1
|
Tan S, Luo X, Wang Y, Chen S, Jiang T, Yang X, Peng X, Zhang X, Zhang S, Zhang C, Liu Z, Ma D. Biomimetic non-collagenous proteins-calcium phosphate complex with superior osteogenesis via regulating macrophage IL-27 secretion. Biomaterials 2025; 315:122917. [PMID: 39490058 DOI: 10.1016/j.biomaterials.2024.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Traumatic defects or non-union fractures presents a substantial challenge in the fields of tissue engineering and regenerative medicine. Although synthetic calcium phosphate-based biomaterials (CaPs) such as dibasic calcium phosphate anhydrate (DCPA) are commonly employed for bone repair, their inadequate cellular immune responses significantly impede sustained degradation and optimal osteogenesis. In this study, drawing inspiration from the key structure of an acidic non-collagenous protein-CaP complex (ANCPs-CaP) essential for natural bone formation, we prepared biomimetic mineralized dibasic calcium phosphate (MDCPA). This preparation utilized plant-derived non-collagenous protein Zein as the organic template and acidic artificial saliva as the mineralization medium. Physicochemical property analysis revealed that MDCPA is a complex of Zein and DCPA, which mimics the composite of the natural ANCP-CaP. Moreover, MDCPA exhibited enhanced biodegradability and osteogenic potential. Mechanistic insight revealed that MDCPA can be phagocytized and degraded by macrophages via the FCγRIII receptor, leading to the release of interleukin 27 (IL-27), which promotes osteogenic differentiation by osteoimmunomodulation. The critical role of IL-27 in osteogenesis is further confirmed using IL-27 gene knockout mice. Additionally, MDCPA demonstrates effective healing of critical-sized defects in rat cranial bones within only 4 w, providing a promising basis and valuable insights for critical-sized bone defects regeneration.
Collapse
Affiliation(s)
- Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xinghong Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yifan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangsi Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Jiang
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Xiaoshan Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xinyi Peng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xinyao Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sheng Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chengfei Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Zhenzhen Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Subramanian A, Mohanbabu J, Srinivasan T, T T, Subramaniyan V, V M, Sekar M, Wong LS. Reviewing the literature of 3D printing of bones and cartilage: Evidence and practice. ANNALS OF 3D PRINTED MEDICINE 2024; 16:100180. [DOI: 10.1016/j.stlm.2024.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
|
3
|
Almalki AH, Belal A, Farghali AA, Mahmoud R, Mustafa FM, Abd El-Mageed HR. Electronic, mechanical, and thermal properties of zirconium dioxide nanotube interacting with poly lactic-co-glycolic acid and chitosan as potential agents in bone tissue engineering: insights from computational approaches. J Biomol Struct Dyn 2024; 42:231-243. [PMID: 36995176 DOI: 10.1080/07391102.2023.2194006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
For the first time, the interaction of the Poly lactic-co-glycolic acid (PLGA) and Chitosan (CH) with Zirconium dioxide (ZrO2) nanotube was studied using density functional theory (DFT). The binding energies of the most stable configurations of PLGA and CH monomers absorbed on ZrO2 were calculated using density functional theory (DFT) methods. The obtained results indicate that both CH and PLGA monomers were chemisorbed on the surface of ZrO2. The interaction between PLGA and ZrO2 is stronger than that of CH due to its shorter equilibrium interval and higher binding energy. In addition, the electronic density of states (DOS) of the most stable configuration was computed to estimate the electronic properties of the PLGA/CH absorbed on ZrO2. Also, the molecular dynamics (MD) simulations were computed to investigate the mechanical properties of all studied compounds in individual and nanocomposite phases. MD simulation revealed that the shear and bulk moduli of PLGA, CH as well as Young's modulus increase upon interacting with the ZrO2 surface. As a result, the mechanical properties of PLGA and CH are improved by adding ZrO2 to the polymer matrix. The results showed that the elastic modulus of PLGA and CH nanocomposites decreased with increasing temperature. These findings indicate that PLGA-ZrO2 nanocomposites have mechanical and thermal properties, suggesting that they could be exploited as potential agents in biomedical sectors such as bone tissue engineering and drug delivery.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addiction, and Neuroscience Research Unit, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - F M Mustafa
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - H R Abd El-Mageed
