1
|
Golvari P, Alkameh K, Rahmani A, Jurca T, Kuebler SM. Pt-Coated Silicon Nanoparticles: An Investigation into the Hydrosilylation on Hydrogen-Terminated Silicon Surfaces Using Pt(dvs). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37326507 DOI: 10.1021/acs.langmuir.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The interaction of hydrogen-terminated silicon nanoparticles (H-SiNPs) with Karstedt's catalyst at various temperatures was investigated. The results indicate that at room temperature, the oxidative addition of Pt(0) onto H-SiNPs is irreversible, and the catalyst is not eliminated from the surface of H-SiNPs, enabling a facile synthesis of Pt-loaded SiNPs that can undergo ligand exchange. The nature of the Pt-on-Si ensemble is characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Reaction conditions that enable effective hydrosilylation are discussed. It is found that higher temperatures favor reductive elimination of the catalyst and hydrosilylation of 1-octene onto the surface of the H-SiNPs.
Collapse
Affiliation(s)
- Pooria Golvari
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Khaled Alkameh
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Azina Rahmani
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida 32826, United States
- Renewable Energy and Chemical Transformations Faculty Cluster (REACT), University of Central Florida, Orlando, Florida 32816, United States
| | - Stephen M Kuebler
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
2
|
Wang Z, Tan J, Yang Z, Luo Y, Ye S. Observing Two-Dimensional Spontaneous Reaction between a Silicon Electrode and a LiPF 6-Based Electrolyte In Situ and in Real Time. J Phys Chem Lett 2022; 13:3224-3229. [PMID: 35377653 DOI: 10.1021/acs.jpclett.2c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional spontaneous reactions between an electrode and an electrolyte are very important for the formation of a solid electrolyte interphase (SEI) but difficult to study because studying such reactions requires surface/interface sensitive techniques with sufficiently structural and temporal resolutions. In this study, we have applied femtosecond broadband sum-frequency generation vibrational spectroscopy (SFG-VS) to investigate the interaction between a silicon electrode and a LiPF6-based diethyl carbonate electrolyte solution in situ and in real time. We found that two kinds of diethyl carbonate species are present on the silicon surface and their C═O stretching aligns in opposite directions. Intrinsically spontaneous chemical reactions between silicon electrodes and a LiPF6 electrolyte solution are observed. The reactions generate silicon hydride and cause corrosion of the silicon electrodes. Coating of the silicon surface with a poly(vinyl alcohol) layer can effectively retard and attenuate these reactions. This work demonstrates that SFG-VS can provide a unique and powerful state-of-the-art tool for elucidating the molecular mechanisms of SEI formation.
Collapse
Affiliation(s)
- Zhuo Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhe Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Zida SI, Lin YD, Khung YL. Sonochemical Reaction of Bifunctional Molecules on Silicon (111) Hydride Surface. Molecules 2021; 26:6166. [PMID: 34684747 PMCID: PMC8538154 DOI: 10.3390/molecules26206166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
While the sonochemical grafting of molecules on silicon hydride surface to form stable Si-C bond via hydrosilylation has been previously described, the susceptibility towards nucleophilic functional groups during the sonochemical reaction process remains unclear. In this work, a competitive study between a well-established thermal reaction and sonochemical reaction of nucleophilic molecules (cyclopropylamine and 3-Butyn-1-ol) was performed on p-type silicon hydride (111) surfaces. The nature of surface grafting from these reactions was examined through contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Cyclopropylamine, being a sensitive radical clock, did not experience any ring-opening events. This suggested that either the Si-H may not have undergone homolysis as reported previously under sonochemical reaction or that the interaction to the surface hydride via a lone-pair electron coordination bond was reversible during the process. On the other hand, silicon back-bond breakage and subsequent surface roughening were observed for 3-Butyn-1-ol at high-temperature grafting (≈150 °C). Interestingly, the sonochemical reaction did not produce appreciable topographical changes to surfaces at the nano scale and the further XPS analysis may suggest Si-C formation. This indicated that while a sonochemical reaction may be indifferent towards nucleophilic groups, the surface was more reactive towards unsaturated carbons. To the best of the author's knowledge, this is the first attempt at elucidating the underlying reactivity mechanisms of nucleophilic groups and unsaturated carbon bonds during sonochemical reaction of silicon hydride surfaces.
