1
|
Stuart SH, Ahmed ACC, Kilikevicius L, Robinson GE. Effects of microRNA-305 knockdown on brain gene expression associated with division of labor in honey bee colonies (Apis mellifera). J Exp Biol 2024; 227:jeb246785. [PMID: 38517067 PMCID: PMC11112348 DOI: 10.1242/jeb.246785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Division of labor in honey bee colonies is based on the behavioral maturation of adult workers that involves a transition from working in the hive to foraging. This behavioral maturation is associated with distinct task-related transcriptomic profiles in the brain and abdominal fat body that are related to multiple regulatory factors including juvenile hormone (JH) and queen mandibular pheromone (QMP). A prominent physiological feature associated with behavioral maturation is a loss of abdominal lipid mass as bees transition to foraging. We used transcriptomic and physiological analyses to study whether microRNAs (miRNAs) are involved in the regulation of division of labor. We first identified two miRNAs that showed patterns of expression associated with behavioral maturation, ame-miR-305-5p and ame-miR-375-3p. We then downregulated the expression of these two miRNAs with sequence-specific antagomirs. Neither ame-miR-305-5p nor ame-miR-375-3p knockdown in the abdomen affected abdominal lipid mass on their own. Similarly, knockdown of ame-miR-305-5p in combination with JH or QMP also did not affect lipid mass. By contrast, ame-miR-305-5p knockdown in the abdomen caused substantial changes in gene expression in the brain. Brain gene expression changes included genes encoding transcription factors previously implicated in behavioral maturation. The results of these functional genomic experiments extend previous correlative associations of microRNAs with honey bee division of labor and point to specific roles for ame-miR-305-5p.
Collapse
Affiliation(s)
- Sarai H. Stuart
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Amy C. Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Kilikevicius
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gene E. Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Bresnahan ST, Galbraith D, Ma R, Anton K, Rangel J, Grozinger CM. Beyond conflict: Kinship theory of intragenomic conflict predicts individual variation in altruistic behaviour. Mol Ecol 2023; 32:5823-5837. [PMID: 37746895 DOI: 10.1111/mec.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Behavioural variation is essential for animals to adapt to different social and environmental conditions. The Kinship Theory of Intragenomic Conflict (KTIC) predicts that parent-specific alleles can support different behavioural strategies to maximize allele fitness. Previous studies, including in honey bees (Apis mellifera), supported predictions of the KTIC for parent-specific alleles to promote selfish behaviour. Here, we test the KTIC prediction that for altruism-promoting genes (i.e. those that promote behaviours that support the reproductive fitness of kin), the allele with the higher altruism optimum should be selected to be expressed while the other is silenced. In honey bee colonies, workers act altruistically when tending to the queen by performing a 'retinue' behaviour, distributing the queen's mandibular pheromone (QMP) throughout the hive. Workers exposed to QMP do not activate their ovaries, ensuring they care for the queen's brood instead of competing to lay unfertilized eggs. Due to the haplodiploid genetics of honey bees, the KTIC predicts that response to QMP is favoured by the maternal genome. We report evidence for parent-of-origin effects on the retinue response behaviour, ovarian development and gene expression in brains of worker honey bees exposed to QMP, consistent with the KTIC. Additionally, we show enrichment for genes with parent-of-origin expression bias within gene regulatory networks associated with variation in bees' response to QMP. Our study demonstrates that intragenomic conflict can shape diverse social behaviours and influence expression patterns of single genes as well as gene networks.
Collapse
Affiliation(s)
- Sean T Bresnahan
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rong Ma
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kate Anton
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Huisken JL, Rehan SM. Brain Gene Expression of Foraging Behavior and Social Environment in Ceratina calcarata. Genome Biol Evol 2023; 15:evad117. [PMID: 37364293 PMCID: PMC10337991 DOI: 10.1093/gbe/evad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Rudimentary social systems have the potential to both advance our understanding of how complex sociality may have evolved and our understanding of how changes in social environment may influence gene expression and cooperation. Recently, studies of primitively social Hymenoptera have greatly expanded empirical evidence for the role of social environment in shaping behavior and gene expression. Here, we compare brain gene expression profiles of foragers across social contexts in the small carpenter bee, Ceratina calcarata. We conducted experimental manipulations of field colonies to examine gene expression profiles among social contexts including foraging mothers, regular daughters, and worker-like dwarf eldest daughters in the presence and absence of mother. Our analysis found significant differences in gene expression associated with female age, reproductive status, and social environment, including circadian clock gene dyw, hexamerin, and genes involved in the regulation of juvenile hormone and chemical communication. We also found that candidate genes differentially expressed in our study were also associated with division of labor, including foraging, in other primitively and advanced eusocial insects. Our results offer evidence for the role of the regulation of key developmental hormones and circadian rhythms in producing cooperative behavior in rudimentary insect societies.
Collapse
|
4
|
Kohlmeier P, Feldmeyer B, Foitzik S. Histone acetyltransferases and external demands influence task switching in Temnothorax ants. Biol Lett 2023; 19:20230176. [PMID: 37403711 PMCID: PMC10320658 DOI: 10.1098/rsbl.2023.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
In social hymenopterans, workers specialize in different tasks. Whether a worker nurses the brood or forages is influenced by the responsiveness for task-related cues which in turn is determined by gene expression. Task choice is dynamic and changes throughout a worker's life, e.g. with age or in response to increased demands for certain tasks. Behavioural switches require the ability to adjust gene expression but the mechanisms regulating such transcriptional adaptations remain elusive. We investigated the role of histone acetylation in task specialization and behavioural flexibility in Temnothorax longispinosus ants. By inhibiting p300/CBP histone acetyltransferases (HAT) and manipulating colony composition, we found that HAT inhibition impairs the ability of older workers to switch to brood care. Yet, HAT inhibition increased the ability of young workers to accelerate their behavioural development and switch to foraging. Our data suggest that HAT in combination with social signals indicating task demands play an important role in modulating behaviour. Elevated HAT activity may contribute to keeping young brood carers from leaving the nest, where they would be exposed to high mortality. These findings shed light on the epigenetic processes underlying behavioural flexibility in animals and provide insight into the mechanisms of task specialization in social insects.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Germany
- Department of Biological Sciences, University of Memphis, Tennessee, TN, USA
| | - Barbara Feldmeyer
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
5
|
Nazemi-Rafie J, Fatehi F, Hasrak S. A comparative transcriptome analysis of the head of 1 and 9 days old worker honeybees ( Apis mellifera). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:253-270. [PMID: 36511774 DOI: 10.1017/s0007485322000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The role of bees in the environment, economic, biodiversity and pharmaceutical industries is due to its social behavior, which is oriented from the brain and hypopharyngeal gland that is the center of royal jelly (RJ) production. Limited studies have been performed on the head gene expression profile at the RJ production stage. The aim of this study was to compare the gene expressions in 9 and 1-day-old (DO) honeybee workers in order to achieve better understanding about head gene expression pattern. After sequencing of RNAs, transcriptome and their networks were compared. The head expression profile undergoes various changes. 1662 gene transcripts had differential expressions which 1125 and 537 were up and down regulated, respectively, in 9_DO compared with 1_DO honey bees. The day 1th had more significant role in the expression of genes related to RJ production as major RJ protein 1, 2, 3, 5, 6 and 9 encoding genes, but their maximum secretion occurred at day 9th. All process related to hypopharyngeal glands activities as CYP450 gene, fatty acid synthase gene, vitamin B6 metabolism and some of genes involved in fatty acid elongation and degradation process had an upward trend from 1_DO and were age-dependent. By increasing the age, the activity of pathways related to immune system increased for keeping the health of bees against the chemical compound. The expression of aromatic amino acid genes involved in Phenylalanine, tyrosine and tryptophan biosynthesis pathway are essential for early stage of life. In 9_DO honeybees, the energy supplying, reducing stress, protein production and export pathways have a crucial role for support the body development and the social duties. It can be stated that the activity of honeybee head is focused on energy supply instead of storage, while actively trying to improve the level of cell dynamics for increasing the immunity and reducing stress. Results of current study identified key genes of certain behaviors of honeybee workers. Deeper considering of some pathways will be evaluated in future studies.
