1
|
Aguillon R, Rinsky M, Simon-Blecher N, Doniger T, Appelbaum L, Levy O. CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues. eLife 2024; 12:RP89499. [PMID: 38743049 PMCID: PMC11093582 DOI: 10.7554/elife.89499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian Nematostella vectensis, pacemaker gene transcript levels, including NvClk (the Clock ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a NvClk allele mutant (NvClkΔ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, NvClkΔ/Δ polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the NvClkΔ/Δ polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the Clock gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.
Collapse
Affiliation(s)
- Raphael Aguillon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat GanIsrael
- The Multidisciplinary Brain Research Center, Bar-Ilan UniversityRamat GanIsrael
| | - Mieka Rinsky
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat GanIsrael
| | - Noa Simon-Blecher
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat GanIsrael
| | - Tirza Doniger
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat GanIsrael
| | - Lior Appelbaum
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat GanIsrael
- The Multidisciplinary Brain Research Center, Bar-Ilan UniversityRamat GanIsrael
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat GanIsrael
| |
Collapse
|
2
|
Santillo S, De Petrocellis L, Musio C. Diurnal and circadian regulation of opsin-like transcripts in the eyeless cnidarian Hydra. Biomol Concepts 2024; 15:bmc-2022-0044. [PMID: 38502542 DOI: 10.1515/bmc-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
Opsins play a key role in the ability to sense light both in image-forming vision and in non-visual photoreception (NVP). These modalities, in most animal phyla, share the photoreceptor protein: an opsin-based protein binding a light-sensitive chromophore by a lysine (Lys) residue. So far, visual and non-visual opsins have been discovered throughout the Metazoa phyla, including the photoresponsive Hydra, an eyeless cnidarian considered the evolutionary sister species to bilaterians. To verify whether light influences and modulates opsin gene expression in Hydra, we utilized four expression sequence tags, similar to two classic opsins (SW rhodopsin and SW blue-sensitive opsin) and two non-visual opsins (melanopsin and peropsin), in investigating the expression patterns during both diurnal and circadian time, by means of a quantitative RT-PCR. The expression levels of all four genes fluctuated along the light hours of diurnal cycle with respect to the darkness one and, in constant dark condition of the circadian cycle, they increased. The monophasic behavior in the L12:D12 cycle turned into a triphasic expression profile during the continuous darkness condition. Consequently, while the diurnal opsin-like expression revealed a close dependence on light hours, the highest transcript levels were found in darkness, leading us to novel hypothesis that in Hydra, an "internal" biological rhythm autonomously supplies the opsins expression during the circadian time. In conclusion, in Hydra, both diurnal and circadian rhythms apparently regulate the expression of the so-called visual and non-visual opsins, as already demonstrated in higher invertebrate and vertebrate species. Our data confirm that Hydra is a suitable model for studying ancestral precursor of both visual and NVP, providing useful hints on the evolution of visual and photosensory systems.
Collapse
Affiliation(s)
- Silvia Santillo
- Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello" (ISASI), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli (Naples), Italy
| | - Luciano De Petrocellis
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), 80078 Pozzuoli (Naples), Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR), Via Sommarive 18, 38123 Trento, Italy
| |
Collapse
|
3
|
Häfker NS, Andreatta G, Manzotti A, Falciatore A, Raible F, Tessmar-Raible K. Rhythms and Clocks in Marine Organisms. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:509-538. [PMID: 36028229 DOI: 10.1146/annurev-marine-030422-113038] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.
