the genetic and epigenetic regulation of the anthraquinone biosynthetic gene clusters in fungal endophytes would help not only understand their pathways in plants, which ensure their commercial availability, but also favor them as promising systems for prospective biotechnological production.
Collapse
Affiliation(s)
- Nitesh Kumar Mund
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia
| | - Eva Čellárová
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia.
| |
Collapse
|
4
|
Löhr NA, Urban MC, Eisen F, Platz L, Hüttel W, Gressler M, Müller M, Hoffmeister D. The Ketosynthase Domain Controls Chain Length in Mushroom Oligocyclic Polyketide Synthases. Chembiochem 2023; 24:e202200649. [PMID: 36507600 PMCID: PMC10108026 DOI: 10.1002/cbic.202200649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The nonreducing iterative type I polyketide synthases (NR-PKSs) CoPKS1 and CoPKS4 of the webcap mushroom Cortinarius odorifer share 88 % identical amino acids. CoPKS1 almost exclusively produces a tricyclic octaketide product, atrochrysone carboxylic acid, whereas CoPKS4 shows simultaneous hepta- and octaketide synthase activity and also produces the bicyclic heptaketide 6-hydroxymusizin. To identify the region(s) controlling chain length, four chimeric enzyme variants were constructed and assayed for activity in Aspergillus niger as heterologous expression platform. We provide evidence that the β-ketoacyl synthase (KS) domain determines chain length in these mushroom NR-PKSs, even though their KS domains differ in only ten amino acids. A unique proline-rich linker connecting the acyl carrier protein with the thioesterase domain varies most between these two enzymes but is not involved in chain length control.
Collapse
Affiliation(s)
- Nikolai A. Löhr
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Maximilian C. Urban
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Frederic Eisen
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Lukas Platz
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Wolfgang Hüttel
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Markus Gressler
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Dirk Hoffmeister
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
5
|
Singh G. Linking Lichen Metabolites to Genes: Emerging Concepts and Lessons from Molecular Biology and Metagenomics. J Fungi (Basel) 2023; 9:160. [PMID: 36836275 PMCID: PMC9964704 DOI: 10.3390/jof9020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Lichen secondary metabolites have tremendous pharmaceutical and industrial potential. Although more than 1000 metabolites have been reported from lichens, less than 10 have been linked to the genes coding them. The current biosynthetic research focuses strongly on linking molecules to genes as this is fundamental to adapting the molecule for industrial application. Metagenomic-based gene discovery, which bypasses the challenges associated with culturing an organism, is a promising way forward to link secondary metabolites to genes in non-model, difficult-to-culture organisms. This approach is based on the amalgamation of the knowledge of the evolutionary relationships of the biosynthetic genes, the structure of the target molecule, and the biosynthetic machinery required for its synthesis. So far, metagenomic-based gene discovery is the predominant approach by which lichen metabolites have been linked to their genes. Although the structures of most of the lichen secondary metabolites are well-documented, a comprehensive review of the metabolites linked to their genes, strategies implemented to establish this link, and crucial takeaways from these studies is not available. In this review, I address the following knowledge gaps and, additionally, provide critical insights into the results of these studies, elaborating on the direct and serendipitous lessons that we have learned from them.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biology, University of Padova, 35122 Padova, Italy
| |
Collapse
|
6
|
Llewellyn T, Nowell RW, Aptroot A, Temina M, Prescott TAK, Barraclough TG, Gaya E. Metagenomics Shines Light on the Evolution of "Sunscreen" Pigment Metabolism in the Teloschistales (Lichen-Forming Ascomycota). Genome Biol Evol 2023; 15:6986375. [PMID: 36634008 PMCID: PMC9907504 DOI: 10.1093/gbe/evad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Fungi produce a vast number of secondary metabolites that shape their interactions with other organisms and the environment. Characterizing the genes underpinning metabolite synthesis is therefore key to understanding fungal evolution and adaptation. Lichenized fungi represent almost one-third of Ascomycota diversity and boast impressive secondary metabolites repertoires. However, most lichen biosynthetic genes have not been linked to their metabolite products. Here we used metagenomic sequencing to survey gene families associated with production of anthraquinones, UV-protectant secondary metabolites present in various fungi, but especially abundant in a diverse order of lichens, the Teloschistales (class Lecanoromycetes, phylum Ascomycota). We successfully assembled 24 new, high-quality lichenized-fungal genomes de novo and combined them with publicly available Lecanoromycetes genomes from taxa with diverse secondary chemistry to produce a whole-genome tree. Secondary metabolite biosynthetic gene cluster (BGC) analysis showed that whilst lichen BGCs are numerous and highly dissimilar, core enzyme genes are generally conserved across taxa. This suggests metabolite diversification occurs via re-shuffling existing enzyme genes with novel accessory genes rather than BGC gains/losses or de novo gene evolution. We identified putative anthraquinone BGCs in our lichen dataset that appear homologous to anthraquinone clusters from non-lichenized fungi, suggesting these genes were present in the common ancestor of the subphylum Pezizomycotina. Finally, we identified unique transporter genes in Teloschistales anthraquinone BGCs that may explain why these metabolites are so abundant and ubiquitous in these lichens. Our results support the importance of metagenomics for understanding the secondary metabolism of non-model fungi such as lichens.