Collapse
Affiliation(s)
- Serge Ismael Zida
- Ph.D. Program of Electrical and Communications Engineering, College of Information and Electrical Engineering, Feng Chia University, No.100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan; (S.I.Z.); (Y.D.L.)
| | - Yue-Der Lin
- Ph.D. Program of Electrical and Communications Engineering, College of Information and Electrical Engineering, Feng Chia University, No.100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan; (S.I.Z.); (Y.D.L.)
- Department of Automatic Control Engineering, Feng Chia University, No.100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| | - Yit Lung Khung
- Department of Biological Science and Technology, China Medical University, No.100 Jingmao 1st Road, Beitun District, Taichung City 406, Taiwan
| |
Collapse
|
4
|
Rahpeima S, Dief EM, Ciampi S, Raston CL, Darwish N. Impermeable Graphene Oxide Protects Silicon from Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38799-38807. [PMID: 34342425 DOI: 10.1021/acsami.1c06495] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The presence of a natural silicon oxide (SiOx) layer over the surface of silicon (Si) has been a roadblock for hybrid semiconductor and organic electronics technology. The presence of an insulating oxide layer is a limiting operational factor, which blocks charge transfer and therefore electrical signals for a range of applications. Etching the SiOx layer by fluoride solutions leaves a reactive Si-H surface that is only stable for few hours before it starts reoxidizing under ambient conditions. Controlled passivation of silicon is also of key importance for improving Si photovoltaic efficiency. Here, we show that a thin layer of graphene oxide (GOx) prevents Si surfaces from oxidation under ambient conditions for more than 30 days. In addition, we show that the protective GOx layer can be modified with molecules enabling a functional surface that allows for further chemical conjugation or connections with upper electrodes, while preserving the underneath Si in a nonoxidized form. The GOx layer can be switched electrochemically to reduced graphene oxide, allowing the development of a dynamic material for molecular electronics technologies. These findings demonstrate that 2D materials are alternatives to organic self-assembled monolayers that are typically used to protect and tune the properties of Si and open a realm of possibilities that combine Si and 2D materials technologies.
Collapse
Affiliation(s)
- Soraya Rahpeima
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Perth, Western Australia 6102, Australia
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Essam M Dief
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| |
Collapse
|
5
|
Spontaneous Grafting of OH-Terminated Molecules on Si−H Surfaces via Si–O–C Covalent Bonding. SURFACES 2021. [DOI: 10.3390/surfaces4010010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The surface functionalization of oxide-free hydrogen-terminated silicon (Si−H) enables predictably tuning its electronic properties, by incorporating tailored functionality for applications such as photovoltaics, biosensing and molecular electronics devices. Most of the available chemical functionalization approaches require an external radical initiator, such as UV light, heat or chemical reagents. Here, we report forming organic monolayers on Si–H surfaces using molecules comprising terminal alcohol (–OH) groups. Self-assembled monolayer (SAM) formation is spontaneous, requires no external stimuli–and yields Si–O–C covalently bound monolayers. The SAMs were characterized by X-ray photoelectron spectroscopy (XPS) to determine the chemical bonding, by X-ray reflectometry (XRR) to determine the monolayers thicknesses on the surface and by atomic force microscopy (AFM) to probe surface topography and surface roughness. The redox activity and the electrochemical properties of the SAMs were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The availability and the ease of incorporating OH groups in organic molecules, makes this spontaneous grafting as a reliable method to attach molecules to Si surfaces in applications ranging from sensing to molecular electronics where incorporating radical initiator setups is not accessible.