Collapse
Affiliation(s)
- N Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Alessandro Manzotti
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Angela Falciatore
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Stanton D, Justin HS, Reitzel AM. Step in Time: Conservation of Circadian Clock Genes in Animal Evolution. Integr Comp Biol 2022; 62:1503-1518. [PMID: 36073444 DOI: 10.1093/icb/icac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Over the past few decades, the molecular mechanisms responsible for circadian phenotypes of animals have been studied in increasing detail in mammals, some insects, and other invertebrates. Particular circadian proteins and their interactions are shared across evolutionary distant animals, resulting in a hypothesis for the canonical circadian clock of animals. As the number of species for which the circadian clockwork has been described increases, the circadian clock in animals driving cyclical phenotypes becomes less similar. Our focus in this review is to develop and synthesize the current literature to better understand the antiquity and evolution of the animal circadian clockwork. Here, we provide an updated understanding of circadian clock evolution in animals, largely through the lens of conserved genes characterized in the circadian clock identified in bilaterian species. These comparisons reveal extensive variation within the likely composition of the core clock mechanism, including losses of many genes, and that the ancestral clock of animals does not equate to the bilaterian clock. Despite the loss of these core genes, these species retain circadian behaviors and physiology, suggesting novel clocks have evolved repeatedly. Additionally, we highlight highly conserved cellular processes (e.g., cell division, nutrition) that intersect with the circadian clock of some animals. The conservation of these processes throughout the animal tree remains essentially unknown, but understanding their role in the evolution and maintenance of the circadian clock will provide important areas for future study.
Collapse
Affiliation(s)
- Daniel Stanton
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Hannah S Justin
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| |
Collapse
|
5
|
Rinsky M, Weizman E, Ben-Asher HW, Eyal G, Zhu B, Levy O. Temporal gene expression patterns in the coral Euphyllia paradivisa reveal the complexity of biological clocks in the cnidarian-algal symbiosis. SCIENCE ADVANCES 2022; 8:eabo6467. [PMID: 36112690 PMCID: PMC9481131 DOI: 10.1126/sciadv.abo6467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/02/2022] [Indexed: 05/25/2023]
Abstract
Studying chronobiology in reef-building corals is challenging due to the tightly coupled symbiosis with their photosynthetic algae, Symbiodiniaceae. Although symbiosis requires metabolic synchronization and coordination of cellular processes in the holobiont, the cross-talk between the host and symbiont's clocks is still puzzling. Here, we use the mesophotic coral Euphyllia paradivisa to examine temporal gene expression patterns in symbiotic and aposymbiotic morphs exposed to natural light/dark cycles and constant darkness. Our comparative transcriptomic analyses revealed circadian and circatidal cycles of gene expression with a predominant diel pattern in both coral morphs. We found a substantial number of transcripts consistently rhythmic under both light conditions, including genes likely involved in the cnidarians' circadian clock, thus indicating that an endogenous clock, which can oscillate independently from the Symbiodiniaceae clock, exists in E. paradivisa. The analysis further manifests the remarkable impacts of symbiosis on transcriptional rhythms and implies that the algae's presence influences the host's biorhythm.
Collapse
Affiliation(s)
- Mieka Rinsky
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Eviatar Weizman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Hiba Waldman Ben-Asher
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Gal Eyal
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, University of Queensland St. Lucia, Queensland 4072, Australia
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
6
|
Zurl M, Poehn B, Rieger D, Krishnan S, Rokvic D, Veedin Rajan VB, Gerrard E, Schlichting M, Orel L, Ćorić A, Lucas RJ, Wolf E, Helfrich-Förster C, Raible F, Tessmar-Raible K. Two light sensors decode moonlight versus sunlight to adjust a plastic circadian/circalunidian clock to moon phase. Proc Natl Acad Sci U S A 2022; 119:e2115725119. [PMID: 35622889 PMCID: PMC9295771 DOI: 10.1073/pnas.2115725119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Many species synchronize their physiology and behavior to specific hours. It is commonly assumed that sunlight acts as the main entrainment signal for ∼24-h clocks. However, the moon provides similarly regular time information. Consistently, a growing number of studies have reported correlations between diel behavior and lunidian cycles. Yet, mechanistic insight into the possible influences of the moon on ∼24-h timers remains scarce. We have explored the marine bristleworm Platynereis dumerilii to investigate the role of moonlight in the timing of daily behavior. We uncover that moonlight, besides its role in monthly timing, also schedules the exact hour of nocturnal swarming onset to the nights’ darkest times. Our work reveals that extended moonlight impacts on a plastic clock that exhibits <24 h (moonlit) or >24 h (no moon) periodicity. Abundance, light sensitivity, and genetic requirement indicate that the Platynereis light receptor molecule r-Opsin1 serves as a receptor that senses moonrise, whereas the cryptochrome protein L-Cry is required to discriminate the proper valence of nocturnal light as either moonlight or sunlight. Comparative experiments in Drosophila suggest that cryptochrome’s principle requirement for light valence interpretation is conserved. Its exact biochemical properties differ, however, between species with dissimilar timing ecology. Our work advances the molecular understanding of lunar impact on fundamental rhythmic processes, including those of marine mass spawners endangered by anthropogenic change.