Collapse
Affiliation(s)
- Javad Nazemi-Rafie
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Shabnam Hasrak
- Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
6
|
Evolutionary Invariant of the Structure of DNA Double Helix in RNAP II Core Promoters. Int J Mol Sci 2022; 23:ijms231810873. [PMID: 36142782 PMCID: PMC9504043 DOI: 10.3390/ijms231810873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Eukaryotic and archaeal RNA polymerase II (POL II) machinery is highly conserved, regardless of the extreme changes in promoter sequences in different organisms. The goal of our work is to find the cause of this conservatism. The representative sets of aligned promoter sequences of fifteen organisms belonging to different evolutional stages were studied. Their textual profiles, as well as profiles of the indexes that characterize the secondary structure and the mechanical and physicochemical properties, were analyzed. The evolutionarily stable, extremely heterogeneous special secondary structure of POL II core promoters was revealed, which includes two singular regions—hexanucleotide “INR” around TSS and octanucleotide “TATA element” of about −28 bp upstream. Such structures may have developed at some stage of evolution. It turned out to be so well matched for the pre-initiation complex formation and the subsequent initiation of transcription for POL II machinery that in the course of evolution there were selected only those nucleotide sequences that were able to reproduce these structural properties. The individual features of specific sequences representing the singular region of the promoter of each gene can affect the kinetics of DNA-protein complex formation and facilitate strand separation in double-stranded DNA at the TSS position.
Collapse
|
7
|
Fang F, Zhou H, Feng X, Chen X, Wang Z, Zhao S, Li X. Gene expression and chromatin conformation differs between worker bees performing different tasks. Genomics 2022; 114:110362. [PMID: 35398245 DOI: 10.1016/j.ygeno.2022.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/16/2022] [Accepted: 04/02/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Revealing the effect of transcriptomic regulation on behavioral differences is a fundamental goal in biology, but the relationship between gene regulatory networks and individual behavior differences remains largely unknown. Honey bees are considered as good models for studying the mechanisms underlying gene expression changes and behavioral differences since they exhibit strong and obvious differences in tasks between individuals. The cis-regulatory regions usually contain the binding sites of diverse transcription factor (TFs) influencing bee behavior. Thus, the identification of cis-regulatory elements in the brains across different behavioral states is important for understanding how genomic and transcriptomic variations affect different tasks in honeybees. METHODS In this study, we employed transcriptome and genome-wide chromatin accessibility assays to analyze brain tissues of honey bees in different behavioral states for examining the relationship between individual behavior differences and brain gene expression changes. We also used the obtained open chromatin regions to identify cis-motifs associating differentially expressed TFs and genes in order to reveal the transcriptional regulatory mechanism related to the different tasks. RESULTS We identified genetic regulatory modules regulating different tasks that contained key TFs (CTCF, Trl and schlank) associated with open chromatin regions enriched for DNA sequence motifs belonging to the family of the corresponding TFs. The most prominent transcriptomic changes, which correlated with chromatin accessibility modifications within their proximal promoter regions, occurred in nervous system development, and were associated with behavior switch. CONCLUSIONS Our results revealed the regulatory landscape among three behavioral stages in honeybees and identified interactive molecular networks regulating different tasks. These results provide a comprehensive insight into behavioral differences of honeybees, which offers reference for future study.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, PR China
| | - Huanhuan Zhou
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Xiaojuan Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, PR China
| | - Xiasang Chen
- Department of Honeybee Protection and Biosafety, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, PR China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China; Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, PR China
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
8
|
Shell WA, Rehan SM. Social divergence: molecular pathways underlying castes and longevity in a facultatively eusocial small carpenter bee. Proc Biol Sci 2022; 289:20212663. [PMID: 35317677 PMCID: PMC8941392 DOI: 10.1098/rspb.2021.2663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Unravelling the evolutionary origins of eusocial life is a longstanding endeavour in the field of evolutionary-developmental biology. Descended from solitary ancestors, eusocial insects such as honeybees have evolved ontogenetic division of labour in which short-lived workers perform age-associated tasks, while a long-lived queen produces brood. It is hypothesized that (i) eusocial caste systems evolved through the co-option of deeply conserved genes and (ii) longevity may be tied to oxidative damage mitigation capacity. To date, however, these hypotheses have been examined primarily among only obligately eusocial corbiculate bees. We present brain transcriptomic data from a Japanese small carpenter bee, Ceratina japonica (Apidae: Xylocopinae), which demonstrates both solitary and eusocial nesting in sympatry and lives 2 or more years in the wild. Our dataset captures gene expression patterns underlying first- and second-year solitary females, queens and workers, providing an unprecedented opportunity to explore the molecular mechanisms underlying caste-antecedent phenotypes in a long-lived and facultatively eusocial bee. We find that C. japonica's queens and workers are underpinned by divergent gene regulatory pathways, involving many differentially expressed genes well-conserved among other primitively eusocial bee lineages. We also find support for oxidative damage reduction as a proximate mechanism of longevity in C. japonica.
Collapse
Affiliation(s)
- Wyatt A. Shell
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - Sandra M. Rehan
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
9
|
Bresnahan ST, Döke MA, Giray T, Grozinger CM. Tissue-specific transcriptional patterns underlie seasonal phenotypes in honey bees (Apis mellifera). Mol Ecol 2021; 31:174-184. [PMID: 34643007 DOI: 10.1111/mec.16220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022]
Abstract
Faced with adverse conditions, such as winter in temperate regions or hot and dry conditions in tropical regions, many insect species enter a state of diapause, a period of dormancy associated with a reduction or arrest of physical activity, development and reproduction. Changes in common physiological pathways underlie diapause phenotypes in different insect species. However, most transcriptomic studies of diapause have not simultaneously evaluated and compared expression patterns in different tissues. Honey bees (Apis mellifera) represent a unique model system to study the mechanisms underpinning diapause-related phenotypes. In winter, honey bees exhibit a classic diapause phenotype, with reduced metabolic activity, increased physiological nutritional resources and altered hormonal profiles. However, winter bees actively heat their colony by vibrating their wing muscles; thus, this tissue is not quiescent. Here, we evaluated the transcriptional profiles of flight muscle tissue and fat body tissue (involved in nutrient storage, metabolism and immune function) of winter bees. We also evaluated two behavioural phenotypes of summer bees: nurses, which exhibit high nutritional stores and low flight activity, and foragers, which exhibit low nutritional stores and high flight activity. We found winter bees and nurses have similar fat body transcriptional profiles, whereas winter bees and foragers have similar flight muscle transcriptional profiles. Additionally, differentially expressed genes were enriched in diapause-related gene ontology terms. Thus, honey bees exhibit tissue-specific transcriptional profiles associated with seasonal phenotypes, laying the groundwork for future studies evaluating the mechanisms, evolution and consequences of this tissue-specific regulation.
Collapse
Affiliation(s)
- Sean T Bresnahan
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA.,Molecular, Cellular and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| | - Mehmet A Döke
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA.,Department of Biology and Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Tugrul Giray
- Department of Biology and Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
10
|
Fouks B, Brand P, Nguyen HN, Herman J, Camara F, Ence D, Hagen DE, Hoff KJ, Nachweide S, Romoth L, Walden KKO, Guigo R, Stanke M, Narzisi G, Yandell M, Robertson HM, Koeniger N, Chantawannakul P, Schatz MC, Worley KC, Robinson GE, Elsik CG, Rueppell O. The genomic basis of evolutionary differentiation among honey bees. Genome Res 2021; 31:1203-1215. [PMID: 33947700 PMCID: PMC8256857 DOI: 10.1101/gr.272310.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
In contrast to the western honey bee, Apis mellifera, other honey bee species have been largely neglected despite their importance and diversity. The genetic basis of the evolutionary diversification of honey bees remains largely unknown. Here, we provide a genome-wide comparison of three honey bee species, each representing one of the three subgenera of honey bees, namely the dwarf (Apis florea), giant (A. dorsata), and cavity-nesting (A. mellifera) honey bees with bumblebees as an outgroup. Our analyses resolve the phylogeny of honey bees with the dwarf honey bees diverging first. We find that evolution of increased eusocial complexity in Apis proceeds via increases in the complexity of gene regulation, which is in agreement with previous studies. However, this process seems to be related to pathways other than transcriptional control. Positive selection patterns across Apis reveal a trade-off between maintaining genome stability and generating genetic diversity, with a rapidly evolving piRNA pathway leading to genomes depleted of transposable elements, and a rapidly evolving DNA repair pathway associated with high recombination rates in all Apis species. Diversification within Apis is accompanied by positive selection in several genes whose putative functions present candidate mechanisms for lineage-specific adaptations, such as migration, immunity, and nesting behavior.