Collapse
|
6
|
Ching JY, Huang BJ, Hsu YT, Khung YL. Anti-Adhesion Behavior from Ring-Strain Amine Cyclic Monolayers Grafted on Silicon (111) Surfaces. Sci Rep 2020; 10:8758. [PMID: 32472042 PMCID: PMC7260185 DOI: 10.1038/s41598-020-65710-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/07/2020] [Indexed: 01/09/2023] Open
Abstract
In this manuscript, a series of amine tagged short cyclic molecules (cyclopropylamine, cyclobutylamine, cyclopentylamine and cyclohexylamine) were thermally grafted onto p-type silicon (111) hydride surfaces via nucleophilic addition. The chemistries of these grafting were verified via XPS, AFM and sessile droplet measurements. Confocal microscopy and cell viability assay was performed on these surfaces incubated for 24 hours with triple negative breast cancer cells (MDA-MB 231), gastric adenocarcinoma cells (AGS) endometrial adenocarcinoma (Hec1A). All cell types had shown a significant reduction when incubated on these ring-strain cyclic monolayer surfaces than compared to standard controls. The expression level of focal adhesion proteins (vinculin, paxilin, talin and zyxin) were subsequently quantified for all three cell types via qPCR analysis. Cells incubate on these surface grafting were observed to have reduced levels of adhesion protein expression than compared to positive controls (collagen coating and APTES). A potential application of these anti-adhesive surfaces is the maintenance of the chondrocyte phenotype during in-vitro cell expansion. Articular chondrocytes cultured for 6 days on ring strained cyclopropane-modified surfaces was able to proliferate but had maintained a spheroid/aggregated phenotype with higher COL2A1 and ACAN gene expression. Herein, these findings had help promote grafting of cyclic monolayers as an viable alternative for producing antifouling surfaces.
Collapse
Affiliation(s)
- Jing Yuan Ching
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Brian J Huang
- Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40447, Taiwan.,Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yu-Ting Hsu
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yit Lung Khung
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan.
| |
Collapse
|
7
|
Physicochemical characterization of albumin immobilized on different TiO2 surfaces for use in implant materials. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Abdelhameed M, Aly S, Lant JT, Zhang X, Charpentier P. Energy/Electron Transfer Switch for Controlling Optical Properties of Silicon Quantum Dots. Sci Rep 2018; 8:17068. [PMID: 30459354 PMCID: PMC6244374 DOI: 10.1038/s41598-018-35201-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022] Open
Abstract
The superior optical properties of Silicon Quantum Dots (SQDs) have made them of increasing interest for a variety of biological and opto-electronic applications. The surface functionalization of the SQDs with aromatic ligands plays a key role in controlling their optical properties due to the interaction of the ligands with the electronic wave function of SQDs. However, there is limited reports in literature describing the impact of spacer groups connecting the aromatic chromophore to SQDs on the optical properties of the SQDs. Herein, we report the synthesis of two SQDs assemblies (1.6 nm average diameter) functionalized with perylene-3,4,9,10-tetracarboxylic acid diimide (PDI) chromophore through N-propylurea and propylamine spacers. Depending on the nature of the spacer, the photophysical measurements provide clear evidence for efficient energy and/or electron transfer between the SQDs and PDI. Energy transfer was confirmed to be the operative process when propylurea spacer was used, in which the rate was estimated to be ~2 × 109 s-1. On the other hand, the propylamine spacer was found to facilitate electron transfer process within the SQDs assembly. To illustrate functionality, the water soluble SQD-N-propylurea-PDI assembly was proven to be nontoxic and efficient for fluorescent imaging of embryonic kidney HEK293 cells and human bone cancerous U2OS cells.
Collapse
Affiliation(s)
- Mohammed Abdelhameed
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Shawkat Aly
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Jeremy T Lant
- Department of Biochemistry, Western University, London, Ontario, N6A 5B9, Canada
| | - Xiaoran Zhang
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada
| | - Paul Charpentier
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada.
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, N6A 5B9, Canada.
| |
Collapse
|
9
|
Soliman AIA, Utsunomiya T, Ichii T, Sugimura H. 1,2-Epoxyalkane: Another Precursor for Fabricating Alkoxy Self-Assembled Monolayers on Hydrogen-Terminated Si(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13162-13170. [PMID: 30299104 DOI: 10.1021/acs.langmuir.8b02717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work describes the UV alkoxylation of a series of 1,2-epoxyalkanes on the hydrogen-terminated silicon (H-Si) substrate. The formation of alkoxy self-assembled monolayers (SAMs) and the nature of bonding at the surface of H-Si were examined using water contact angle goniometer, spectroscopic ellipsometer, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy. UV exposure to 1,2-epoxyalkane mesitylene solution for 60 min formed alkoxy-SAMs onto H-Si with hydrophobic properties. The local molecular environment of the alkyl chains transitioned from a disordered, liquid-like state to an ordered, crystalline-like structure with increasing the chain length. XPS and FTIR indicated that the reaction of H-Si with 1,2-epoxyalkane produced Si-O-C linkages. The Si-H bond homolysis and electron/hole were the plausible mechanistic routes for the grafting of 1,2-epoxyalkanes.