Collapse
Affiliation(s)
- Martin Zurl
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Birgit Poehn
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Dirk Rieger
- Department for Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Shruthi Krishnan
- Institute of Molecular Biology, 55128 Mainz, Germany
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| | - Dunja Rokvic
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Vinoth Babu Veedin Rajan
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Elliot Gerrard
- Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | - Lukas Orel
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Aida Ćorić
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Robert J. Lucas
- Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Eva Wolf
- Institute of Molecular Biology, 55128 Mainz, Germany
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| | - Charlotte Helfrich-Förster
- Department for Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Florian Raible
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Research Platform “Rhythms of Life", University of Vienna, 1030 Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Carl-von-Ossietzky University, 26111 Oldenburg, Germany
| |
Collapse
|
7
|
Rosenberg Y, Simon‐Blecher N, Lalzar M, Yam R, Shemesh A, Alon S, Perna G, Cárdenas A, Voolstra CR, Miller DJ, Levy O. Urbanization comprehensively impairs biological rhythms in coral holobionts. GLOBAL CHANGE BIOLOGY 2022; 28:3349-3364. [PMID: 35218086 PMCID: PMC9311646 DOI: 10.1111/gcb.16144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/28/2023]
Abstract
Coral reefs are in global decline due to climate change and anthropogenic influences (Hughes et al., Conservation Biology, 27: 261-269, 2013). Near coastal cities or other densely populated areas, coral reefs face a range of additional challenges. While considerable progress has been made in understanding coral responses to acute individual stressors (Dominoni et al., Nature Ecology & Evolution, 4: 502-511, 2020), the impacts of chronic exposure to varying combinations of sensory pollutants are largely unknown. To investigate the impacts of urban proximity on corals, we conducted a year-long in-natura study-incorporating sampling at diel, monthly, and seasonal time points-in which we compared corals from an urban area to corals from a proximal non-urban area. Here we reveal that despite appearing relatively healthy, natural biorhythms and environmental sensory systems were extensively disturbed in corals from the urban environment. Transcriptomic data indicated poor symbiont performance, disturbance to gametogenic cycles, and loss or shifted seasonality of vital biological processes. Altered seasonality patterns were also observed in the microbiomes of the urban coral population, signifying the impact of urbanization on the holobiont, rather than the coral host alone. These results should raise alarm regarding the largely unknown long-term impacts of sensory pollution on the resilience and survival of coral reefs close to coastal communities.
Collapse
Affiliation(s)
- Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Noa Simon‐Blecher
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Maya Lalzar
- Bioinformatics Service UnitUniversity of HaifaHaifaIsrael
| | - Ruth Yam
- Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Aldo Shemesh
- Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Shahar Alon
- Faculty of EngineeringBar‐Ilan UniversityRamat GanIsrael
| | - Gabriela Perna
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Anny Cárdenas
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | | | - David J. Miller
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
- The H. Steinitz Marine Biology LaboratoryThe Interuniversity Institute for Marine Sciences of EilatEilatIsrael
| |
Collapse
|
8
|
Cellular pathways during spawning induction in the starlet sea anemone Nematostella vectensis. Sci Rep 2021; 11:15451. [PMID: 34326433 PMCID: PMC8322078 DOI: 10.1038/s41598-021-95033-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
In cnidarians, long-term ecological success relies on sexual reproduction. The sea anemone Nematostella vectensis, which has emerged as an important model organism for developmental studies, can be induced for spawning by temperature elevation and light exposure. To uncover molecular mechanisms and pathways underlying spawning, we characterized the transcriptome of Nematostella females before and during spawning induction. We identified an array of processes involving numerous receptors, circadian clock components, cytoskeleton, and extracellular transcripts that are upregulated upon spawning induction. Concurrently, processes related to the cell cycle, fatty acid metabolism, and other housekeeping functions are downregulated. Real-time qPCR revealed that light exposure has a minor effect on expression levels of most examined transcripts, implying that temperature change is a stronger inducer for spawning in Nematostella. Our findings reveal the potential mechanisms that may enable the mesenteries to serve as a gonad-like tissue for the developing oocytes and expand our understanding of sexual reproduction in cnidarians.