Collapse
Affiliation(s)
- Bertrand Fouks
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27403, USA
- Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Philipp Brand
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, Davis, California 95161, USA
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, New York 10065, USA
| | - Hung N Nguyen
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jacob Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27403, USA
| | - Francisco Camara
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Daniel Ence
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Darren E Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Katharina J Hoff
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
- University of Greifswald, Center for Functional Genomics of Microbes, 17489 Greifswald, Germany
| | - Stefanie Nachweide
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
| | - Lars Romoth
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Mario Stanke
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
- University of Greifswald, Center for Functional Genomics of Microbes, 17489 Greifswald, Germany
| | | | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Nikolaus Koeniger
- Department of Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, 97074 Würzburg, Germany
| | - Panuwan Chantawannakul
- Environmental Science Research Center (ESRC) and Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Michael C Schatz
- Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Gene E Robinson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Christine G Elsik
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27403, USA
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
11
|
Chen YR, Tzeng DTW, Ting C, Hsu PS, Wu TH, Zhong S, Yang EC. Missing Nurse Bees-Early Transcriptomic Switch From Nurse Bee to Forager Induced by Sublethal Imidacloprid. Front Genet 2021; 12:665927. [PMID: 34220942 PMCID: PMC8248817 DOI: 10.3389/fgene.2021.665927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/12/2021] [Indexed: 01/20/2023] Open
Abstract
The environmental residue/sublethal doses of neonicotinoid insecticides are believed to generate a negative impact on pollinators, including honey bees. Here we report our recent investigation on how imidacloprid, one of the major neonicotinoids, affects worker bees by profiling the transcriptomes of various ages of bees exposed to different doses of imidacloprid during the larval stage. The results show that imidacloprid treatments during the larval stage severely altered the gene expression profiles and may induce precocious foraging. Differential expression of foraging regulators was found in 14-day-old treated adults. A high transcriptome similarity between larvae-treated 14-day-old adults and 20-day-old controls was also observed, and the similarity was positively correlated with the dose of imidacloprid. One parts per billion (ppb) of imidacloprid was sufficient to generate a long-term impact on the bee's gene expression as severe as with 50 ppb imidacloprid. The disappearance of nurse bees may be driven not only by the hive member constitution but also by the neonicotinoid-induced precocious foraging behavior.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - David T W Tzeng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chieh Ting
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Pei-Shou Hsu
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Gongguan, Taiwan
| | - Tzu-Hsien Wu
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Gongguan, Taiwan
| | - Silin Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
de Paula Freitas FC, Lourenço AP, Nunes FMF, Paschoal AR, Abreu FCP, Barbin FO, Bataglia L, Cardoso-Júnior CAM, Cervoni MS, Silva SR, Dalarmi F, Del Lama MA, Depintor TS, Ferreira KM, Gória PS, Jaskot MC, Lago DC, Luna-Lucena D, Moda LM, Nascimento L, Pedrino M, Oliveira FR, Sanches FC, Santos DE, Santos CG, Vieira J, Barchuk AR, Hartfelder K, Simões ZLP, Bitondi MMG, Pinheiro DG. The nuclear and mitochondrial genomes of Frieseomelitta varia - a highly eusocial stingless bee (Meliponini) with a permanently sterile worker caste. BMC Genomics 2020; 21:386. [PMID: 32493270 PMCID: PMC7268684 DOI: 10.1186/s12864-020-06784-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most of our understanding on the social behavior and genomics of bees and other social insects is centered on the Western honey bee, Apis mellifera. The genus Apis, however, is a highly derived branch comprising less than a dozen species, four of which genomically characterized. In contrast, for the equally highly eusocial, yet taxonomically and biologically more diverse Meliponini, a full genome sequence was so far available for a single Melipona species only. We present here the genome sequence of Frieseomelitta varia, a stingless bee that has, as a peculiarity, a completely sterile worker caste. RESULTS The assembly of 243,974,526 high quality Illumina reads resulted in a predicted assembled genome size of 275 Mb composed of 2173 scaffolds. A BUSCO analysis for the 10,526 predicted genes showed that these represent 96.6% of the expected hymenopteran orthologs. We also predicted 169,371 repetitive genomic components, 2083 putative transposable elements, and 1946 genes for non-coding RNAs, largely long non-coding RNAs. The mitochondrial genome comprises 15,144 bp, encoding 13 proteins, 22 tRNAs and 2 rRNAs. We observed considerable rearrangement in the mitochondrial gene order compared to other bees. For an in-depth analysis of genes related to social biology, we manually checked the annotations for 533 automatically predicted gene models, including 127 genes related to reproductive processes, 104 to development, and 174 immunity-related genes. We also performed specific searches for genes containing transcription factor domains and genes related to neurogenesis and chemosensory communication. CONCLUSIONS The total genome size for F. varia is similar to the sequenced genomes of other bees. Using specific prediction methods, we identified a large number of repetitive genome components and long non-coding RNAs, which could provide the molecular basis for gene regulatory plasticity, including worker reproduction. The remarkable reshuffling in gene order in the mitochondrial genome suggests that stingless bees may be a hotspot for mtDNA evolution. Hence, while being just the second stingless bee genome sequenced, we expect that subsequent targeting of a selected set of species from this diverse clade of highly eusocial bees will reveal relevant evolutionary signals and trends related to eusociality in these important pollinators.
Collapse
Affiliation(s)
- Flávia C. de Paula Freitas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Anete P. Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Ciências Biológicas, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG Brazil
| | - Francis M. F. Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | | | - Fabiano C. P. Abreu
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Fábio O. Barbin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Luana Bataglia
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Carlos A. M. Cardoso-Júnior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Mário S. Cervoni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Saura R. Silva
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP Brazil
| | - Fernanda Dalarmi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Marco A. Del Lama
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Thiago S. Depintor
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Kátia M. Ferreira
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Paula S. Gória
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Michael C. Jaskot
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Denyse C. Lago
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Livia M. Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Leonardo Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Matheus Pedrino
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Franciene Rabiço Oliveira
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Fernanda C. Sanches
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Douglas E. Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Carolina G. Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Joseana Vieira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Angel R. Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Zilá L. P. Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Márcia M. G. Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP Brazil
| |
Collapse
|
13
|
Cunningham CB. Functional genomics of parental care of insects. Horm Behav 2020; 122:104756. [PMID: 32353447 DOI: 10.1016/j.yhbeh.2020.104756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Parental care was likely the first step most lineages made towards sociality. However, the molecular mechanisms that generate parental care are not broadly characterized. Insects are important as an evolutionary independent group from classic models of parental care, such as, house mice. They provide an opportunity to test the generality of our understanding. With this review, I survey the functional genomics of parental care of insects, summarize several recent advances in the broader framework for studying and understanding parental care, and finish with suggested priorities for further research. Although there are too few studies to draw definitive conclusions, I argue that natural selection appears to be rewiring existing gene networks to produce parental care, that the epigenetic mechanisms influencing parental care are not well understood, and, as an interesting early consensus, that genes strongly associated with carer/offspring interactions appear biased towards proteins that are secreted. I summarize the studies that have functionally validate candidate genes and highlight the increasing need to perform this work. I finish with arguments for both conceptual and practical changes moving forward. I argue that future work can increase the use of predictive frameworks, broaden its definition of conservation of mechanism to gene networks rather than single genes, and increase the use of more established comparative methods. I further highlight the practical considerations of standardizing analyses and reporting, increasing the sampling of both carers and offspring, better characterizing gene regulatory networks, better characterizing taxonomically restricted genes and any consistent role they have underpinning parental care, and using factorial designs to disentangle the influence of multiple variables on the expression of parental care.