Collapse
Affiliation(s)
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK,Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Andre Aptroot
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | - Marina Temina
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Mount Carmel, Haifa, 3498838, Israel
| | - Thomas A K Prescott
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, TW9 3DS, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK,Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Ester Gaya
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, TW9 3DS, UK
| |
Collapse
|
7
|
Mosunova OV, Navarro-Muñoz JC, Haksar D, van Neer J, Hoeksma J, den Hertog J, Collemare J. Evolution-Informed Discovery of the Naphthalenone Biosynthetic Pathway in Fungi. mBio 2022; 13:e0022322. [PMID: 35616333 PMCID: PMC9239057 DOI: 10.1128/mbio.00223-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Fungi produce a wide diversity of secondary metabolites with interesting biological activities for the health, industrial, and agricultural sectors. While fungal genomes have revealed an unexpectedly high number of biosynthetic pathways that far exceeds the number of known molecules, accessing and characterizing this hidden diversity remain highly challenging. Here, we applied a combined phylogenetic dereplication and comparative genomics strategy to explore eight lichenizing fungi. The determination of the evolutionary relationships of aromatic polyketide pathways resulted in the identification of an uncharacterized biosynthetic pathway that is conserved in distant fungal lineages. The heterologous expression of the homologue from Aspergillus parvulus linked this pathway to naphthalenone compounds, which were detected in cultures when the pathway was expressed. Our unbiased and rational strategy generated evolutionary knowledge that ultimately linked biosynthetic genes to naphthalenone polyketides. Applied to many more genomes, this approach can unlock the full exploitation of the fungal kingdom for molecule discovery. IMPORTANCE Fungi have provided us with life-changing small bioactive molecules, with the best-known examples being the first broad-spectrum antibiotic penicillin, immunosuppressive cyclosporine, and cholesterol-lowering statins. Since the 1980s, exploration of chemical diversity in nature has been highly reduced. However, the genomic era has revealed that fungal genomes are concealing an unexpected and largely unexplored chemical diversity. So far, fungal genomes have been exploited to predict the production potential of bioactive compounds or to find genes that control the production of known molecules of interest. But accessing and characterizing the full fungal chemical diversity require rational and, thus, efficient strategies. Our approach is to first determine the evolutionary relationships of fungal biosynthetic pathways in order to identify those that are already characterized and those that show a different evolutionary origin. This knowledge allows prioritizing the choice of the pathway to functionally characterize in a second stage using synthetic-biology tools like heterologous expression. A particular strength of this strategy is that it is always successful: it generates knowledge about the evolution of bioactive-molecule biosynthesis in fungi, it either yields novel molecules or links the studied pathway to already known molecules, and it reveals the chemical diversity within a given pathway, all at once. The strategy is very powerful to avoid studying the same pathway again and can be used with any fungal genome. Functional characterization using heterologous expression is particularly suitable for fungi that are difficult to grow or not genetically tractable. Thanks to the decreasing cost of gene synthesis, ultimately, only the genome sequence is needed to identify novel pathways and characterize the molecules that they produce. Such an evolution-informed strategy allows the efficient exploitation of the chemical diversity hidden in fungal genomes and is very promising for molecule discovery.
Collapse
Affiliation(s)
- Olga V. Mosunova
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | | | - Diksha Haksar
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Jacq van Neer
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Jelmer Hoeksma
- Hubrecht Institute-KNAW, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen den Hertog
- University Medical Center Utrecht, Utrecht, The Netherlands
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|
8
|
Feng Y, Yang X, Ji H, Deng Z, Lin S, Zheng J. The Streptomyces viridochromogenes product template domain represents an evolutionary intermediate between dehydratase and aldol cyclase of type I polyketide synthases. Commun Biol 2022; 5:508. [PMID: 35618872 PMCID: PMC9135731 DOI: 10.1038/s42003-022-03477-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/10/2022] [Indexed: 01/08/2023] Open
Abstract
The product template (PT) domains act as an aldol cyclase to control the regiospecific aldol cyclization of the extremely reactive poly-β-ketone intermediate assembled by an iterative type I polyketide synthases (PKSs). Up to now, only the structure of fungal PksA PT that mediates the first-ring cyclization via C4–C9 aldol cyclization is available. We describe here the structural and computational characterization of a bacteria PT domain that controls C2–C7 cyclization in orsellinic acid (OSA) synthesis. Mutating the catalytic H949 of the PT abolishes production of OSA and results in a tetraacetic acid lactone (TTL) generated by spontaneous O-C cyclization of the acyl carrier protein (ACP)-bound tetraketide intermediate. Crystal structure of the bacterial PT domain closely resembles dehydrase (DH) domains of modular type I PKSs in the overall fold, dimerization interface and His-Asp catalytic dyad organization, but is significantly different from PTs of fungal iterative type I PKSs. QM/MM calculation suggests that the catalytic H949 abstracts a proton from C2 and transfers it to C7 carbonyl to mediate the cyclization reaction. According to structural similarity to DHs and functional similarity to fungal PTs, we propose that the bacterial PT represents an evolutionary intermediate between the two tailoring domains of type I PKSs. Structural analyses of a Streptomyces viridochromogenes product template (PT) domain suggests molecular and functional similarities with known fungal PTs involved in polyketide synthase activity.