- Micro-Analysis and Environmental Research and Community Services Center, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Wan L, Lu L, Liang X, Liu Z, Huang X, Du R, Luo Q, Xu Q, Zhang Q, Jia X. Citrate-Based Polyester Elastomer with Artificially Regulatable Degradation Rate on Demand. Biomacromolecules 2023; 24:4123-4137. [PMID: 37584644 DOI: 10.1021/acs.biomac.3c00479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Citrate-based polymers are commonly used to create biodegradable implants. In an era of personalized medicine, it is highly desired that the degradation rates of citrate-based implants can be artificially regulated as required during clinical applications. Unfortunately, current citrate-based polymers only undergo passive degradation, which follows a specific degradation profile. This presents a considerable challenge for the use of citrate-based implants. To address this, a novel citrate-based polyester elastomer (POCSS) with artificially regulatable degradation rate is developed by incorporating disulfide bonds (S-S) into the backbone chains of the crosslinking network of poly(octamethylene citrate) (POC). This POCSS exhibits excellent and tunable mechanical properties, notable antibacterial properties, good biocompatibility, and low biotoxicity of its degradation products. The degradation rate of the POCSS can be regulated by breaking the S-S in its crosslinking network using glutathione (GSH). After a period of subcutaneous implantation of POCSS scaffolds in mice, the degradation rate eventually increased by 2.46 times through the subcutaneous administration of GSH. Notably, we observed no significant adverse effects on its surrounding tissues, the balance of the physiological environment, major organs, and the health status of the mice during degradation.
Collapse
Affiliation(s)
- Lu Wan
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Liangliang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Xuejiao Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zhichang Liu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, P. R. China
| | - Xinxin Huang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ruichun Du
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Abstract
Conditions, accidents, and aging processes have brought with them the need to develop implants with higher technology that allow not only the replacement of missing tissue but also the formation of tissue and the recovery of its function. The development of implants is due to advances in different areas such as molecular-biochemistry (which allows the understanding of the molecular/cellular processes during tissue repair), materials engineering, tissue regeneration (which has contributed advances in the knowledge of the properties of the materials used for their manufacture), and the so-called intelligent biomaterials (which promote tissue regeneration through inductive effects of cell signaling in response to stimuli from the microenvironment to generate adhesion, migration, and cell differentiation processes). The implants currently used are combinations of biopolymers with properties that allow the formation of scaffolds with the capacity to mimic the characteristics of the tissue to be repaired. This review describes the advances of intelligent biomaterials in implants applied in different dental and orthopedic problems; by means of these advances, it is expected to overcome limitations such as additional surgeries, rejections and infections in implants, implant duration, pain mitigation, and mainly, tissue regeneration.
Collapse
Affiliation(s)
- Mariana Sarai Silva-López
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico
| | - Luz E Alcántara-Quintana
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico
| |
Collapse
|
6
|
Chinnasami H, Dey MK, Devireddy R. Three-Dimensional Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2023; 10:759. [PMID: 37508786 PMCID: PMC10376773 DOI: 10.3390/bioengineering10070759] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Immobilization using external or internal splints is a standard and effective procedure to treat minor skeletal fractures. In the case of major skeletal defects caused by extreme trauma, infectious diseases or tumors, the surgical implantation of a bone graft from external sources is required for a complete cure. Practical disadvantages, such as the risk of immune rejection and infection at the implant site, are high in xenografts and allografts. Currently, an autograft from the iliac crest of a patient is considered the "gold standard" method for treating large-scale skeletal defects. However, this method is not an ideal solution due to its limited availability and significant reports of morbidity in the harvest site (30%) as well as the implanted site (5-35%). Tissue-engineered bone grafts aim to create a mechanically strong, biologically viable and degradable bone graft by combining a three-dimensional porous scaffold with osteoblast or progenitor cells. The materials used for such tissue-engineered bone grafts can be broadly divided into ceramic materials (calcium phosphates) and biocompatible/bioactive synthetic polymers. This review summarizes the types of materials used to make scaffolds for cryo-preservable tissue-engineered bone grafts as well as the distinct methods adopted to create the scaffolds, including traditional scaffold fabrication methods (solvent-casting, gas-foaming, electrospinning, thermally induced phase separation) and more recent fabrication methods (fused deposition molding, stereolithography, selective laser sintering, Inkjet 3D printing, laser-assisted bioprinting and 3D bioprinting). This is followed by a short summation of the current osteochondrogenic models along with the required scaffold mechanical properties for in vivo applications. We then present a few results of the effects of freezing and thawing on the structural and mechanical integrity of PLLA scaffolds prepared by the thermally induced phase separation method and conclude this review article by summarizing the current regulatory requirements for tissue-engineered products.