Collapse
|
14
|
A Single Gene Causes Thelytokous Parthenogenesis, the Defining Feature of the Cape Honeybee Apis mellifera capensis. Curr Biol 2020; 30:2248-2259.e6. [DOI: 10.1016/j.cub.2020.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 04/15/2020] [Indexed: 02/01/2023]
|
15
|
Singh AS, Takhellambam MC, Cappelletti P, Feligioni M. Immediate early gene kakusei potentially plays a role in the daily foraging of honey bees. PLoS One 2020; 15:e0222256. [PMID: 32374761 PMCID: PMC7202604 DOI: 10.1371/journal.pone.0222256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 03/19/2020] [Indexed: 11/25/2022] Open
Abstract
kakusei is a non-coding RNA that is overexpressed in foraging bee brain. This study describes a possible role of the IEG kakusei during the daily foraging of honey bees. kakusei was found to be transiently upregulated within two hours during rewarded foraging. Interestingly, during unrewarded foraging the gene was also found to be up-regulated, but immediately lowered when food was not rewarded. Moreover, the kakusei overexpression was diminished within a very short time when the time schedule of feeding was changed. This indicates the potential role of kakusei on the motivation of learned reward foraging. These results provide evidence for a dynamic role of kakusei during for aging of bees, and eventually its possible involvement in learning and memory. Thus the kakusei gene could be used as search tool in finding distinct molecular pathways that mediate diverse behavioral components of foraging.
Collapse
Affiliation(s)
- Asem Surindro Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| | | | - Pamela Cappelletti
- Laboratory of Neurobiology in Translational Medicine, Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Marco Feligioni
- Laboratory of Neurobiology in Translational Medicine, Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| |
Collapse
|
16
|
Traniello IM, Bukhari SA, Kevill J, Ahmed AC, Hamilton AR, Naeger NL, Schroeder DC, Robinson GE. Meta-analysis of honey bee neurogenomic response links Deformed wing virus type A to precocious behavioral maturation. Sci Rep 2020; 10:3101. [PMID: 32080242 PMCID: PMC7033282 DOI: 10.1038/s41598-020-59808-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Crop pollination by the western honey bee Apis mellifera is vital to agriculture but threatened by alarmingly high levels of colony mortality, especially in Europe and North America. Colony loss is due, in part, to the high viral loads of Deformed wing virus (DWV), transmitted by the ectoparasitic mite Varroa destructor, especially throughout the overwintering period of a honey bee colony. Covert DWV infection is commonplace and has been causally linked to precocious foraging, which itself has been linked to colony loss. Taking advantage of four brain transcriptome studies that unexpectedly revealed evidence of covert DWV-A infection, we set out to explore whether this effect is due to DWV-A mimicking naturally occurring changes in brain gene expression that are associated with behavioral maturation. Consistent with this hypothesis, we found that brain gene expression profiles of DWV-A infected bees resembled those of foragers, even in individuals that were much younger than typical foragers. In addition, brain transcriptional regulatory network analysis revealed a positive association between DWV-A infection and transcription factors previously associated with honey bee foraging behavior. Surprisingly, single-cell RNA-Sequencing implicated glia, not neurons, in this effect; there are relatively few glial cells in the insect brain and they are rarely associated with behavioral plasticity. Covert DWV-A infection also has been linked to impaired learning, which together with precocious foraging can lead to increased occurrence of infected bees from one colony mistakenly entering another colony, especially under crowded modern apiary conditions. These findings provide new insights into the mechanisms by which DWV-A affects honey bee health and colony survival.
Collapse
Affiliation(s)
- Ian M Traniello
- Neuroscience Program, University of Illinois at Urbana-Champaign, (UIUC), Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA.
| | - Syed Abbas Bukhari
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
- Department of Animal Biology, UIUC, Urbana, USA
| | - Jessica Kevill
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Amy Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
| | - Adam R Hamilton
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
| | - Nicholas L Naeger
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- School of Biological Sciences, University of Reading, Reading, UK
| | - Gene E Robinson
- Neuroscience Program, University of Illinois at Urbana-Champaign, (UIUC), Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, UIUC, Urbana, USA
- Department of Entomology, UIUC, Urbana, USA
| |
Collapse
|
17
|
Shell WA, Rehan SM. Social modularity: conserved genes and regulatory elements underlie caste-antecedent behavioural states in an incipiently social bee. Proc Biol Sci 2019; 286:20191815. [PMID: 31771475 PMCID: PMC6939254 DOI: 10.1098/rspb.2019.1815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
The evolutionary origins of advanced eusociality, one of the most complex forms of phenotypic plasticity in nature, have long been a focus within the field of sociobiology. Although eusocial insects are known to have evolved from solitary ancestors, sociogenomic research among incipiently social taxa has only recently provided empirical evidence supporting theories that modular regulation and deeply conserved genes may play important roles in both the evolutionary emergence and elaboration of insect sociality. There remains, however, a paucity of data to further test the biological reality of these and other evolutionary theories among taxa in the earliest stages of social evolution. Here, we present brain transcriptomic data from the incipiently social small carpenter bee, Ceratina calcarata, which captures patterns of cis-regulation and gene expression associated with female maturation, and underlying two well-defined behavioural states, foraging and guarding, concurrently demonstrated by mothers and daughters during early autumn. We find that an incipiently social nest environment may dramatically affect gene expression. We further reveal foraging and guarding behaviours to be putatively caste-antecedent states in C. calcarata, and offer strong empirical support for the operation of modular regulation, involving deeply conserved and differentially expressed genes in the expression of early social forms.
Collapse
Affiliation(s)
- Wyatt A. Shell
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
| | - Sandra M. Rehan
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, CanadaM3 J 1P3
| |
Collapse
|
18
|
Ma R, Rangel J, Grozinger CM. Honey bee (Apis mellifera) larval pheromones may regulate gene expression related to foraging task specialization. BMC Genomics 2019; 20:592. [PMID: 31324147 PMCID: PMC6642498 DOI: 10.1186/s12864-019-5923-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022] Open
Abstract
Background Foraging behavior in honey bees (Apis mellifera) is a complex phenotype that is regulated by physiological state and social signals. How these factors are integrated at the molecular level to modulate foraging behavior has not been well characterized. The transition of worker bees from nursing to foraging behaviors is mediated by large-scale changes in brain gene expression, which are influenced by pheromones produced by the queen and larvae. Larval pheromones can also stimulate foragers to leave the colony to collect pollen. However, the mechanisms underpinning this rapid behavioral plasticity in foragers that specialize in collecting pollen over nectar, and how larval pheromones impact these different behavioral states, remains to be determined. Here, we investigated the patterns of gene expression related to rapid behavioral plasticity and task allocation among honey bee foragers exposed to two larval pheromones, brood pheromone (BP) and (E)-beta-ocimene (EBO). We hypothesized that both pheromones would alter expression of genes in the brain related to foraging and would differentially impact brain gene expression depending on foraging specialization. Results Combining data reduction, clustering, and network analysis methods, we found that foraging preference (nectar vs. pollen) and pheromone exposure are each associated with specific brain gene expression profiles. Furthermore, pheromone exposure has a strong transcriptional effect on genes that are preferentially expressed in nectar foragers. Representation factor analysis between our study and previous landmark honey bee transcriptome studies revealed significant overlaps for both pheromone communication and foraging task specialization. Conclusions Our results suggest that, as social signals, pheromones alter expression patterns of foraging-related genes in the bee’s brain to increase pollen foraging at both long and short time scales. These results provide new insights into how social signals and task specialization are potentially integrated at the molecular level, and highlights the possible role that brain gene expression may play in honey bee behavioral plasticity across time scales. Electronic supplementary material The online version of this article (10.1186/s12864-019-5923-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong Ma
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
19
|
Hamilton AR, Traniello IM, Ray AM, Caldwell AS, Wickline SA, Robinson GE. Division of labor in honey bees is associated with transcriptional regulatory plasticity in the brain. J Exp Biol 2019; 222:jeb200196. [PMID: 31138635 PMCID: PMC6679348 DOI: 10.1242/jeb.200196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Studies in evolutionary and developmental biology show that relationships between transcription factors (TFs) and their target genes can be altered to result in novel regulatory relationships that generate phenotypic plasticity. We hypothesized that context-dependent shifts in the nervous system associated with behavior may also be linked to changes in TF-target relationships over physiological time scales. We tested this hypothesis using honey bee (Apis mellifera) division of labor as a model system by performing bioinformatic analyses of previously published brain transcriptomic profiles together with new RNAi and behavioral experiments. The bioinformatic analyses identified five TFs that exhibited strong signatures of regulatory plasticity as a function of division of labor. RNAi targeting of one of these TFs (broad complex) and a related TF that did not exhibit plasticity (fushi tarazu transcription factor 1) was administered in conjunction with automated analyses of foraging behavior in the field, laboratory assays of aggression and brood care behavior, and endocrine treatments. The results showed that changes in the regulatory relationships of these TFs were associated with behavioral state, social context and endocrine state. These findings provide the first empirical evidence that TF-target relationships in the brain are altered in conjunction with behavior and social context. They also suggest that one mechanism for this plasticity involves pleiotropic TFs high up in regulatory hierarchies producing behavior-specific transcriptional responses by activating different downstream TFs to induce discrete context-dependent transcriptional cascades. These findings provide new insights into the dynamic nature of the transcriptional regulatory architecture underlying behavior in the brain.