Collapse
Affiliation(s)
- Yuanyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huining Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China. .,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
Courtial J, Helesbeux JJ, Oudart H, Aligon S, Bahut M, Hamon B, N'Guyen G, Pigné S, Hussain AG, Pascouau C, Bataillé-Simoneau N, Collemare J, Berruyer R, Poupard P. Characterization of NRPS and PKS genes involved in the biosynthesis of SMs in Alternaria dauci including the phytotoxic polyketide aldaulactone. Sci Rep 2022; 12:8155. [PMID: 35581239 PMCID: PMC9114375 DOI: 10.1038/s41598-022-11896-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria dauci is a Dothideomycete fungus, causal agent of carrot leaf blight. As a member of the Alternaria genus, known to produce a lot of secondary metabolite toxins, A. dauci is also supposed to synthetize host specific and non-host specific toxins playing a crucial role in pathogenicity. This study provides the first reviewing of secondary metabolism genetic basis in the Alternaria genus by prediction of 55 different putative core genes. Interestingly, aldaulactone, a phytotoxic benzenediol lactone from A. dauci, was demonstrated as important in pathogenicity and in carrot partial resistance to this fungus. As nothing is known about aldaulactone biosynthesis, bioinformatic analyses on a publicly available A. dauci genome data set that were reassembled, thanks to a transcriptome data set described here, allowed to identify 19 putative secondary metabolism clusters. We exploited phylogeny to pinpoint cluster 8 as a candidate in aldaulactone biosynthesis. This cluster contains AdPKS7 and AdPKS8, homologs with genes encoding a reducing and a non-reducing polyketide synthase. Clusters containing such a pair of PKS genes have been identified in the biosynthesis of resorcylic acid lactones or dihydroxyphenylacetic acid lactones. AdPKS7 and AdPKS8 gene expression patterns correlated with aldaulactone production in different experimental conditions. The present results highly suggest that both genes are responsible for aldaulactone biosynthesis.
Collapse
Affiliation(s)
- Julia Courtial
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Jean-Jacques Helesbeux
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, Université d'Angers, Angers, France
| | - Hugo Oudart
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Sophie Aligon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | | | - Bruno Hamon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Guillaume N'Guyen
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Sandrine Pigné
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Ahmed G Hussain
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.,Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Claire Pascouau
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | | | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Romain Berruyer
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France.
| | - Pascal Poupard
- Univ Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| |
Collapse
|
10
|
Gerasimova JV, Beck A, Werth S, Resl P. High Diversity of Type I Polyketide Genes in Bacidia rubella as Revealed by the Comparative Analysis of 23 Lichen Genomes. J Fungi (Basel) 2022; 8:449. [PMID: 35628705 PMCID: PMC9146135 DOI: 10.3390/jof8050449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022] Open
Abstract
Fungi involved in lichen symbioses produce a large array of secondary metabolites that are often diagnostic in the taxonomic delimitation of lichens. The most common lichen secondary metabolites-polyketides-are synthesized by polyketide synthases, particularly by Type I PKS (TI-PKS). Here, we present a comparative genomic analysis of the TI-PKS gene content of 23 lichen-forming fungal genomes from Ascomycota, including the de novo sequenced genome of Bacidia rubella. Firstly, we identify a putative atranorin cluster in B. rubella. Secondly, we provide an overview of TI-PKS gene diversity in lichen-forming fungi, and the most comprehensive Type I PKS phylogeny of lichen-forming fungi to date, including 624 sequences. We reveal a high number of biosynthetic gene clusters and examine their domain composition in the context of previously characterized genes, confirming that PKS genes outnumber known secondary substances. Moreover, two novel groups of reducing PKSs were identified. Although many PKSs remain without functional assignments, our findings highlight that genes from lichen-forming fungi represent an untapped source of novel polyketide compounds.
Collapse
Affiliation(s)
- Julia V. Gerasimova
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, 80638 Munich, Germany; (A.B.); (S.W.); (P.R.)
- Botanische Staatssammlung München, SNSB-BSM, 80638 Munich, Germany
| | - Andreas Beck
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, 80638 Munich, Germany; (A.B.); (S.W.); (P.R.)
- Botanische Staatssammlung München, SNSB-BSM, 80638 Munich, Germany
| | - Silke Werth
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, 80638 Munich, Germany; (A.B.); (S.W.); (P.R.)
| | - Philipp Resl
- Systematics, Biodiversity and Evolution of Plants, LMU Munich, 80638 Munich, Germany; (A.B.); (S.W.); (P.R.)
- Institute of Biology, University of Graz, 8010 Graz, Austria
| |
Collapse
|
11
|
Williams K, Greco C, Bailey AM, Willis CL. Core Steps to the Azaphilone Family of Fungal Natural Products. Chembiochem 2021; 22:3027-3036. [PMID: 34190382 PMCID: PMC8596599 DOI: 10.1002/cbic.202100240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Indexed: 11/27/2022]
Abstract
Azaphilones are a family of polyketide-based fungal natural products that exhibit interesting and useful bioactivities. This minireview explores the literature on various characterised azaphilone biosynthetic pathways, which allows for a proposed consensus scheme for the production of the core azaphilone structure, as well as identifying early diversification steps during azaphilone biosynthesis. A consensus understanding of the core enzymatic steps towards a particular family of fungal natural products can aid in genome-mining experiments. Genome mining for novel fungal natural products is a powerful technique for both exploring chemical space and providing new insights into fungal natural product pathways.