Collapse
Affiliation(s)
- Ahmed I A Soliman
- Department of Materials Science and Engineering , Kyoto University , Yoshida-Hommachi , Sakyo-ku, Kyoto 606-8501 , Japan
- Chemistry Department, Faculty of Science , Assiut University , Assiut 71516 , Egypt
| | - Toru Utsunomiya
- Department of Materials Science and Engineering , Kyoto University , Yoshida-Hommachi , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Takashi Ichii
- Department of Materials Science and Engineering , Kyoto University , Yoshida-Hommachi , Sakyo-ku, Kyoto 606-8501 , Japan
| | - Hiroyuki Sugimura
- Department of Materials Science and Engineering , Kyoto University , Yoshida-Hommachi , Sakyo-ku, Kyoto 606-8501 , Japan
| |
Collapse
|
10
|
XPS Analysis of 2- and 3-Aminothiophenol Grafted on Silicon (111) Hydride Surfaces. MOLECULES (BASEL, SWITZERLAND) 2018; 23:molecules23102712. [PMID: 30347868 PMCID: PMC6222732 DOI: 10.3390/molecules23102712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022]
Abstract
Following on from our previous study on the resonance/inductive structures of ethynylaniline, this report examines similar effects arising from resonance structures with aromatic aminothiophenol with dual electron-donating substituents. In brief, 2- and 3-aminothiophenol were thermally grafted on silicon (111) hydride substrate at 130 °C under nonpolar aprotic mesitylene. From the examination of high resolution XPS Si2p, N1s, and S2p spectrum, it was noticed that there was a strong preference of NH₂ over SH to form Si⁻N linkage on the silicon hydride surface for 2-aminothiophenol. However, for 3-aminothiophenol, there was a switch in reactivity of the silicon hydride toward SH group. This was attributed to the antagonistic and cooperative resonance effects for 2- and 3-aminothiophenol, respectively. The data strongly suggested that the net resonance of the benzylic-based compound could have played an important role in the net distribution of negative charge along the benzylic framework and subsequently influenced the outcome of the surface reaction. To the best of the authors' knowledge, this correlation between dual electron-donating substituents and the outcome of the nucleophilic addition toward silicon hydride surfaces has not been described before in literature.
Collapse
|
11
|
Tung J, Tew LS, Coluccini C, Lin YD, Khung YL. Grafting Behavior for the Resonating Variants of Ethynylaniline on Hydrogenated Silicon (100) Surfaces under Thermal Hydrosilylation. Chemistry 2018; 24:13270-13277. [PMID: 29932257 DOI: 10.1002/chem.201802003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/20/2018] [Indexed: 11/09/2022]
Abstract
This work reports the outcome of thermal grafting of 2-ethynylaniline, 3-ethynylaniline, and 4-ethynylaniline on a hydrogenated Si(100) surface. Using high-resolution XPS and AFM, it was found that the grafting of these compounds could be attributed to resonating structures that arise from the position of an electron-donating NH2 group and an electron-withdrawing acetylene group. For the ortho- and para-positioned acetylene group, surface reactions were observed to proceed predominantly via the acetylene to form a Si-C bond, whereas the meta-positioned acetylene group was found to have undergone nucleophilic grafting through the NH2 group onto the silicon surface to form a Si-N bond. Furthermore, a tert-butoxycarbonyl-protected derivative for a meta-positioned ethynylaniline was synthesized to exclusively force the reaction to react with the acetylene group and subsequent analysis confirmed that unprotected 3-ethynylaniline had indeed reacted through the nucleophilic NH2 group as hypothesized. Thus, for the first time, the interplay between resonance structures and their effects on silicon surface modifications were systematically catalogued.