Collapse
Affiliation(s)
- Adam R Hamilton
- Neuroscience Program, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
| | - Ian M Traniello
- Neuroscience Program, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
| | - Allyson M Ray
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
| | - Arminius S Caldwell
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
| | - Samuel A Wickline
- Department of Computation and Molecular Biophysics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Gene E Robinson
- Neuroscience Program, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Liu F, Shi T, Qi L, Su X, Wang D, Dong J, Huang ZY. lncRNA profile of Apis mellifera and its possible role in behavioural transition from nurses to foragers. BMC Genomics 2019; 20:393. [PMID: 31113365 PMCID: PMC6528240 DOI: 10.1186/s12864-019-5664-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/01/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The behavioural transition from nurses to foragers in honey bees is known to be affected by intrinsic and extrinsic factors, including colony demography, hormone levels, brain chemistry and structure, and gene expression in the brain. However, the molecular mechanism underlying this behavioural transition of honey bees is still obscure. RESULTS Through RNA sequencing, we performed a comprehensive analysis of lncRNAs and mRNAs in honey bee nurses and foragers. Nurses and foragers from both typical colonies and single-cohort colonies were used to prepare six libraries to generate 49 to 100 million clear reads per sample. We obtained 6863 novel lncRNAs, 1480 differentially expressed lncRNAs between nurses and foragers, and 9308 mRNAs. Consistent with previous studies, lncRNAs showed features distinct from mRNAs, such as shorter lengths, lower exon numbers, and lower expression levels compared to mRNAs. Bioinformatic analysis showed that differentially expressed genes were mostly involved in the regulation of sensory-related events, such as olfactory receptor activity and odorant binding, and enriched Wnt and FoxO signaling pathways. Moreover, we found that lncRNAs TCONS_00356023, TCONS_00357367, TCONS_00159909 and mRNAs dop1, Kr-h1 and HR38 may play important roles in behavioural transition in honey bees. CONCLUSION This study characterized the expression profile of lncRNAs in nurses and foragers and provided a framework for further study of the role of lncRNAs in honey bee behavioural transition.
Collapse
Affiliation(s)
- Fang Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230000 Anhui China
| | - Tengfei Shi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230000 Anhui China
| | - Lei Qi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230000 Anhui China
| | - Xin Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230000 Anhui China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021 Hangzhou China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021 Hangzhou China
| | - Zachary Y. Huang
- Department of Entomology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
21
|
Ramesh D, Brockmann A. Mass Spectrometric Quantification of Arousal Associated Neurochemical Changes in Single Honey Bee Brains and Brain Regions. ACS Chem Neurosci 2019; 10:1950-1959. [PMID: 30346719 DOI: 10.1021/acschemneuro.8b00254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Honey bee foragers show a strong diurnal rhythm of foraging activity, and such behavioral changes are likely under the control of specific neuromodulators. To identify and quantify neuromodulators involved in regulating rest and arousal in honey bees, we established a mass spectrometric method for quantifying 14 different neurochemicals and precursor molecules. We measured forager type and brain region specific differences in amine levels from individual honey bee brains and brain regions. The observed differences in amine levels between resting and aroused foragers resemble findings in other species indicating a conserved molecular mechanism by glutamate and GABA in regulating arousal. Subesophageal ganglion specific changes in the histaminergic system and global increases in aspartate during arousal suggest a possible role of histamine and aspartate in feeding and arousal, respectively. More aminergic systems were significantly affected due to arousal in nectar foragers than in pollen foragers, implying that forager phenotypes differ not only in their food preference but also in their neuromodulatory signaling systems (brain states). Finally, we found that neurotransmitter precursors were better at distinguishing brain states in the central brain, while their end products correlated with arousal associated changes in sensory regions like the optic and antennal lobes.
Collapse
Affiliation(s)
- Divya Ramesh
- National Centre for Biological Sciences, Bangalore 560065 Karnataka, India
| | - Axel Brockmann
- National Centre for Biological Sciences, Bangalore 560065 Karnataka, India
| |
Collapse
|
22
|
Kohlmeier P, Alleman AR, Libbrecht R, Foitzik S, Feldmeyer B. Gene expression is more strongly associated with behavioural specialization than with age or fertility in ant workers. Mol Ecol 2019; 28:658-670. [PMID: 30525254 DOI: 10.1111/mec.14971] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022]
Abstract
The ecological success of social insects is based on division of labour, not only between queens and workers, but also among workers. Whether a worker tends the brood or forages is influenced by age, fertility and nutritional status, with brood carers being younger, more fecund and more corpulent. Here, we experimentally disentangle behavioural specialization from age and fertility in Temnothorax longispinosus ant workers and analyse how these parameters are linked to whole-body gene expression. A total of 3,644 genes were associated with behavioural specialization which is ten times more than associated with age and 50 times more than associated with fertility. Brood carers were characterized by an upregulation of three Vitellogenin (Vg) genes, one of which, Vg-like A, was the most differentially expressed gene that was recently shown experimentally to control the switch from brood to worker care. The expression of Conventional Vg was unlinked to behavioural specialization, age or fertility, which contrasts to studies on bees and some ants. Diversity in Vg/Vg-like copy number and expression bias across ants supports subfunctionalization of Vg genes and indicates that some regulatory mechanisms of division of labour diverged in different ant lineages. Simulations revealed that our experimental dissociation of co-varying factors reduced transcriptomic noise, suggesting that confounding factors could potentially explain inconsistencies across transcriptomic studies of behavioural specialization in ants. Thus, our study reveals that worker gene expression is mainly linked to the worker's function for the colony and provides novel insights into the evolution of sociality in ants.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Austin R Alleman
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J. Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell Mol Life Sci 2019; 76:637-651. [PMID: 30349993 PMCID: PMC6514070 DOI: 10.1007/s00018-018-2948-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/31/2023]
Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.