Collapse
Affiliation(s)
- Katherine Williams
- School of Biological SciencesUniversity of Bristol Life Sciences Building, 24 Tyndall AvenueBristolBS8 1TQUK
| | - Claudio Greco
- Department of Molecular MicrobiologyJohn Innes CentreNorwichNR4 7UHUK
| | - Andrew M. Bailey
- School of Biological SciencesUniversity of Bristol Life Sciences Building, 24 Tyndall AvenueBristolBS8 1TQUK
| | | |
Collapse
|
12
|
Pizarro D, Divakar PK, Grewe F, Crespo A, Dal Grande F, Lumbsch HT. Genome-Wide Analysis of Biosynthetic Gene Cluster Reveals Correlated Gene Loss with Absence of Usnic Acid in Lichen-Forming Fungi. Genome Biol Evol 2021; 12:1858-1868. [PMID: 33151307 PMCID: PMC7643366 DOI: 10.1093/gbe/evaa189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 12/04/2022] Open
Abstract
Lichen-forming fungi are known to produce a large number of secondary metabolites. Some metabolites are deposited in the cortical layer of the lichen thallus where they exert important ecological functions, such as UV filtering. The fact that closely related lineages of lichen-forming fungi can differ in cortical chemistry suggests that natural product biosynthesis in lichens can evolve independent from phylogenetic constraints. Usnic acid is one of the major cortical pigments in lichens. Here we used a comparative genomic approach on 46 lichen-forming fungal species of the Lecanoromycetes to elucidate the biosynthetic gene content and evolution of the gene cluster putatively responsible for the biosynthesis of usnic acid. Whole-genome sequences were gathered from taxa belonging to different orders and families of Lecanoromycetes, where Parmeliaceae is the most well-represented taxon, and analyzed with a variety of genomic tools. The highest number of biosynthetic gene clusters was found in Evernia prunastri, Pannoparmelia angustata, and Parmotrema austrosinense, respectively, and lowest in Canoparmelia nairobiensis, Bulbothrix sensibilis, and Hypotrachyna scytodes. We found that all studied species producing usnic acid contain the putative usnic acid biosynthetic gene cluster, whereas the cluster was absent in all genomes of species lacking usnic acid. The absence of the gene cluster was supported by an additional unsuccessful search for ß-ketoacylsynthase, the most conserved domain of the gene cluster, in the genomes of species lacking usnic acid. The domain architecture of this PKS cluster—homologous to the already known usnic acid PKS cluster (MPAS) and CYT450 (MPAO)—varies within the studied species, whereas the gene arrangement is highly similar in closely related taxa. We hypothesize that the ancestor of these lichen-forming fungi contained the putative usnic acid producing PKS cluster and that the gene cluster was lost repeatedly during the evolution of these groups. Our study provides insight into the genomic adaptations to the evolutionary success of these lichen-forming fungal species and sets a baseline for further exploration of biosynthetic gene content and its evolutionary significance.
Collapse
Affiliation(s)
- David Pizarro
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Pradeep K Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Felix Grewe
- Department of Science & Education, The Field Museum, Chicago, Illinois
| | - Ana Crespo
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main D-60325, Germany.,LOEWE Center for Translational Biodiversity Genomics, Frankfurt am Main D-60325, Germany
| | | |
Collapse
|
13
|
Kim W, Liu R, Woo S, Kang KB, Park H, Yu YH, Ha HH, Oh SY, Yang JH, Kim H, Yun SH, Hur JS. Linking a Gene Cluster to Atranorin, a Major Cortical Substance of Lichens, through Genetic Dereplication and Heterologous Expression. mBio 2021; 12:e0111121. [PMID: 34154413 PMCID: PMC8262933 DOI: 10.1128/mbio.01111-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The depside and depsidone series compounds of polyketide origin accumulate in the cortical or medullary layers of lichen thalli. Despite the taxonomic and ecological significance of lichen chemistry and its pharmaceutical potentials, there has been no single piece of genetic evidence linking biosynthetic genes to lichen substances. Thus, we systematically analyzed lichen polyketide synthases (PKSs) for categorization and identification of the biosynthetic gene cluster (BGC) involved in depside/depsidone production. Our in-depth analysis of the interspecies PKS diversity in the genus Cladonia and a related Antarctic lichen, Stereocaulon alpinum, identified 45 BGC families, linking lichen PKSs to 15 previously characterized PKSs in nonlichenized fungi. Among these, we identified highly syntenic BGCs found exclusively in lichens producing atranorin (a depside). Heterologous expression of the putative atranorin PKS gene (coined atr1) yielded 4-O-demethylbarbatic acid, found in many lichens as a precursor compound, indicating an intermolecular cross-linking activity of Atr1 for depside formation. Subsequent introductions of tailoring enzymes into the heterologous host yielded atranorin, one of the most common cortical substances of macrolichens. Phylogenetic analysis of fungal PKS revealed that the Atr1 is in a novel PKS clade that included two conserved lichen-specific PKS families likely involved in biosynthesis of depsides and depsidones. Here, we provide a comprehensive catalog of PKS families of the genus Cladonia and functionally characterize a biosynthetic gene cluster from lichens, establishing a cornerstone for studying the genetics and chemical evolution of diverse lichen substances. IMPORTANCE Lichens play significant roles in ecosystem function and comprise about 20% of all known fungi. Polyketide-derived natural products accumulate in the cortical and medullary layers of lichen thalli, some of which play key roles in protection from biotic and abiotic stresses (e.g., herbivore attacks and UV irradiation). To date, however, no single lichen product has been linked to respective biosynthetic genes with genetic evidence. Here, we identified a gene cluster family responsible for biosynthesis of atranorin, a cortical substance found in diverse lichen species, by categorizing lichen polyketide synthase and reconstructing the atranorin biosynthetic pathway in a heterologous host. This study will help elucidate lichen secondary metabolism, harnessing the lichen's chemical diversity, hitherto obscured due to limited genetic information on lichens.
Collapse
Affiliation(s)
- Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Rundong Liu
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Sunmin Woo
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| | - Ji Ho Yang
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
- Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, South Korea
| | - Sung-Hwan Yun
- Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
14
|
Kim W, Jeong MH, Yun SH, Hur JS. Transcriptome Analysis Identifies a Gene Cluster for the Biosynthesis of Biruloquinone, a Rare Phenanthraquinone, in a Lichen-Forming Fungus Cladonia macilenta. J Fungi (Basel) 2021; 7:398. [PMID: 34065383 PMCID: PMC8161216 DOI: 10.3390/jof7050398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Lichens are prolific producers of natural products of polyketide origin. We previously described a culture of lichen-forming fungus (LFF) Cladonia macilenta that produces biruloquinone, a purple pigment that is a phenanthraquinone rarely found in nature. However, there was no genetic information on the biosynthesis of biruloquinone. To identify a biosynthetic gene cluster for biruloquinone, we mined polyketide synthase (PKS) genes from the genome sequence of a LFF isolated from thalli of C. macilenta. The 38 PKS in C. macilenta are highly diverse, many of which form phylogenetic clades with PKS previously characterized in non-lichenized fungi. We compared transcriptional profiles of the 38 PKS genes in two chemotypic variants, one producing biruloquinone and the other producing no appreciable metabolite in vitro. We identified a PKS gene (hereafter PKS21) that was highly upregulated in the LFF that produces biruloquinone. The boundaries of a putative biruloquinone gene cluster were demarcated by co-expression patterns of six clustered genes, including the PKS21. Biruloquinone gene clusters exhibited a high degree of synteny between related species. In this study we identified a novel PKS family responsible for the biosynthesis of biruloquinone through whole-transcriptome analysis.