Collapse
Affiliation(s)
| | | | - Ram Devireddy
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (H.C.)
| |
Collapse
|
7
|
Chen Z, Du W, Lv Y. Zonally Stratified Decalcified Bone Scaffold with Different Stiffness Modified by Fibrinogen for Osteochondral Regeneration of Knee Joint Defect. ACS Biomater Sci Eng 2022; 8:5257-5272. [PMID: 36335510 DOI: 10.1021/acsbiomaterials.2c00813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Articular cartilage is generally known to be a complex tissue with multiple layers. Each layer has different composition, structure, and mechanical properties, making regeneration after knee joint defects a troubling clinical problem. A novel integrated stratified decalcified bone matrix (SDBM) scaffold with different stiffness to mimic the mechanical properties of articular cartilage is presented herein. This SDBM scaffold was modified using fibrinogen (Fg) (Fg + SDBM) to enhance its vascularization ability and improve its repair efficiency for osteochondral defects of knee joints. A Fg + SDBM scaffold with different elastic modulus in each layer (high-stiffness DBM (HDBM) layer, 174.208 ± 44.330 MPa (Fg + HDBM); medium-stiffness DBM (MDBM) layer, 21.214 ± 6.922 MPa (Fg + MDBM); and low-stiffness DBM (LDBM) layer, 0.678 ± 0.269 MPa (Fg + LDBM)) was constructed by controlling the stratified decalcification time with layered embedding paraffin (0, 3, and 5 days). The low- and medium-stiffness layers of the Fg + SDBM scaffold remarkably promoted the cartilage differentiation of bone marrow mesenchymal stem cells in vitro. Subcutaneous transplantation and rabbit knee joint osteochondral defect repair experiments revealed that the low- and medium-stiffness layers of the Fg + SDBM scaffold exhibited wonderful cartilage capacity, whereas the high-stiffness layer of Fg + SDBM scaffold exhibited good osteogenesis ability. Furthermore, this scaffold could promote blood vessel formation in subchondral bone area. This study presents a feasible strategy for osteochondral regeneration of defective knee joints, which is of great clinical value for tissue repair.
Collapse
Affiliation(s)
- Zhenyin Chen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Wenjiang Du
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China
| |
Collapse
|
8
|
Thangavel M, Elsen Selvam R. Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:5060-5093. [PMID: 36415173 DOI: 10.1021/acsbiomaterials.2c00793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review focuses on the advancements in additive manufacturing techniques that are utilized for fabricating bioceramic scaffolds and their characterizations leading to bone tissue regeneration. Bioscaffolds are made by mimicking the human bone structure, material composition, and properties. Calcium phosphate apatite materials are the most commonly used scaffold materials as they closely resemble live bone in their inorganic composition. The functionally graded scaffolds are fabricated by utilizing the right choice of the 3D printing method and material combinations to achieve the requirement of the bioscaffold. To tailor the physical, mechanical, and biological properties of the scaffold, certain materials are reinforced, doped, or coated to incorporate the functionality. The biomechanical loading conditions that involve flexion, torsion, and tension exerted on the implanted scaffold are discussed. The finite element analysis (FEA) technique is used to investigate the mechanical property of the scaffold before fabrication. This helps in reducing the actual number of samples used for testing. The FEA simulated results and the experimental result are compared. This review also highlights some of the challenges associated while processing the scaffold such as shrinkage, mechanical instability, cytotoxicity, and printability. In the end, the new materials that are evolved for tissue engineering applications are compiled and discussed.