Collapse
Affiliation(s)
- Frank M J Sommerlandt
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
24
|
Opachaloemphan C, Yan H, Leibholz A, Desplan C, Reinberg D. Recent Advances in Behavioral (Epi)Genetics in Eusocial Insects. Annu Rev Genet 2018; 52:489-510. [PMID: 30208294 DOI: 10.1146/annurev-genet-120116-024456] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eusocial insects live in societies in which distinct family members serve specific roles in maintaining the colony and advancing the reproductive ability of a few select individuals. Given the genetic similarity of all colony members, the diversity of morphologies and behaviors is surprising. Social communication relies on pheromones and olfaction, as shown by mutants of orco, the universal odorant receptor coreceptor, and through electrophysiological analysis of neuronal responses to pheromones. Additionally, neurohormonal factors and epigenetic regulators play a key role in caste-specific behavior, such as foraging and caste switching. These studies start to allow an understanding of the molecular mechanisms underlying social behavior and provide a technological foundation for future studies of eusocial insects. In this review, we highlight recent findings in eusocial insects that advance our understanding of genetic and epigenetic regulations of social behavior and provide perspectives on future studies using cutting-edge technologies.
Collapse
Affiliation(s)
- Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; ,
| | - Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; , .,Department of Biology, University of Florida, Gainesville, Florida 32611, USA; .,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; ,
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; , .,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
25
|
Shah A, Jain R, Brockmann A. Egr-1: A Candidate Transcription Factor Involved in Molecular Processes Underlying Time-Memory. Front Psychol 2018; 9:865. [PMID: 29928241 PMCID: PMC5997935 DOI: 10.3389/fpsyg.2018.00865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022] Open
Abstract
In honey bees, continuous foraging is accompanied by a sustained up-regulation of the immediate early gene Egr-1 (early growth response protein-1) and candidate downstream genes involved in learning and memory. Here, we present a series of feeder training experiments indicating that Egr-1 expression is highly correlated with the time and duration of training even in the absence of the food reward. Foragers that were trained to visit a feeder over the whole day and then collected on a day without food presentation showed Egr-1 up-regulation over the whole day with a peak expression around 14:00. When exposed to a time-restricted feeder presentation, either 2 h in the morning or 2 h in the evening, Egr-1 expression in the brain was up-regulated only during the hours of training. Foragers that visited a feeder in the morning as well as in the evening showed two peaks of Egr-1 expression. Finally, when we prevented time-trained foragers from leaving the colony using artificial rain, Egr-1 expression in the brains was still slightly but significantly up-regulated around the time of feeder training. In situ hybridization studies showed that active foraging and time-training induced Egr-1 up-regulation occurred in the same brain areas, preferentially the small Kenyon cells of the mushroom bodies and the antennal and optic lobes. Based on these findings we propose that foraging induced Egr-1 expression can get regulated by the circadian clock after time-training over several days and Egr-1 is a candidate transcription factor involved in molecular processes underlying time-memory.
Collapse
Affiliation(s)
- Aridni Shah
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bengaluru, India
| | - Rikesh Jain
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Axel Brockmann
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bengaluru, India
| |
Collapse
|
26
|
Kohlmeier P, Feldmeyer B, Foitzik S. Vitellogenin-like A-associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLoS Biol 2018; 16:e2005747. [PMID: 29874231 PMCID: PMC5991380 DOI: 10.1371/journal.pbio.2005747] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 11/22/2022] Open
Abstract
Division of labor and task specialization explain the success of human and insect societies. Social insect colonies are characterized by division of labor, with workers specializing in brood care early and foraging later in life. Theory posits that this task switching requires shifts in responsiveness to task-related cues, yet experimental evidence is weak. Here, we show that a Vitellogenin (Vg) ortholog identified in an RNAseq study on the ant T. longispinosus is involved in this process: using phylogenetic analyses of Vg and Vg-like genes, we firstly show that this candidate gene does not cluster with the intensively studied honey bee Vg but falls into a separate Vg-like A cluster. Secondly, an experimental knockdown of Vg-like A in the fat body caused a reduction in brood care and an increase in nestmate care in young ant workers. Nestmate care is normally exhibited by older workers. We demonstrate experimentally that this task switch is at least partly based on Vg-like A-associated shifts in responsiveness from brood to worker cues. We thus reveal a novel mechanism leading to early behavioral maturation via changes in social cue responsiveness mediated by Vg-like A and associated pathways, which proximately play a role in regulating division of labor.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Institute of Organismic and Molecular and Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular and Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
27
|
Poulain S, Kato S, Arnaud O, Morlighem JÉ, Suzuki M, Plessy C, Harbers M. NanoCAGE: A Method for the Analysis of Coding and Noncoding 5'-Capped Transcriptomes. Methods Mol Biol 2018; 1543:57-109. [PMID: 28349422 DOI: 10.1007/978-1-4939-6716-2_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transcripts in all eukaryotes are characterized by the 5'-end specific cap structure in mRNAs. Cap Analysis Gene Expression or CAGE makes use of these caps to specifically obtain cDNA fragments from the 5'-end of RNA and sequences those at high throughput for transcript identification and genome-wide mapping of transcription start sites for coding and noncoding genes. Here, we provide an improved version of our nanoCAGE protocol that has been developed for preparing CAGE libraries from as little as 50 ng of total RNA within three standard working days. Key steps in library preparation have been improved over our previously published protocol to obtain libraries having a good 5'-end selection and a more equal size distribution for higher sequencing efficiency on Illumina MiSeq and HiSeq sequencers. We recommend nanoCAGE as the method of choice for transcriptome profiling projects even from limited amounts of RNA, and as the best approach for genome-wide mapping of transcription start sites within promoter regions.
Collapse
Affiliation(s)
- Stéphane Poulain
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Sachi Kato
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Ophélie Arnaud
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jean-Étienne Morlighem
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Av. da Abolição, 3207-Meireles, Fortaleza, CE, 60165-081, Brazil
| | - Makoto Suzuki
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- DNAFORM, Inc., Leading Venture Plaza 2, 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0046, Japan
| | - Charles Plessy
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| | - Matthias Harbers
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- RIKEN Omics Science Center (OSC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
28
|
Singh AS, Shah A, Brockmann A. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway. INSECT MOLECULAR BIOLOGY 2018; 27:90-98. [PMID: 28987007 DOI: 10.1111/imb.12350] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In honey bees, continuous foraging at an artificial feeder induced a sustained upregulation of the immediate early genes early growth response protein 1 (Egr-1) and hormone receptor 38 (Hr38). This gene expression response was accompanied by an upregulation of several Egr-1 candidate downstream genes: ecdysone receptor (EcR), dopamine/ecdysteroid receptor (DopEcR), dopamine decarboxylase and dopamine receptor 2. Hr38, EcR and DopEcR are components of the ecdysteroid signalling pathway, which is highly probably involved in learning and memory processes in honey bees and other insects. Time-trained foragers still showed an upregulation of Egr-1 when the feeder was presented at an earlier time of the day, suggesting that the genomic response is more dependent on the food reward than training time. However, presentation of the feeder at the training time without food was still capable of inducing a transient increase in Egr-1 expression. Thus, learnt feeder cues, or even training time, probably affect Egr-1 expression. In contrast, whole brain Egr-1 expression changes did not differ between dancing and nondancing foragers. On the basis of our results we propose that food reward induced continuous foraging ultimately elicits a genomic response involving Egr-1 and Hr38 and their downstream genes. Furthermore this genomic response is highly probably involved in foraging-related learning and memory responses.