Collapse
Affiliation(s)
- Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| | - Min-Hye Jeong
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| | - Sung-Hwan Yun
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea;
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea;
| |
Collapse
|
15
|
Tagirdzhanova G, Saary P, Tingley JP, Díaz-Escandón D, Abbott DW, Finn RD, Spribille T. Predicted Input of Uncultured Fungal Symbionts to a Lichen Symbiosis from Metagenome-Assembled Genomes. Genome Biol Evol 2021; 13:6163286. [PMID: 33693712 PMCID: PMC8355462 DOI: 10.1093/gbe/evab047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Basidiomycete yeasts have recently been reported as stably associated secondary
fungal symbionts of many lichens, but their role in the symbiosis remains
unknown. Attempts to sequence their genomes have been hampered both by the
inability to culture them and their low abundance in the lichen thallus
alongside two dominant eukaryotes (an ascomycete fungus and chlorophyte alga).
Using the lichen Alectoria sarmentosa, we selectively dissolved
the cortex layer in which secondary fungal symbionts are embedded to enrich
yeast cell abundance and sequenced DNA from the resulting slurries as well as
bulk lichen thallus. In addition to yielding a near-complete genome of the
filamentous ascomycete using both methods, metagenomes from cortex slurries
yielded a 36- to 84-fold increase in coverage and near-complete genomes for two
basidiomycete species, members of the classes Cystobasidiomycetes and
Tremellomycetes. The ascomycete possesses the largest gene repertoire of the
three. It is enriched in proteases often associated with pathogenicity and
harbors the majority of predicted secondary metabolite clusters. The
basidiomycete genomes possess ∼35% fewer predicted genes than the
ascomycete and have reduced secretomes even compared with close relatives, while
exhibiting signs of nutrient limitation and scavenging. Furthermore, both
basidiomycetes are enriched in genes coding for enzymes producing secreted
acidic polysaccharides, representing a potential contribution to the shared
extracellular matrix. All three fungi retain genes involved in dimorphic
switching, despite the ascomycete not being known to possess a yeast stage. The
basidiomycete genomes are an important new resource for exploration of lifestyle
and function in fungal–fungal interactions in lichen symbioses.
Collapse
Affiliation(s)
- Gulnara Tagirdzhanova
- Department of Biological Sciences CW405, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Saary
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jeffrey P Tingley
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - David Díaz-Escandón
- Department of Biological Sciences CW405, University of Alberta, Edmonton, Alberta, Canada
| | - D Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Toby Spribille
- Department of Biological Sciences CW405, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Niehs SP, Dose B, Richter S, Pidot SJ, Dahse H, Stinear TP, Hertweck C. Mining Symbionts of a Spider‐Transmitted Fungus Illuminates Uncharted Biosynthetic Pathways to Cytotoxic Benzolactones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Benjamin Dose
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Sophie Richter
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Sacha J. Pidot
- Department of Microbiology and Immunology Doherty Institute 792 Elizabeth Street Melbourne 3000 Australia
| | | | - Timothy P. Stinear
- Department of Microbiology and Immunology Doherty Institute 792 Elizabeth Street Melbourne 3000 Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
- Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
17
|
Niehs SP, Dose B, Richter S, Pidot SJ, Dahse H, Stinear TP, Hertweck C. Mining Symbionts of a Spider-Transmitted Fungus Illuminates Uncharted Biosynthetic Pathways to Cytotoxic Benzolactones. Angew Chem Int Ed Engl 2020; 59:7766-7771. [PMID: 32040253 PMCID: PMC7318616 DOI: 10.1002/anie.201916007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 11/17/2022]
Abstract
A spider-transmitted fungus (Rhizopus microsporus) that was isolated from necrotic human tissue was found to harbor endofungal bacteria (Burkholderia sp.). Metabolic profiling of the symbionts revealed a complex of cytotoxic agents (necroximes). Their structures were characterized as oxime-substituted benzolactone enamides with a peptidic side chain. The potently cytotoxic necroximes are also formed in symbiosis with the fungal host and could have contributed to the necrosis. Genome sequencing and computational analyses revealed a novel modular PKS/NRPS assembly line equipped with several non-canonical domains. Based on gene-deletion mutants, we propose a biosynthetic model for bacterial benzolactones. We identified specific traits that serve as genetic handles to find related salicylate macrolide pathways (lobatamide, oximidine, apicularen) in various other bacterial genera. Knowledge of the biosynthetic pathway enables biosynthetic engineering and genome-mining approaches.