Collapse
|
9
|
Gornik SG, Bergheim BG, Morel B, Stamatakis A, Foulkes NS, Guse A. Photoreceptor Diversification Accompanies the Evolution of Anthozoa. Mol Biol Evol 2021; 38:1744-1760. [PMID: 33226083 PMCID: PMC8097283 DOI: 10.1093/molbev/msaa304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anthozoan corals are an ecologically important group of cnidarians, which power the productivity of reef ecosystems. They are sessile, inhabit shallow, tropical oceans and are highly dependent on sun- and moonlight to regulate sexual reproduction, phototaxis, and photosymbiosis. However, their exposure to high levels of sunlight also imposes an increased risk of UV-induced DNA damage. How have these challenging photic environments influenced photoreceptor evolution and function in these animals? To address this question, we initially screened the cnidarian photoreceptor repertoire for Anthozoa-specific signatures by a broad-scale evolutionary analysis. We compared transcriptomic data of more than 36 cnidarian species and revealed a more diverse photoreceptor repertoire in the anthozoan subphylum than in the subphylum Medusozoa. We classified the three principle opsin classes into distinct subtypes and showed that Anthozoa retained all three classes, which diversified into at least six subtypes. In contrast, in Medusozoa, only one class with a single subtype persists. Similarly, in Anthozoa, we documented three photolyase classes and two cryptochrome (CRY) classes, whereas CRYs are entirely absent in Medusozoa. Interestingly, we also identified one anthozoan CRY class, which exhibited unique tandem duplications of the core functional domains. We next explored the functionality of anthozoan photoreceptors in the model species Exaiptasia diaphana (Aiptasia), which recapitulates key photo-behaviors of corals. We show that the diverse opsin genes are differentially expressed in important life stages common to reef-building corals and Aiptasia and that CRY expression is light regulated. We thereby provide important clues linking coral evolution with photoreceptor diversification.
Collapse
Affiliation(s)
- Sebastian G Gornik
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Nicholas S Foulkes
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Annika Guse
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Pelham JF, Dunlap JC, Hurley JM. Intrinsic disorder is an essential characteristic of components in the conserved circadian circuit. Cell Commun Signal 2020; 18:181. [PMID: 33176800 PMCID: PMC7656774 DOI: 10.1186/s12964-020-00658-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The circadian circuit, a roughly 24 h molecular feedback loop, or clock, is conserved from bacteria to animals and allows for enhanced organismal survival by facilitating the anticipation of the day/night cycle. With circadian regulation reportedly impacting as high as 80% of protein coding genes in higher eukaryotes, the protein-based circadian clock broadly regulates physiology and behavior. Due to the extensive interconnection between the clock and other cellular systems, chronic disruption of these molecular rhythms leads to a decrease in organismal fitness as well as an increase of disease rates in humans. Importantly, recent research has demonstrated that proteins comprising the circadian clock network display a significant amount of intrinsic disorder. MAIN BODY In this work, we focus on the extent of intrinsic disorder in the circadian clock and its potential mechanistic role in circadian timing. We highlight the conservation of disorder by quantifying the extent of computationally-predicted protein disorder in the core clock of the key eukaryotic circadian model organisms Drosophila melanogaster, Neurospora crassa, and Mus musculus. We further examine previously published work, as well as feature novel experimental evidence, demonstrating that the core negative arm circadian period drivers FREQUENCY (Neurospora crassa) and PERIOD-2 (PER2) (Mus musculus), possess biochemical characteristics of intrinsically disordered proteins. Finally, we discuss the potential contributions of the inherent biophysical principals of intrinsically disordered proteins that may explain the vital mechanistic roles they play in the clock to drive their broad evolutionary conservation in circadian timekeeping. CONCLUSION The pervasive conservation of disorder amongst the clock in the crown eukaryotes suggests that disorder is essential for optimal circadian timing from fungi to animals, providing vital homeostatic cellular maintenance and coordinating organismal physiology across phylogenetic kingdoms. Video abstract.