Collapse
Affiliation(s)
- Mahendran Thangavel
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen Selvam
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
9
|
Arias-González F, Rodríguez-Contreras A, Punset M, Manero JM, Barro Ó, Fernández-Arias M, Lusquiños F, Gil J, Pou J. Laser-Deposited Beta Type Ti-42Nb Alloy with Anisotropic Mechanical Properties for Pioneering Biomedical Implants with a Very Low Elastic Modulus. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7172. [PMID: 36295241 PMCID: PMC9607472 DOI: 10.3390/ma15207172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Present commercial titanium alloy implants have an elastic modulus higher than 100 GPa, whereas that of the cortical bone is much smaller (17−28 GPa). This elastic modulus mismatch produces a stress shielding effect and the resorption of the bone surrounding the implant. In the present work, a <100> fiber texture is developed in β type Ti-42Nb (wt%) alloy ingots generated by laser-directed energy deposition (LDED) in order to achieve anisotropic mechanical properties. In addition, we demonstrate that laser-deposited β type Ti-42Nb alloy ingots with an intense <100> fiber texture exhibit a very low elastic modulus in the building direction (Ez < 50 GPa) and high yield (σ0.2z > 700 MPa) and tensile (UTSz > 700 MPa) strengths. Laser-deposited Ti-42Nb alloy enhances the osteoinductive effect, promoting the adhesion, proliferation, and spreading of human osteoblast-like cells. Hence, we propose that laser-deposited β type Ti-42Nb alloy is a potentially promising candidate for the manufacturing of pioneering biomedical implants with a very low elastic modulus that can suppress stress shielding.
Collapse
Affiliation(s)
- Felipe Arias-González
- LaserOn Research Group, CINTECX, School of Engineering, Universidade de Vigo (UVIGO), Lagoas Marcosende, 36310 Vigo, Spain
| | - Alejandra Rodríguez-Contreras
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08034 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
| | - Miquel Punset
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08034 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
- UPC Innovation and Technology Center (CIT-UPC), Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08034 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
| | - Óscar Barro
- LaserOn Research Group, CINTECX, School of Engineering, Universidade de Vigo (UVIGO), Lagoas Marcosende, 36310 Vigo, Spain
| | - Mónica Fernández-Arias
- LaserOn Research Group, CINTECX, School of Engineering, Universidade de Vigo (UVIGO), Lagoas Marcosende, 36310 Vigo, Spain
| | - Fernando Lusquiños
- LaserOn Research Group, CINTECX, School of Engineering, Universidade de Vigo (UVIGO), Lagoas Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Javier Gil
- School of Dentistry, Universitat Internacional de Catalunya (UIC), 08195 Sant Cugat del Vallès, Spain
| | - Juan Pou
- LaserOn Research Group, CINTECX, School of Engineering, Universidade de Vigo (UVIGO), Lagoas Marcosende, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| |
Collapse
|
10
|
Characterization of Co-Cr-W Dental Alloys with Veneering Materials Manufactured via Subtractive Milling and Additive Manufacturing LDED Methods. MATERIALS 2022; 15:ma15134624. [PMID: 35806747 PMCID: PMC9267738 DOI: 10.3390/ma15134624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Laser-directed energy deposition (LDED) is an additive manufacturing (AM) technology which can be an alternative to the traditional subtractive milling process for the obtention of porcelain-fused-to-metal (PFM) prosthesis. Still, the adhesion performance of the veneering ceramics for this material has been not studied yet. The main objective of this study is to perform a systematic comparison of the adhesion performance of Co-Cr-W metal frameworks obtained through LDED and conventional milling techniques. Comparison includes microstructural, superficial, and adhesion analysis. Co-Cr manufactured via LDED technique presents similar behavior (p < 0.05) in comparison to the material obtained via milling techniques, and its performance was validated with the veneering ceramics and veneering composites currently employed in the dental industry.