Collapse
Affiliation(s)
- Sarah P. Niehs
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Benjamin Dose
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Sophie Richter
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Sacha J. Pidot
- Department of Microbiology and ImmunologyDoherty Institute792 Elizabeth StreetMelbourne3000Australia
| | | | - Timothy P. Stinear
- Department of Microbiology and ImmunologyDoherty Institute792 Elizabeth StreetMelbourne3000Australia
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Chemistry and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
18
|
Mullis MM, Rambo IM, Baker BJ, Reese BK. Diversity, Ecology, and Prevalence of Antimicrobials in Nature. Front Microbiol 2019; 10:2518. [PMID: 31803148 PMCID: PMC6869823 DOI: 10.3389/fmicb.2019.02518] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Microorganisms possess a variety of survival mechanisms, including the production of antimicrobials that function to kill and/or inhibit the growth of competing microorganisms. Studies of antimicrobial production have largely been driven by the medical community in response to the rise in antibiotic-resistant microorganisms and have involved isolated pure cultures under artificial laboratory conditions neglecting the important ecological roles of these compounds. The search for new natural products has extended to biofilms, soil, oceans, coral reefs, and shallow coastal sediments; however, the marine deep subsurface biosphere may be an untapped repository for novel antimicrobial discovery. Uniquely, prokaryotic survival in energy-limited extreme environments force microbial populations to either adapt their metabolism to outcompete or produce novel antimicrobials that inhibit competition. For example, subsurface sediments could yield novel antimicrobial genes, while at the same time answering important ecological questions about the microbial community.
Collapse
Affiliation(s)
- Megan M. Mullis
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| | - Ian M. Rambo
- Department of Marine Science, University of Texas Marine Science Institute, Port Aransas, TX, United States
| | - Brett J. Baker
- Department of Marine Science, University of Texas Marine Science Institute, Port Aransas, TX, United States
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
19
|
Drulyte I, Obajdin J, Trinh CH, Kalverda AP, van der Kamp MW, Hemsworth GR, Berry A. Crystal structure of the putative cyclase IdmH from the indanomycin nonribosomal peptide synthase/polyketide synthase. IUCRJ 2019; 6:1120-1133. [PMID: 31709067 PMCID: PMC6830212 DOI: 10.1107/s2052252519012399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/05/2019] [Indexed: 05/08/2023]
Abstract
Indanomycin is biosynthesized by a hybrid nonribosomal peptide synthase/polyketide synthase (NRPS/PKS) followed by a number of 'tailoring' steps to form the two ring systems that are present in the mature product. It had previously been hypothesized that the indane ring of indanomycin was formed by the action of IdmH using a Diels-Alder reaction. Here, the crystal structure of a selenomethionine-labelled truncated form of IdmH (IdmH-Δ99-107) was solved using single-wavelength anomalous dispersion (SAD) phasing. This truncated variant allows consistent and easy crystallization, but importantly the structure was used as a search model in molecular replacement, allowing the full-length IdmH structure to be determined to 2.7 Å resolution. IdmH is a homodimer, with the individual protomers consisting of an α+β barrel. Each protomer contains a deep hydrophobic pocket which is proposed to constitute the active site of the enzyme. To investigate the reaction catalysed by IdmH, 88% of the backbone NMR resonances were assigned, and using chemical shift perturbation of [15N]-labelled IdmH it was demonstrated that indanomycin binds in the active-site pocket. Finally, combined quantum mechanical/molecular mechanical (QM/MM) modelling of the IdmH reaction shows that the active site of the enzyme provides an appropriate environment to promote indane-ring formation, supporting the assignment of IdmH as the key Diels-Alderase catalysing the final step in the biosynthesis of indanomycin through a similar mechanism to other recently characterized Diels-Alderases involved in polyketide-tailoring reactions. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:IUCrJ:S2052252519012399.
Collapse
Affiliation(s)
- Ieva Drulyte
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Jana Obajdin
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Chi H. Trinh
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Marc W. van der Kamp
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, England
| | - Glyn R. Hemsworth
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Alan Berry
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| |
Collapse
|
20
|
Urquhart AS, Hu J, Chooi YH, Idnurm A. The fungal gene cluster for biosynthesis of the antibacterial agent viriditoxin. Fungal Biol Biotechnol 2019; 6:2. [PMID: 31304040 PMCID: PMC6600887 DOI: 10.1186/s40694-019-0072-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/12/2019] [Indexed: 11/20/2022] Open
Abstract
Background Viriditoxin is one of the ‘classical’ secondary metabolites produced by fungi and that has antibacterial and other activities; however, the mechanism of its biosynthesis has remained unknown. Results Here, a gene cluster (vdt) responsible for viriditoxin synthesis was identified, via a bioinformatics analysis of the genomes of Paecilomyces variotii and Aspergillus viridinutans that both are viriditoxin producers. The function of the eight-membered gene cluster of P. variotii was characterized by targeted gene disruptions, revealing the roles of each gene in the synthesis of this molecule and establishing its biosynthetic pathway, which includes a Baeyer–Villiger monooxygenase catalyzed reaction. Additionally, a predicted catalytically-inactive hydrolase was identified as being required for the stereoselective biosynthesis of (M)-viriditoxin. The subcellular localizations of two proteins (VdtA and VdtG) were determined by fusing these proteins to green fluorescent protein, to establish that at least two intracellular structures are involved in the compartmentalization of the synthesis steps of this metabolite. Conclusions The predicted pathway for the synthesis of viriditoxin was established by a combination of genomics, bioinformatics, gene disruption and chemical analysis processes. Hence, this work reveals the basis for the synthesis of an understudied class of fungal secondary metabolites and provides a new model species for understanding the synthesis of biaryl compounds with a chiral axis. Electronic supplementary material The online version of this article (10.1186/s40694-019-0072-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew S Urquhart
- 1School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Jinyu Hu
- 2School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Yit-Heng Chooi
- 2School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Alexander Idnurm
- 1School of BioSciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
21
|
Docking analysis of hexanoic acid and quercetin with seven domains of polyketide synthase A provided insight into quercetin-mediated aflatoxin biosynthesis inhibition in Aspergillus flavus. 3 Biotech 2019; 9:149. [PMID: 30944796 DOI: 10.1007/s13205-019-1675-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Studies on phytochemicals as anti-aflatoxigenic agents have gained importance including quercetin. Thus, to understand the molecular mechanism behind inhibition of aflatoxin biosynthesis by quercetin, interaction study with polyketide synthase A (PksA) of Aspergillus flavus was undertaken. The 3D structure of seven domains of PksA was modeled using SWISS-MODEL server and docking studies were performed by Autodock tools-1.5.6. Docking energies of both the ligands (quercetin and hexanoic acid) were compared with each of the domains of PksA enzyme. Binding energy for quercetin was lesser that ranged from - 7.1 to - 5.25 kcal/mol in comparison to hexanoic acid (- 4.74 to - 3.54 kcal/mol). LigPlot analysis showed the formation of 12 H bonds in case of quercetin and 8 H bonds in hexanoic acid. During an interaction with acyltransferase domain, both ligands showed H bond formation at Arg63 position. Also, in product template domain, quercetin creates four H bonds in comparison to one in hexanoic acid. Our quantitative RT-PCR analysis of genes from aflatoxin biosynthesis showed downregulation of pksA, aflD, aflR, aflP and aflS at 24 h time point in comparison to 7 h in quercetin-treated A. flavus. Overall results revealed that quercetin exhibited the highest level of binding potential (more number of H bonds) with PksA domain in comparison to hexanoic acid; thus, quercetin possibly inhibits via competitively binding to the domains of polyketide synthase, a key enzyme of aflatoxin biosynthetic pathway. Further, we propose that key enzymes from aflatoxin biosynthetic pathway in aflatoxin-producing Aspergilli could be explored further using other phytochemicals as inhibitors.