Collapse
Affiliation(s)
- A S Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - A Shah
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - A Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
29
|
Cervoni MS, Cardoso-Júnior CAM, Craveiro G, Souza ADO, Alberici LC, Hartfelder K. Mitochondrial capacity, oxidative damage and hypoxia gene expression are associated with age-related division of labor in honey bee ( Apis mellifera L.) workers. ACTA ACUST UNITED AC 2017; 220:4035-4046. [PMID: 28912256 DOI: 10.1242/jeb.161844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
During adult life, honey bee workers undergo a succession of behavioral states. Nurse bees perform tasks inside the nest, and when they are about 2-3 weeks old they initiate foraging. This switch is associated with alterations in diet, and with the levels of juvenile hormone and vitellogenin circulating in hemolymph. It is not clear whether this behavioral maturation involves major changes at the cellular level, such as mitochondrial activity and the redox environment in the head, thorax and abdomen. Using high-resolution respirometry, biochemical assays and RT-qPCR, we evaluated the association of these parameters with this behavioral change. We found that tissues from the head and abdomen of nurses have a higher oxidative phosphorylation capacity than those of foragers, while for the thorax we found the opposite situation. As higher mitochondrial activity tends to generate more H2O2, and H2O2 is known to stabilize HIF-1α, this would be expected to stimulate hypoxia signaling. The positive correlation that we observed between mitochondrial activity and hif-1α gene expression in abdomen and head tissue of nurses would be in line with this hypothesis. Higher expression of antioxidant enzyme genes was observed in foragers, which could explain their low levels of protein carbonylation. No alterations were seen in nitric oxide (NO) levels, suggesting that NO signaling is unlikely to be involved in behavioral maturation. We conclude that the behavioral change seen in honey bee workers is reflected in differential mitochondrial activities and redox parameters, and we consider that this can provide insights into the underlying aging process.
Collapse
Affiliation(s)
- Mário S Cervoni
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A M Cardoso-Júnior
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Giovana Craveiro
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Anderson de O Souza
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Luciane C Alberici
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
30
|
The Neuropeptide Corazonin Controls Social Behavior and Caste Identity in Ants. Cell 2017; 170:748-759.e12. [PMID: 28802044 DOI: 10.1016/j.cell.2017.07.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 05/23/2017] [Accepted: 07/13/2017] [Indexed: 11/21/2022]
Abstract
Social insects are emerging models to study how gene regulation affects behavior because their colonies comprise individuals with the same genomes but greatly different behavioral repertoires. To investigate the molecular mechanisms that activate distinct behaviors in different castes, we exploit a natural behavioral plasticity in Harpegnathos saltator, where adult workers can transition to a reproductive, queen-like state called gamergate. Analysis of brain transcriptomes during the transition reveals that corazonin, a neuropeptide homologous to the vertebrate gonadotropin-releasing hormone, is downregulated as workers become gamergates. Corazonin is also preferentially expressed in workers and/or foragers from other social insect species. Injection of corazonin in transitioning Harpegnathos individuals suppresses expression of vitellogenin in the brain and stimulates worker-like hunting behaviors, while inhibiting gamergate behaviors, such as dueling and egg deposition. We propose that corazonin is a central regulator of caste identity and behavior in social insects.
Collapse
|
31
|
Shpigler HY, Saul MC, Murdoch EE, Cash-Ahmed AC, Seward CH, Sloofman L, Chandrasekaran S, Sinha S, Stubbs LJ, Robinson GE. Behavioral, transcriptomic and epigenetic responses to social challenge in honey bees. GENES BRAIN AND BEHAVIOR 2017; 16:579-591. [DOI: 10.1111/gbb.12379] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 01/06/2023]
Affiliation(s)
- H. Y. Shpigler
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
| | - M. C. Saul
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
| | - E. E. Murdoch
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
| | - A. C. Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
| | - C. H. Seward
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
- Department of Cell and Developmental Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
| | - L. Sloofman
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
- Center for Biophysics and Quantitative Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
| | - S. Chandrasekaran
- Harvard Society of Fellows; Harvard University; Cambridge MA USA
- Faculty of Arts and Sciences; Harvard University; Cambridge MA USA
- Broad Institute of MIT and Harvard; Cambridge MA USA
- Department of Biomedical Engineering; University of Michigan; Ann Arbor MI USA
| | - S. Sinha
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
- Center for Biophysics and Quantitative Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
- Department of Computer Science; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
- Department of Entomology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
| | - L. J. Stubbs
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
- Department of Cell and Developmental Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
- Neuroscience Program; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
| | - G. E. Robinson
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
- Department of Entomology; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
- Neuroscience Program; University of Illinois at Urbana-Champaign (UIUC); Urbana IL USA
| |
Collapse
|
32
|
Badaoui B, Fougeroux A, Petit F, Anselmo A, Gorni C, Cucurachi M, Cersini A, Granato A, Cardeti G, Formato G, Mutinelli F, Giuffra E, Williams JL, Botti S. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae. PLoS One 2017; 12:e0173438. [PMID: 28350872 PMCID: PMC5370102 DOI: 10.1371/journal.pone.0173438] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/22/2017] [Indexed: 12/22/2022] Open
Abstract
Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N. ceranae infection increases the bees energy requirements and may contribute to their decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15 Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation suggesting that bees use a range of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii) down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings and (iv) down-regulation of odorant binding proteins.
Collapse
Affiliation(s)
- Bouabid Badaoui
- Parco Tecnologico Padano - CERSA, Integrative Biology Group, Lodi, Italy
| | | | | | - Anna Anselmo
- Parco Tecnologico Padano - CERSA, Integrative Biology Group, Lodi, Italy
| | - Chiara Gorni
- Parco Tecnologico Padano - CERSA, Integrative Biology Group, Lodi, Italy
| | - Marco Cucurachi
- Parco Tecnologico Padano - CERSA, Integrative Biology Group, Lodi, Italy
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Roma, Italy
| | - Anna Granato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Giusy Cardeti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Roma, Italy
| | - Giovanni Formato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Roma, Italy
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Elisabetta Giuffra
- Parco Tecnologico Padano - CERSA, Integrative Biology Group, Lodi, Italy
| | - John L. Williams
- Davies Research Centre, University of Adelaide, Roseworthy, South Australia, Australia
| | - Sara Botti
- Parco Tecnologico Padano - CERSA, Integrative Biology Group, Lodi, Italy
- * E-mail:
| |
Collapse
|
33
|
Trapp J, McAfee A, Foster LJ. Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees. Mol Ecol 2017; 26:718-739. [DOI: 10.1111/mec.13986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Judith Trapp
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| | - Alison McAfee
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
34
|
Toth AL, Rehan SM. Molecular Evolution of Insect Sociality: An Eco-Evo-Devo Perspective. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:419-442. [PMID: 27912247 DOI: 10.1146/annurev-ento-031616-035601] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The evolution of eusociality is a perennial issue in evolutionary biology, and genomic advances have fueled steadily growing interest in the genetic changes underlying social evolution. Along with a recent flurry of research on comparative and evolutionary genomics in different eusocial insect groups (bees, ants, wasps, and termites), several mechanistic explanations have emerged to describe the molecular evolution of eusociality from solitary behavior. These include solitary physiological ground plans, genetic toolkits of deeply conserved genes, evolutionary changes in protein-coding genes, cis regulation, and the structure of gene networks, epigenetics, and novel genes. Despite this proliferation of ideas, there has been little synthesis, even though these ideas are not mutually exclusive and may in fact be complementary. We review available data on molecular evolution of insect sociality and highlight key biotic and abiotic factors influencing social insect genomes. We then suggest both phylogenetic and ecological evolutionary developmental biology (eco-evo-devo) perspectives for a more synthetic view of molecular evolution in insect societies.
Collapse
Affiliation(s)
- Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011;
- Department of Entomology, Iowa State University, Ames, Iowa 50011
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire 03824;
| |
Collapse
|
35
|
Gehring KB, Heufelder K, Feige J, Bauer P, Dyck Y, Ehrhardt L, Kühnemund J, Bergmann A, Göbel J, Isecke M, Eisenhardt D. Involvement of phosphorylated Apis mellifera CREB in gating a honeybee's behavioral response to an external stimulus. Learn Mem 2016; 23:195-207. [PMID: 27084927 PMCID: PMC4836635 DOI: 10.1101/lm.040964.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/23/2016] [Indexed: 11/24/2022]
Abstract
The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees(Apis mellifera)we recently demonstrated a particular high abundance of the phosphorylated honeybee CREB homolog (pAmCREB) in the central brain and in a subpopulation of mushroom body neurons. We hypothesize that these high pAmCREB levels are related to learning and memory formation. Here, we tested this hypothesis by analyzing brain pAmCREB levels in classically conditioned bees and bees experiencing unpaired presentations of conditioned stimulus (CS) and unconditioned stimulus (US). We demonstrate that both behavioral protocols display differences in memory formation but do not alter the level of pAmCREB in bee brains directly after training. Nevertheless, we report that bees responding to the CS during unpaired stimulus presentations exhibit higher levels of pAmCREB than nonresponding bees. In addition, Trichostatin A, a histone deacetylase inhibitor that is thought to enhance histone acetylation by CREB-binding protein, increases the bees' CS responsiveness. We conclude that pAmCREB is involved in gating a bee's behavioral response driven by an external stimulus.