Collapse
|
11
|
Kamboj N, Ressler A, Hussainova I. Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review. MATERIALS 2021; 14:ma14185338. [PMID: 34576562 PMCID: PMC8469313 DOI: 10.3390/ma14185338] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 02/07/2023]
Abstract
The implementation of a powder bed selective laser processing (PBSLP) technique for bioactive ceramics, including selective laser sintering and melting (SLM/SLS), a laser powder bed fusion (L-PBF) approach is far more challenging when compared to its metallic and polymeric counterparts for the fabrication of biomedical materials. Direct PBSLP can offer binder-free fabrication of bioactive scaffolds without involving postprocessing techniques. This review explicitly focuses on the PBSLP technique for bioactive ceramics and encompasses a detailed overview of the PBSLP process and the general requirements and properties of the bioactive scaffolds for bone tissue growth. The bioactive ceramics enclosing calcium phosphate (CaP) and calcium silicates (CS) and their respective composite scaffolds processed through PBSLP are also extensively discussed. This review paper also categorizes the bone regeneration strategies of the bioactive scaffolds processed through PBSLP with the various modes of functionalization through the incorporation of drugs, stem cells, and growth factors to ameliorate critical-sized bone defects based on the fracture site length for personalized medicine.
Collapse
Affiliation(s)
- Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia;
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, p.p.177, HR-10001 Zagreb, Croatia;
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia;
- Correspondence:
| |
Collapse
|
12
|
In-Situ Laser Directed Energy Deposition of Biomedical Ti-Nb and Ti-Zr-Nb Alloys from Elemental Powders. METALS 2021. [DOI: 10.3390/met11081205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to achieve the required properties of titanium implants, more resources and research are needed to turn into reality the dream of developing the perfect implant material. The objective of this study was to evaluate the viability of the Laser Directed Energy Deposition to produce biomedical Ti-Nb and Ti-Zr-Nb alloys from elemental powders (Ti, Nb and Zr). The Laser Directed Energy Deposition is an additive manufacturing process used to build a component by delivering energy and material simultaneously. The material is supplied in the form of particles or wire and a laser beam is employed to melt material that is selectively deposited on a specified surface, where it solidifies. Samples with different compositions are characterized to analyze their morphology, microstructure, constituent phases, mechanical properties, corrosion resistance and cytocompatibility. Laser-deposited Ti-Nb and Ti-Zr-Nb alloys show no relevant defects, such as pores or cracks. Titanium alloys with lower elastic modulus and a significantly higher hardness than Ti grade 2 were generated, therefore a better wear resistance could be expected from them. Moreover, their corrosion resistance is excellent due to the formation of a stable passive protective oxide film on the surface of the material; in addition, they also possess outstanding cytocompatibility.
Collapse
|
13
|
Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, Shavandi A. Advances in Growth Factor Delivery for Bone Tissue Engineering. Int J Mol Sci 2021; 22:E903. [PMID: 33477502 PMCID: PMC7831065 DOI: 10.3390/ijms22020903] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Shortcomings related to the treatment of bone diseases and consequent tissue regeneration such as transplants have been addressed to some extent by tissue engineering and regenerative medicine. Tissue engineering has promoted structures that can simulate the extracellular matrix and are capable of guiding natural bone repair using signaling molecules to promote osteoinduction and angiogenesis essential in the formation of new bone tissues. Although recent studies on developing novel growth factor delivery systems for bone repair have attracted great attention, taking into account the complexity of the extracellular matrix, scaffolding and growth factors should not be explored independently. Consequently, systems that combine both concepts have great potential to promote the effectiveness of bone regeneration methods. In this review, recent developments in bone regeneration that simultaneously consider scaffolding and growth factors are covered in detail. The main emphasis in this overview is on delivery strategies that employ polymer-based scaffolds for spatiotemporal-controlled delivery of both single and multiple growth factors in bone-regeneration approaches. From clinical applications to creating alternative structural materials, bone tissue engineering has been advancing constantly, and it is relevant to regularly update related topics.