Collapse
|
22
|
Liu L, Zhao J, Huang Y, Xin Q, Wang Z. Diversifying of Chemical Structure of Native Monascus Pigments. Front Microbiol 2018; 9:3143. [PMID: 30622522 PMCID: PMC6308397 DOI: 10.3389/fmicb.2018.03143] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
Red Yeast Rice, produced by solid state fermentation of Monascus species on rice, is a traditional food additive and traditional Chinese medicine. With the introduction of modern microbiology and biotechnology to the traditional edible filamentous fungi Monascus species, it has been revealed that the production of red colorant by fermentation of Monascus species involves the biosynthesis of orange Monascus pigments and further chemical modification of orange Monascus pigments into the corresponding derivates with various amine residues. Further study indicates that non-Monascus species also produce Monascus pigments as well as Monascus-like pigments. Based on the chemical modification of orange Monascus pigments, the diversification of native Monascus pigments, including commercial food additives of Red Monascus Pigments® and Yellow Monascus Pigments® in Chinese market, was reviewed. Furthermore, Monascus pigments as well as their derivates as enzyme inhibitors for anti-obesity, hyperlipidemia, and hyperglycemia was also summarized.
Collapse
Affiliation(s)
- Lujie Liu
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jixing Zhao
- Shandong Zhonghui Biotechnology Co., Ltd., Binzhou, China
| | - Yaolin Huang
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qiao Xin
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
|
24
|
Tsai SC(S. The Structural Enzymology of Iterative Aromatic Polyketide Synthases: A Critical Comparison with Fatty Acid Synthases. Annu Rev Biochem 2018; 87:503-531. [DOI: 10.1146/annurev-biochem-063011-164509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.
Collapse
Affiliation(s)
- Shiou-Chuan (Sheryl) Tsai
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
| |
Collapse
|
25
|
Liu L, Zhang Z, Shao CL, Wang CY. Analysis of the Sequences, Structures, and Functions of Product-Releasing Enzyme Domains in Fungal Polyketide Synthases. Front Microbiol 2017; 8:1685. [PMID: 28928723 PMCID: PMC5591372 DOI: 10.3389/fmicb.2017.01685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/21/2017] [Indexed: 11/14/2022] Open
Abstract
Product-releasing enzyme (PRE) domains in fungal non-reducing polyketide synthases (NR-PKSs) play a crucial role in catalysis and editing during polyketide biosynthesis, especially accelerating final biosynthetic reactions accompanied with product offloading. However, up to date, the systematic knowledge about PRE domains is deficient. In the present study, the relationships between sequences, structures, and functions of PRE domains were analyzed with 574 NR-PKSs of eight groups (I–VIII). It was found that the PRE domains in NR-PKSs could be mainly classified into three types, thioesterase (TE), reductase (R), and metallo-β-lactamase-type TE (MβL-TE). The widely distributed TE or TE-like domains were involved in NR-PKSs of groups I–IV, VI, and VIII. The R domains appeared in NR-PKSs of groups IV and VII, while the physically discrete MβL-TE domains were employed by most NR-PKSs of group V. The changes of catalytic sites and structural characteristics resulted in PRE functional differentiations. The phylogeny revealed that the evolution of TE domains was accompanied by complex functional divergence. The diverse sequence lengths of TE lid-loops affected substrate specificity with different chain lengths. The volume diversification of TE catalytic pockets contributed to catalytic mechanisms with functional differentiations. The above findings may help to understand the crucial catalysis of fungal aromatic polyketide biosyntheses and govern recombination of NR-PKSs to obtain unnatural target products.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong UniversityJinan, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of ChinaQingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of ChinaQingdao, China
| |
Collapse
|
26
|
Bayly CL, Yadav VG. Towards Precision Engineering of Canonical Polyketide Synthase Domains: Recent Advances and Future Prospects. Molecules 2017; 22:molecules22020235. [PMID: 28165430 PMCID: PMC6155766 DOI: 10.3390/molecules22020235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
Modular polyketide synthases (mPKSs) build functionalized polymeric chains, some of which have become blockbuster therapeutics. Organized into repeating clusters (modules) of independently-folding domains, these assembly-line-like megasynthases can be engineered by introducing non-native components. However, poor introduction points and incompatible domain combinations can cause both unintended products and dramatically reduced activity. This limits the engineering and combinatorial potential of mPKSs, precluding access to further potential therapeutics. Different regions on a given mPKS domain determine how it interacts both with its substrate and with other domains. Within the assembly line, these interactions are crucial to the proper ordering of reactions and efficient polyketide construction. Achieving control over these domain functions, through precision engineering at key regions, would greatly expand our catalogue of accessible polyketide products. Canonical mPKS domains, given that they are among the most well-characterized, are excellent candidates for such fine-tuning. The current minireview summarizes recent advances in the mechanistic understanding and subsequent precision engineering of canonical mPKS domains, focusing largely on developments in the past year.