Collapse
Affiliation(s)
- Joline Tung
- College of Arts and Sciences, University of North Carolina at Chapel Hill (UNC), Chapel Hill, NC, 27514, USA
| | - Lih Shin Tew
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200, Kepala Batas Pulau Pinang, Malaysia
| | - Carmine Coluccini
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| | - Yue-Der Lin
- Department of Automatic Control Engineering, Feng Chia University, No. 100, Wenhwa Rd., Seatwen, Taichung, Taiwan
| | - Yit Lung Khung
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
12
|
Ching JY, Lee CH, Khung YL. Bioactivating Silicon (100) Surfaces with Novel UV Grafting of Cyclopropylamine for Promotion of Cell Adhesion. MATERIALS 2018; 11:ma11050713. [PMID: 29724039 PMCID: PMC5978090 DOI: 10.3390/ma11050713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/23/2018] [Accepted: 04/29/2018] [Indexed: 01/16/2023]
Abstract
In this report, utraviolent (UV) photoionization of cyclopropylamine on silicon (100) hydride was employed to examine interfacing with three different epithelial cell types (MDA-MB 231, AGS and HEC1A). The cellular viability using this novel methodology had been quantified to evaluate the bioactivating potential of this ring-opening chemistry when compared to standardized controls (aminopropyltriethoxylamine, collagen and poly-L lysine). X-ray photospectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize surface chemistry composition, while cell viability and confocal microscopy after 24 h of incubation were performed. Based on the results acquired from this novel ring-opening metastasis process, the promotion of cell adhesion and viability was found to be higher using this chemistry when compared to other conventional control groups, even for the collagen coating, without any observable issues of cytotoxicity.
Collapse
Affiliation(s)
- Jing Yuan Ching
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 404, Taiwan.
| | - Chieh-Hua Lee
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 404, Taiwan.
| | - Yit Lung Khung
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 404, Taiwan.
| |
Collapse
|
13
|
Tung J, Ching JY, Ng YM, Tew LS, Khung YL. Grafting of Ring-Opened Cyclopropylamine Thin Films on Silicon (100) Hydride via UV Photoionization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31083-31094. [PMID: 28832115 DOI: 10.1021/acsami.7b08343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The grafting of cyclopropylamine onto a silicon (100) hydride (Si-H) surface via a ring-opening mechanism using UV photoionization is described here. In brief, radicals generated from the Si-H surface upon UV irradiation were found to behave in classical hydrogen abstraction theory manner by which the distal amine group was first hydrogen abstracted and the radical propagated down to the cyclopropane moiety. This subsequently liberated the strained bonds of the cyclopropane group and initiated the surface grafting process, producing a thin film approximately 10-15 nm in height. Contact angle measurements also showed that such photoionization irradiation had yielded an extremely hydrophilic surface (∼21.3°) and X-ray photoelectron spectroscopy also confirmed the coupling was through the Si-C linkage. However, when the surface underwent high-temperature hydrosilylation (>160 °C), the reaction proceeded predominantly through the nucleophilic NH2 group to form a Si-N linkage to the surface. This rendered the surface hydrophobic and hence suggested that the Si-H homolysis model may not be the main process. To the best of our knowledge, this was the first attempt reported in the literature to use photoionization to directly graft cyclopropylamine onto a silicon surface and in due course generate a highly rich NH-terminated surface that was found to be highly bioactive in promoting cell viability on the basis of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide studies.