Collapse
Affiliation(s)
- Érica Resende Oliveira
- Food Engineering Department, School of Agronomy, Universidade Federal de Goiás, Campus Samambaia, Goiânia CEP 74690-900, Goiás, Brazil;
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 4/6 Norwida Street, 50-373 Wroclaw, Poland;
| | - Ahmad Allahbakhsh
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Jithendra Ratnayake
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand;
| | - Dandara Lima Brasil
- Food Science Department, Universidade Federal de Lavras, Lavras CEP 37200-900, Minas Gerais, Brazil;
| | - Amin Shavandi
- BioMatter Unit—École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50—CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
14
|
Ferreira FV, Otoni CG, Lopes JH, de Souza LP, Mei LHI, Lona LMF, Lozano K, Lobo AO, Mattoso LHC. Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111853. [PMID: 33812570 DOI: 10.1016/j.msec.2020.111853] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Filipe V Ferreira
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Caio G Otoni
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - João H Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), São Jose dos Campos, SP, Brazil
| | - Lucas P de Souza
- College of Engineering and Physical Sciences, Aston Institute of Materials Research, Aston University, Birmingham, UK
| | - Lucia H I Mei
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Liliane M F Lona
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Karen Lozano
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Anderson O Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Materials Science and Engineering Graduate Program, Federal University of Piaui, Teresina, PI, Brazil.
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, SP, Brazil.
| |
Collapse
|
15
|
Guerrieri AN, Montesi M, Sprio S, Laranga R, Mercatali L, Tampieri A, Donati DM, Lucarelli E. Innovative Options for Bone Metastasis Treatment: An Extensive Analysis on Biomaterials-Based Strategies for Orthopedic Surgeons. Front Bioeng Biotechnol 2020; 8:589964. [PMID: 33123519 PMCID: PMC7573123 DOI: 10.3389/fbioe.2020.589964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
Bone is the third most frequent site of metastasis, with a particular incidence in breast and prostate cancer patients. For example, almost 70% of breast cancer patients develop several bone metastases in the late stage of the disease. Bone metastases are a challenge for clinicians and a burden for patients because they frequently cause pain and can lead to fractures. Unfortunately, current therapeutic options are in most cases only palliative and, although not curative, surgery remains the gold standard for bone metastasis treatment. Surgical intervention mostly provides the replacement of the affected bone with a bioimplant, which can be made by materials of different origins and designed through several techniques that have evolved throughout the years simultaneously with clinical needs. Several scientists and clinicians have worked to develop biomaterials with potentially successful biological and mechanical features, however, only a few of them have actually reached the scope. In this review, we extensively analyze currently available biomaterials-based strategies focusing on the newest and most innovative ideas while aiming to highlight what should be considered both a reliable choice for orthopedic surgeons and a future definitive and curative option for bone metastasis and cancer patients.
Collapse
Affiliation(s)
- Ania Naila Guerrieri
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Roberta Laranga
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Davide Maria Donati
- Third Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrico Lucarelli
- Unit of Orthopaedic Pathology and Osteoarticular Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to illustrate the current state of 3D printing (3DP) technology used in biomedical industry towards bone regeneration. We have focused our efforts towards correlating materials and structural design aspects of 3DP with biological response from host tissue upon implantation. The primary question that we have tried to address is-can 3DP be a viable technology platform for bone regeneration devices? RECENT FINDINGS Recent findings show that 3DP is a versatile technology platform for numerous materials for mass customizable bone regeneration devices that are also getting approval from different regulatory bodies worldwide. After a brief introduction of different 3DP technologies, this review elaborates 3DP of different materials and devices for bone regeneration. From cell-based bioprinting to acellular patient-matched metallic or ceramic devices, 3DP has tremendous potential to improve the quality of human life through bone regeneration among patients of all ages.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, USA.