Collapse
Affiliation(s)
- Carmen L Bayly
- Department of Genome Sciences & Technology, The University of British Columbia, Vancouver, BC V5Z 4S6, Canada.
- Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Vikramaditya G Yadav
- Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
27
|
Making Use of Genomic Information to Explore the Biotechnological Potential of Medicinal Mushrooms. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Fouillaud M, Venkatachalam M, Girard-Valenciennes E, Caro Y, Dufossé L. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities. Mar Drugs 2016; 14:E64. [PMID: 27023571 PMCID: PMC4849068 DOI: 10.3390/md14040064] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022] Open
Abstract
Anthraquinones and their derivatives constitute a large group of quinoid compounds with about 700 molecules described. They are widespread in fungi and their chemical diversity and biological activities recently attracted attention of industries in such fields as pharmaceuticals, clothes dyeing, and food colorants. Their positive and/or negative effect(s) due to the 9,10-anthracenedione structure and its substituents are still not clearly understood and their potential roles or effects on human health are today strongly discussed among scientists. As marine microorganisms recently appeared as producers of an astonishing variety of structurally unique secondary metabolites, they may represent a promising resource for identifying new candidates for therapeutic drugs or daily additives. Within this review, we investigate the present knowledge about the anthraquinones and derivatives listed to date from marine-derived filamentous fungi's productions. This overview highlights the molecules which have been identified in microorganisms for the first time. The structures and colors of the anthraquinoid compounds come along with the known roles of some molecules in the life of the organisms. Some specific biological activities are also described. This may help to open doors towards innovative natural substances.
Collapse
Affiliation(s)
- Mireille Fouillaud
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Mekala Venkatachalam
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
| | - Yanis Caro
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de la Réunion, France.
- Ecole Supérieure d'Ingénieurs Réunion Océan Indien-ESIROI, 2 Rue Joseph Wetzell, F-97490 Sainte-Clotilde, Ile de la Réunion, France.
| |
Collapse
|
29
|
Iterative polyketide biosynthesis by modular polyketide synthases in bacteria. Appl Microbiol Biotechnol 2015; 100:541-57. [PMID: 26549236 DOI: 10.1007/s00253-015-7093-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
Modular polyketide synthases (type I PKSs) in bacteria are responsible for synthesizing a significant percentage of bioactive natural products. This group of synthases has a characteristic modular organization, and each module within a PKS carries out one cycle of polyketide chain elongation; thus each module is non-iterative in function. It was possible to predict the basic structure of a polyketide product from the module organization of the PKSs, since there generally existed a co-linearity between the number of modules and the number of chain elongations. However, more and more bacterial modular PKSs fail to conform to the canonical rules, and a particularly noteworthy group of non-canonical PKSs is the bacterial iterative type I PKSs. This review covers recent examples of iteratively used modular PKSs in bacteria. These non-canonical PKSs give rise to a large array of natural products with impressive structural diversity. The molecular mechanism behind the iterations is often unclear, presenting a new challenge to the rational engineering of these PKSs with the goal of generating new natural products. Structural elucidation of these synthase complexes and better understanding of potential PKS-PKS interactions as well as PKS-substrate recognition may provide new prospects and inspirations for the discovery and engineering of new bioactive polyketides.
Collapse
|
30
|
Throckmorton K, Wiemann P, Keller NP. Evolution of Chemical Diversity in a Group of Non-Reduced Polyketide Gene Clusters: Using Phylogenetics to Inform the Search for Novel Fungal Natural Products. Toxins (Basel) 2015; 7:3572-607. [PMID: 26378577 PMCID: PMC4591646 DOI: 10.3390/toxins7093572] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022] Open
Abstract
Fungal polyketides are a diverse class of natural products, or secondary metabolites (SMs), with a wide range of bioactivities often associated with toxicity. Here, we focus on a group of non-reducing polyketide synthases (NR-PKSs) in the fungal phylum Ascomycota that lack a thioesterase domain for product release, group V. Although widespread in ascomycete taxa, this group of NR-PKSs is notably absent in the mycotoxigenic genus Fusarium and, surprisingly, found in genera not known for their secondary metabolite production (e.g., the mycorrhizal genus Oidiodendron, the powdery mildew genus Blumeria, and the causative agent of white-nose syndrome in bats, Pseudogymnoascus destructans). This group of NR-PKSs, in association with the other enzymes encoded by their gene clusters, produces a variety of different chemical classes including naphthacenediones, anthraquinones, benzophenones, grisandienes, and diphenyl ethers. We discuss the modification of and transitions between these chemical classes, the requisite enzymes, and the evolution of the SM gene clusters that encode them. Integrating this information, we predict the likely products of related but uncharacterized SM clusters, and we speculate upon the utility of these classes of SMs as virulence factors or chemical defenses to various plant, animal, and insect pathogens, as well as mutualistic fungi.
Collapse
Affiliation(s)
- Kurt Throckmorton
- Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706-1580, USA.
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706-1521, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706-1521, USA.
| |
Collapse
|