Collapse
Affiliation(s)
- J Tung
- College of Arts and Sciences, University of North Carolina (UNC) at Chapel Hill , Chapel Hill, North Carolina 27514, United States
| | - J Y Ching
- Institute of New Drug Development, China Medical University , No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan, Republic of China
| | - Y M Ng
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia , 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - L S Tew
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia , 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Y L Khung
- Institute of New Drug Development, China Medical University , No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan, Republic of China
| |
Collapse
|
14
|
Conformal carbon layer coating on well-dispersed Si nanoparticles on graphene oxide and the enhanced electrochemical performance. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Carbone M. α-Amino Thiophene on Si(100)2 × 1: Adsorption and transition states investigated by van der Waals corrected DFT and CI-NEB. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617400016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The adsorption of [Formula: see text]-AminoTiophene on Si(100)2[Formula: see text][Formula: see text][Formula: see text]1 was investigated by van der Waals corrected DFT and climbing image nudged-elastic band, in view of potential applications in silicon-based technologies. The overall scenario indicates that dissociative states are more favorable than the molecular ones, the one occurring through N–C bond breakage and Si–N and Si–C bond formation, having the largest adsorption energy (2.71[Formula: see text]eV). Furthermore, this configuration is also kinetically easily accessible, being connecting to one of the physisorbed states (Phys1) by a nearly barrierless transition. Also the molecular states are relatively easily kinetically accessible, with transition barriers from the corresponding physisorbed states in the 0.05–0.30[Formula: see text]eV range. At variance with this, the transitions to the dissociative state characterized by N–H bond breakage and Si–N and Si–H bond formation (N–H Diss) either from physisorbed or from molecular states are all significantly higher, i.e. in the 0.63–2.70[Formula: see text]eV range. Finally, the effects of the coverage on the adsorption energy were evaluated for the N–H Diss configuration and indicating a gain, whose extent depends both on the coverage and on the surface arrangement, i.e. whether cis or trans. The trend is different if the vdW forces are excluded.
Collapse
Affiliation(s)
- Marilena Carbone
- Department of Chemical Sciences and Technologies, University Tor Vergata, Via della Ricerca Scientifica, 1 00133 Roma, Italy
| |
Collapse
|
16
|
Zhang R, Zhang L, Luo G, Wang J, Zhang J, Li M, Shen Q. Facile Fabrication and Enhanced Performances of Epoxy Resin-modified MTMS System Multifunctional Graded Coating. CHEM LETT 2016. [DOI: 10.1246/cl.160316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Purkait TK, Iqbal M, Islam MA, Mobarok MH, Gonzalez CM, Hadidi L, Veinot JGC. Alkoxy-Terminated Si Surfaces: A New Reactive Platform for the Functionalization and Derivatization of Silicon Quantum Dots. J Am Chem Soc 2016; 138:7114-20. [DOI: 10.1021/jacs.6b03155] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tapas K. Purkait
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Muhammad Iqbal
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | - Md Hosnay Mobarok
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | - Lida Hadidi
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | |
Collapse
|
18
|
O'Connell J, Collins G, McGlacken GP, Duffy R, Holmes JD. Monolayer Doping of Si with Improved Oxidation Resistance. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4101-4108. [PMID: 26812170 DOI: 10.1021/acsami.5b11731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this article, the functionalization of planar silicon with arsenic- and phosphorus-based azides was investigated. Covalently bonded and well-ordered alkyne-terminated monolayers were prepared from a range of commercially available dialkyne precursors using a well-known thermal hydrosilylation mechanism to form an acetylene-terminated monolayer. The terminal acetylene moieties were further functionalized through the application of copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions between dopant-containing azides and the terminal acetylene groups. The introduction of dopant molecules via this method does not require harsh conditions typically employed in traditional monolayer doping approaches, enabling greater surface coverage with improved resistance toward reoxidation. X-ray photoelectron spectroscopy studies showed successful dialkyne incorporation with minimal Si surface oxidation, and monitoring of the C 1s and N 1s core-level spectra showed successful azide-alkyne cycloaddition. Electrochemical capacitance-voltage measurements showed effective diffusion of the activated dopant atoms into the Si substrates.
Collapse
Affiliation(s)
- John O'Connell
- Centre for Research on Adaptive Nanostructures and Nanodevices AMBER@CRANN, Trinity College Dublin , Dublin 2, Ireland
| | - Gillian Collins
- Centre for Research on Adaptive Nanostructures and Nanodevices AMBER@CRANN, Trinity College Dublin , Dublin 2, Ireland
| | | | | | - Justin D Holmes
- Centre for Research on Adaptive Nanostructures and Nanodevices AMBER@CRANN, Trinity College Dublin , Dublin 2, Ireland
| |
Collapse
|