| | - Indranath Mitra
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, USA
| |
Collapse
|
17
|
Effect of Four Manufacturing Techniques (Casting, Laser Directed Energy Deposition, Milling and Selective Laser Melting) on Microstructural, Mechanical and Electrochemical Properties of Co-Cr Dental Alloys, Before and After PFM Firing Process. METALS 2020. [DOI: 10.3390/met10101291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The objective of this study was to compare four manufacturing processes of Co-Cr dental alloys: casting (CAST), computer aided design/computer aided manufacturing (CAD/CAM) milling (MILL), selective laser melting (SLM), and laser directed energy deposition (LDED). Comparison included microstructural, mechanical, and electrochemical analyses. Half of the samples obtained were heat treated to simulate the porcelain fused to metal (PFM) firing process, and the metal real state in an oral environment. Co-Cr dental alloys manufactured via casting, LDED, milling, and SLM techniques presented evident differences in their mechanical properties. However, their electrochemical performances were similar, with high resistance to corrosion in artificial saliva, in both aerated and deaerated media (corrosion rate under 4 microns per year). LDED and milling materials showed the highest modulus of toughness, and gave improved results in comparison with CAST and SLM techniques (p < 0.05). The LDED process could be implemented in the manufacturing of the restorative dental industry, with a high overall performance, competing directly with the best quality techniques, and reducing their disadvantages.
Collapse
|
18
|
Laser Additive Manufacturing Processes for Near Net Shape Components. MATERIALS FORMING, MACHINING AND TRIBOLOGY 2019. [DOI: 10.1007/978-3-030-10579-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res 2017; 5:17059. [PMID: 29285402 PMCID: PMC5738879 DOI: 10.1038/boneres.2017.59] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/15/2017] [Accepted: 10/23/2017] [Indexed: 12/31/2022] Open
Abstract
Bone biomaterials play a vital role in bone repair by providing the necessary substrate for cell adhesion, proliferation, and differentiation and by modulating cell activity and function. In past decades, extensive efforts have been devoted to developing bone biomaterials with a focus on the following issues: (1) developing ideal biomaterials with a combination of suitable biological and mechanical properties; (2) constructing a cell microenvironment with pores ranging in size from nanoscale to submicro- and microscale; and (3) inducing the oriented differentiation of stem cells for artificial-to-biological transformation. Here we present a comprehensive review of the state of the art of bone biomaterials and their interactions with stem cells. Typical bone biomaterials that have been developed, including bioactive ceramics, biodegradable polymers, and biodegradable metals, are reviewed, with an emphasis on their characteristics and applications. The necessary porous structure of bone biomaterials for the cell microenvironment is discussed, along with the corresponding fabrication methods. Additionally, the promising seed stem cells for bone repair are summarized, and their interaction mechanisms with bone biomaterials are discussed in detail. Special attention has been paid to the signaling pathways involved in the focal adhesion and osteogenic differentiation of stem cells on bone biomaterials. Finally, achievements regarding bone biomaterials are summarized, and future research directions are proposed.