Collapse
Affiliation(s)
- Katrin B Gehring
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Karin Heufelder
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Janina Feige
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Paul Bauer
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Yan Dyck
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Lea Ehrhardt
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Johannes Kühnemund
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Anja Bergmann
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Josefine Göbel
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Marlene Isecke
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| | - Dorothea Eisenhardt
- Freie Universität Berlin, Institut für Biologie - Neurobiologie, D-14195 Berlin, Germany
| |
Collapse
|
36
|
Rasmussen EMK, Vågbø CB, Münch D, Krokan HE, Klungland A, Amdam GV, Dahl JA. DNA base modifications in honey bee and fruit fly genomes suggest an active demethylation machinery with species- and tissue-specific turnover rates. Biochem Biophys Rep 2016; 6:9-15. [PMID: 28955859 PMCID: PMC5600429 DOI: 10.1016/j.bbrep.2016.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
Well-known epigenetic DNA modifications in mammals include the addition of a methyl group and a hydroxyl group to cytosine, resulting in 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) respectively. In contrast, the abundance and the functional implications of these modifications in invertebrate model organisms such as the honey bee (Apis mellifera) and the fruit fly (Drosophila melanogaster) are not well understood. Here we show that both adult honey bees and fruit flies contain 5mC and also 5hmC. Using a highly sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) technique, we quantified 5mC and 5hmC in different tissues of adult honey bee worker castes and in adult fruit flies. A comparison of our data with reports from human and mouse shed light on notable differences in 5mC and 5hmC levels between tissues and species. Reporting cytosine modifications in uncharacterized tissues, phenotypes and species. Quantification of 5mC and 5hmC suggests species-specific roles and turnover. Low levels of 5hmC relative to 5mC and cytosine in honey bees compared to mammals. Honey bee abdominal tissues are richer in5hmC than the brain. We found a higher 5hmC to 5mC ratio in fruit flies as compared to the honey bee.
Collapse
Affiliation(s)
- Erik M K Rasmussen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway
| | - Cathrine B Vågbø
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Daniel Münch
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway
| | - Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Arne Klungland
- Department of Microbiology, Division of diagnostics and intervention, Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, NO-0027 Oslo, Norway
| | - Gro V Amdam
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - John Arne Dahl
- Department of Microbiology, Division of diagnostics and intervention, Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, NO-0027 Oslo, Norway
| |
Collapse
|
37
|
Kapheim KM. Genomic sources of phenotypic novelty in the evolution of eusociality in insects. CURRENT OPINION IN INSECT SCIENCE 2016; 13:24-32. [PMID: 27436550 DOI: 10.1016/j.cois.2015.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/13/2015] [Accepted: 10/28/2015] [Indexed: 06/06/2023]
Abstract
Genomic resources are now available for closely related species that vary in social behavior, providing insight on the genomics of social evolution. Changes in the architecture of gene regulatory networks likely influence the evolutionary trajectory of social traits. Evolutionarily novel genes are likely important in the evolution of social diversity among insects, but it is unclear whether new genes played a driving role in the advent or elaboration of eusociality or if they were instead a result of other genomic features of eusociality. The worker phenotype appears to be the center of genetic novelty, but the mechanisms for this remain unresolved. Future studies are needed to understand how genetic novelty arises, becomes incorporated into existing gene regulatory networks, and the effects this has on the evolution of social traits in closely related social and solitary species.
Collapse
Affiliation(s)
- Karen M Kapheim
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan UT 84322, USA.
| |
Collapse
|
38
|
Kulakovskiy IV, Vorontsov IE, Yevshin IS, Soboleva AV, Kasianov AS, Ashoor H, Ba-Alawi W, Bajic VB, Medvedeva YA, Kolpakov FA, Makeev VJ. HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models. Nucleic Acids Res 2016; 44:D116-25. [PMID: 26586801 PMCID: PMC4702883 DOI: 10.1093/nar/gkv1249] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023] Open
Abstract
Models of transcription factor (TF) binding sites provide a basis for a wide spectrum of studies in regulatory genomics, from reconstruction of regulatory networks to functional annotation of transcripts and sequence variants. While TFs may recognize different sequence patterns in different conditions, it is pragmatic to have a single generic model for each particular TF as a baseline for practical applications. Here we present the expanded and enhanced version of HOCOMOCO (http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco10), the collection of models of DNA patterns, recognized by transcription factors. HOCOMOCO now provides position weight matrix (PWM) models for binding sites of 601 human TFs and, in addition, PWMs for 396 mouse TFs. Furthermore, we introduce the largest up to date collection of dinucleotide PWM models for 86 (52) human (mouse) TFs. The update is based on the analysis of massive ChIP-Seq and HT-SELEX datasets, with the validation of the resulting models on in vivo data. To facilitate a practical application, all HOCOMOCO models are linked to gene and protein databases (Entrez Gene, HGNC, UniProt) and accompanied by precomputed score thresholds. Finally, we provide command-line tools for PWM and diPWM threshold estimation and motif finding in nucleotide sequences.
Collapse
Affiliation(s)
- Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, GSP-1, Vavilova 32, Moscow, Russia Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, GSP-1, Gubkina 3, Moscow, Russia
| | - Ilya E Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, GSP-1, Gubkina 3, Moscow, Russia
| | - Ivan S Yevshin
- Design Technological Institute of Digital Techniques, Siberian Branch of the Russian Academy of Sciences, 630090, Academician Rzhanov 6, Novosibirsk, Russia Institute of Systems Biology Ltd, 630112, office 901, Krasina 54, Novosibirsk, Russia
| | - Anastasiia V Soboleva
- Moscow Institute of Physics and Technology, 141700, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia
| | - Artem S Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, GSP-1, Gubkina 3, Moscow, Russia
| | - Haitham Ashoor
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Saudi Arabia
| | - Wail Ba-Alawi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Saudi Arabia
| | - Yulia A Medvedeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, GSP-1, Gubkina 3, Moscow, Russia Center for Bioengineering, Russian Academy of Sciences, 117312, 60-letiya Oktyabrya 7/2, Moscow, Russia
| | - Fedor A Kolpakov
- Design Technological Institute of Digital Techniques, Siberian Branch of the Russian Academy of Sciences, 630090, Academician Rzhanov 6, Novosibirsk, Russia Institute of Systems Biology Ltd, 630112, office 901, Krasina 54, Novosibirsk, Russia
| | - Vsevolod J Makeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, GSP-1, Vavilova 32, Moscow, Russia Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, GSP-1, Gubkina 3, Moscow, Russia Moscow Institute of Physics and Technology, 141700, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
39
|
Gehring KB, Heufelder K, Kersting I, Eisenhardt D. Abundance of phosphorylatedApis melliferaCREB in the honeybee's mushroom body inner compact cells varies with age. J Comp Neurol 2015; 524:1165-80. [DOI: 10.1002/cne.23894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Katrin B. Gehring
- Institute for Biology-Neurobiology; Freie Universität Berlin; D-14195 Berlin Germany
| | - Karin Heufelder
- Institute for Biology-Neurobiology; Freie Universität Berlin; D-14195 Berlin Germany
| | - Isabella Kersting
- Institute for Biology-Neurobiology; Freie Universität Berlin; D-14195 Berlin Germany
| | - Dorothea Eisenhardt
- Institute for Biology-Neurobiology; Freie Universität Berlin; D-14195 Berlin Germany
| |
Collapse
|