Collapse
Affiliation(s)
- Jacqueline F. Pelham
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Jay C. Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Jennifer M. Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12018 USA
| |
Collapse
|
11
|
Abstract
Measuring behavior in the form of numerical data is difficult, especially for studies involving complex actions. DanioVision is a closed-chamber system that utilizes subject tracking to comprehensively record behavior, while also mitigating the influence of environmental conditions. We used DanioVision to record activity of juvenile dwarf cuttlefish (Sepia bandensis) during the inaccessible prey (IP) procedure, a memory experiment in which cuttlefish learn to inhibit capture attempts towards inaccessible prey. By quantifying total movement and orientation of the body, we found that cuttlefish show memory by selectively inhibiting tentacle strikes without reducing total movement, or orientation towards the prey. We show that DanioVision can be used to assess multiple components of dynamic responses that are not measurable by direct observation alone and provide new evidence that strike inhibition is the product of learning, and not motor fatigue.
Collapse
|
12
|
Leach WB, Reitzel AM. Decoupling behavioral and transcriptional responses to color in an eyeless cnidarian. BMC Genomics 2020; 21:361. [PMID: 32410571 PMCID: PMC7222589 DOI: 10.1186/s12864-020-6766-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Animals have specific molecular, physiological, and behavioral responses to light that are influenced by wavelength and intensity. Predictable environmental changes – predominantly solar and lunar cycles – drive endogenous daily oscillations by setting internal pacemakers, otherwise known as the circadian clock. Cnidarians have been a focal group to discern the evolution of light responsiveness due to their phylogenetic position as a sister phylum to bilaterians and broad range of light-responsive behaviors and physiology. Marine species that occupy a range of depths will experience different ranges of wavelengths and light intensities, which may result in variable phenotypic responses. Here, we utilize the eyeless sea anemone Nematostella vectensis, an estuarine anemone that typically resides in shallow water habitats, to compare behavioral and molecular responses when exposed to different light conditions. Results Quantitative measures of locomotion clearly showed that this species responds to light in the blue and green spectral range with a circadian activity profile, in contrast to a circatidal activity profile in the red spectral range and in constant darkness. Differences in average day/night locomotion was significant in each condition, with overall peak activity during the dark period. Comparative analyses of 96 transcriptomes from individuals sampled every 4 h in each lighting treatment revealed complex differences in gene expression between colors, including in many of the genes likely involved in the cnidarian circadian clock. Transcriptional profiling showed the majority of genes are differentially expressed when comparing mid-day with mid-night, and mostly in red light. Gene expression profiles were largely unique in each color, although animals in blue and green were overall more similar to each other than to red light. Conclusions Together, these analyses support the hypothesis that cnidarians are sensitive to red light, and this perception results in a rich transcriptional and divergent behavioral response. Future work determining the specific molecular mechanisms driving the circadian and potential circatidal rhythms measured here would be impactful to connect gene expression variation with behavioral variation in this eyeless species.
Collapse
Affiliation(s)
- Whitney B Leach
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Woodward Hall, Room 381A, Charlotte, NC, 28223, USA.