Collapse
Affiliation(s)
- Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
- Jiangxi University of Science and Technology, Ganzhou, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Wang Z, Ma Y, Wei J, Chen X, Cao L, Weng W, Li Q, Guo H, Su J. Effects of sintering temperature on surface morphology/microstructure, in vitro degradability, mineralization and osteoblast response to magnesium phosphate as biomedical material. Sci Rep 2017; 7:823. [PMID: 28400583 PMCID: PMC5429756 DOI: 10.1038/s41598-017-00905-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/16/2017] [Indexed: 12/11/2022] Open
Abstract
Magnesium phosphate (MP) was fabricated using a chemical precipitation method, and the biological performances of MP sintered at different temperatures as a biomedical material was investigated. The results indicated that the densification and crystallinity of MP increased as the sintering temperature increased. As the sintering temperature increased, the degradability of MP in PBS decreased, and the mineralization ability in SBF significantly increased. In addition, the MP sintered at 800 °C (MP8) possessed the lowest degradability and highest mineralization ability. Moreover, the positive response of MG63 cells to MP significantly increased as the sintering temperature increased, and MP8 significantly promoted the cell spreading, proliferation, differentiation and expressions of osteogenic differentiation-related genes. Faster degradation of MP0 resulted in higher pH environments and ion concentrations, which led to negative responses to osteoblasts. However, the appropriate degradation of MP8 resulted in suitable pH environments and ion concentrations, which led to positive responses to osteoblasts. This study demonstrated that the sintering temperature substantially affected the surface morphology/microstructure, degradability and mineralization, and osteoblasts response to magnesium phosphate.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yuhai Ma
- Department of Orthopaedics, Zhejiang Provincial Armed Police Corps Hospital, Hangzhou City, Zhejiang Province, 310051, P.R. China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Xiao Chen
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Liehu Cao
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Weizong Weng
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Quan Li
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Han Guo
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P.R. China
| | - Jiacan Su
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
21
|
Influences of surface treatments with abrasive paper and sand-blasting on surface morphology, hydrophilicity, mineralization and osteoblasts behaviors of n-CS/PK composite. Sci Rep 2017; 7:568. [PMID: 28373673 PMCID: PMC5428562 DOI: 10.1038/s41598-017-00571-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/23/2017] [Indexed: 01/21/2023] Open
Abstract
The surfaces of nano-calcium silicate (n-CS)/polyetheretherketone (PK) composites were treated with abrasive paper and sand-blasting, and the surfaces performances of the as-treated composites were studied. The results showed that the surface roughness, hydrophilicity and mineralization of the simulated body fluid (SBF) of the composites surfaces were significantly improved, and the properties of the composites treated by with sand-blasting were better than those treated with abrasive paper. Moreover, the treated composites significantly promoted osteoblasts responses, such as cell attachment, spreading, proliferation and alkaline phosphatase (ALP) activity, compared to un-treated composites, and the cellular responses to the composites treated with sand-blasting were better than those treated with abrasive paper. The results suggested that surface treatment with sand-blasting was an effective method to greatly improve the surface bioperformances of the n-CS/PK composite, and this treated composite with improved bioactivity and cytocompatibility might be a promising implant material for orthopedic applications.
Collapse
|
22
|
Translational biomaterials — the journey from the bench to the market — think ‘product’. Curr Opin Biotechnol 2016; 40:31-34. [DOI: 10.1016/j.copbio.2016.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 12/23/2022]
|
23
|
Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA. 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery. Ann Biomed Eng 2016; 45:23-44. [PMID: 27324800 DOI: 10.1007/s10439-016-1678-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/08/2016] [Indexed: 01/16/2023]
Abstract
Additive manufacturing, also known as 3D printing, has emerged over the past 3 decades as a disruptive technology for rapid prototyping and manufacturing. Vat polymerization, powder bed fusion, material extrusion, and binder jetting are distinct technologies of additive manufacturing, which have been used in a wide variety of fields, including biomedical research and tissue engineering. The ability to print biocompatible, patient-specific geometries with controlled macro- and micro-pores, and to incorporate cells, drugs and proteins has made 3D-printing ideal for orthopaedic applications, such as bone grafting. Herein, we performed a systematic review examining the fabrication of calcium phosphate (CaP) ceramics by 3D printing, their biocompatibility in vitro, and their bone regenerative potential in vivo, as well as their use in localized delivery of bioactive molecules or cells. Understanding the advantages and limitations of the different 3D printing approaches, CaP materials, and bioactive additives through critical evaluation of in vitro and in vivo evidence of efficacy is essential for developing new classes of bone graft substitutes that can perform as well as autografts and allografts or even surpass the performance of these clinical standards.
Collapse
Affiliation(s)
- Ryan Trombetta
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, Rochester, NY, 14627, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Jason A Inzana
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.,AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Edward M Schwarz
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, Rochester, NY, 14627, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.,Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Stephen L Kates
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.,Department of Orthopaedic Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Hani A Awad
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, Rochester, NY, 14627, USA. .,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA. .,Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|