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Woodward Hall, Room 381A, Charlotte, NC, 28223, USA
| |
Collapse
|
13
|
Initial Virome Characterization of the Common Cnidarian Lab Model Nematostella vectensis. Viruses 2020; 12:v12020218. [PMID: 32075325 PMCID: PMC7077227 DOI: 10.3390/v12020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
The role of viruses in forming a stable holobiont has been the subject of extensive research in recent years. However, many emerging model organisms still lack any data on the composition of the associated viral communities. Here, we re-analyzed seven publicly available transcriptome datasets of the starlet sea anemone Nematostella vectensis, the most commonly used anthozoan lab model, and searched for viral sequences. We applied a straightforward, yet powerful approach of de novo assembly followed by homology-based virus identification and a multi-step, thorough taxonomic validation. The comparison of different lab populations of N. vectensis revealed the existence of the core virome composed of 21 viral sequences, present in all adult datasets. Unexpectedly, we observed an almost complete lack of viruses in the samples from the early developmental stages, which together with the identification of the viruses shared with the major source of the food in the lab, the brine shrimp Artemia salina, shed new light on the course of viral species acquisition in N. vectensis. Our study provides an initial, yet comprehensive insight into N. vectensis virome and sets the first foundation for the functional studies of viruses and antiviral systems in this lab model cnidarian.
Collapse
|
14
|
Philpott JM, Narasimamurthy R, Ricci CG, Freeberg AM, Hunt SR, Yee LE, Pelofsky RS, Tripathi S, Virshup DM, Partch CL. Casein kinase 1 dynamics underlie substrate selectivity and the PER2 circadian phosphoswitch. eLife 2020; 9:e52343. [PMID: 32043967 PMCID: PMC7012598 DOI: 10.7554/elife.52343] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/25/2020] [Indexed: 12/27/2022] Open
Abstract
Post-translational control of PERIOD stability by Casein Kinase 1δ and ε (CK1) plays a key regulatory role in metazoan circadian rhythms. Despite the deep evolutionary conservation of CK1 in eukaryotes, little is known about its regulation and the factors that influence substrate selectivity on functionally antagonistic sites in PERIOD that directly control circadian period. Here we describe a molecular switch involving a highly conserved anion binding site in CK1. This switch controls conformation of the kinase activation loop and determines which sites on mammalian PER2 are preferentially phosphorylated, thereby directly regulating PER2 stability. Integrated experimental and computational studies shed light on the allosteric linkage between two anion binding sites that dynamically regulate kinase activity. We show that period-altering kinase mutations from humans to Drosophila differentially modulate this activation loop switch to elicit predictable changes in PER2 stability, providing a foundation to understand and further manipulate CK1 regulation of circadian rhythms.
Collapse
Affiliation(s)
- Jonathan M Philpott
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
| | | | - Clarisse G Ricci
- Department of Chemistry and BiochemistryUniversity of California San DiegoSan DiegoUnited States
| | - Alfred M Freeberg
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
| | - Sabrina R Hunt
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
| | - Lauren E Yee
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
| | - Rebecca S Pelofsky
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
| | - Sarvind Tripathi
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical SchoolSingaporeSingapore
- Department of PediatricsDuke University Medical CenterDurhamUnited States
| | - Carrie L Partch
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzUnited States
- Center for Circadian BiologyUniversity of California San DiegoSan DiegoUnited States
| |
Collapse
|
15
|
Rosenberg Y, Doniger T, Harii S, Sinniger F, Levy O. Demystifying Circalunar and Diel Rhythmicity in Acropora digitifera under Constant Dim Light. iScience 2019; 22:477-488. [PMID: 31835172 PMCID: PMC6926284 DOI: 10.1016/j.isci.2019.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023] Open
Abstract
Life on earth has evolved under constant environmental changes; in response to these changes, most organisms have developed an endogenous clock that allows them to anticipate daily and seasonal changes and adapt their biology accordingly. Light cycles synchronize biological rhythms and are controlled by an endogenous clock that is entrained by environmental cues. Light is known to play a key role in the biology of symbiotic corals as they exhibit many biological processes entrained by daily light patterns. In this study, we aimed at determining the effect of constant dim light on coral's perception of diel and monthly cycles. Our results show that under constant dim light corals display a loss of rhythmic processes and constant stimuli by light, which initiates signal transduction that results in an abnormal cell cycle, cell proliferation, and protein synthesis. The results emphasize how constant dim light can mask the biological clock of Acropora digitifera. Light entrains many biological processes governed by the endogenous clock Constant dim light overrides the biological clock of A. digitifera corals Artificial light impacts the processes that allow corals to thrive in our oceans The increase of artificial light in coastal areas is a growing threat to coral reefs
Collapse
Affiliation(s)
- Yael Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| | - Tirza Doniger
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Saki Harii
- Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Frederic Sinniger
- Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
16
|
Tarrant AM, Helm RR, Levy O, Rivera HE. Environmental entrainment demonstrates natural circadian rhythmicity in the cnidarian Nematostella vectensis. ACTA ACUST UNITED AC 2019; 222:jeb.205393. [PMID: 31611292 DOI: 10.1242/jeb.205393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
Abstract
Considerable advances in chronobiology have been made through controlled laboratory studies, but distinct temporal rhythms can emerge under natural environmental conditions. Lab-reared Nematostella vectensis sea anemones exhibit circadian behavioral and physiological rhythms. Given that these anemones inhabit shallow estuarine environments subject to tidal inputs, it was unclear whether circadian rhythmicity would persist following entrainment in natural conditions, or whether circatidal periodicity would predominate. Nematostella were conditioned within a marsh environment, where they experienced strong daily temperature cycles as well as brief tidal flooding around the full and new moons. Upon retrieval, anemones exhibited strong circadian (∼24 h) activity rhythms under a light-dark cycle or continuous darkness, but reduced circadian rhythmicity under continuous light. However, some individuals in each light condition showed circadian rhythmicity, and a few individuals showed circatidal rhythmicity. Consistent with the behavioral studies, a large number of transcripts (1640) exhibited diurnal rhythmicity compared with very few (64) with semidiurnal rhythmicity. Diurnal transcripts included core circadian regulators, and 101 of 434 (23%) genes that were previously found to be upregulated by exposure to ultraviolet radiation. Together, these behavioral and transcriptional studies show that circadian rhythmicity predominates and suggest that solar radiation drives physiological cycles in this sediment-dwelling subtidal animal.
Collapse
Affiliation(s)
- Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA
| | - Rebecca R Helm
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA.,Biology Department, University of North Carolina Asheville, Asheville NC 28804, USA
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Hanny E Rivera
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA.,Biology Department, Boston University, Boston MA 02215, USA
| |
Collapse
|
17
|
Weizman EN, Tannenbaum M, Tarrant AM, Hakim O, Levy O. Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis. PLoS Genet 2019; 15:e1008397. [PMID: 31693674 PMCID: PMC6834241 DOI: 10.1371/journal.pgen.1008397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
In animals, circadian rhythms are driven by oscillations in transcription, translation, and proteasomal degradation of highly conserved genes, resulting in diel cycles in the expression of numerous clock-regulated genes. Transcription is largely regulated through the binding of transcription factors to cis-regulatory elements within accessible regions of the chromatin. Chromatin remodeling is linked to circadian regulation in mammals, but it is unknown whether cycles in chromatin accessibility are a general feature of clock-regulated genes throughout evolution. To assess this, we applied an ATAC-seq approach using Nematostella vectensis, grown under two separate light regimes (light:dark (LD) and constant darkness (DD)). Based on previously identified N. vectensis circadian genes, our results show the coupling of chromatin accessibility and circadian transcription rhythmicity under LD conditions. Out of 180 known circadian genes, we were able to list 139 gene promoters that were highly accessible compared to common promoters. Furthermore, under LD conditions, we identified 259 active enhancers as opposed to 333 active enhancers under DD conditions, with 171 enhancers shared between the two treatments. The development of a highly reproducible ATAC-seq protocol integrated with published RNA-seq and ChIP-seq databases revealed the enrichment of transcription factor binding sites (such as C/EBP, homeobox, and MYB), which have not been previously associated with circadian signaling in cnidarians. These results provide new insight into the regulation of cnidarian circadian machinery. Broadly speaking, this supports the notion that the association between chromatin remodeling and circadian regulation arose early in animal evolution as reflected in this non-bilaterian lineage.
Collapse
Affiliation(s)
- Eviatar N. Weizman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail: (ENW); (OL)
| | - Miriam Tannenbaum
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ann M. Tarrant
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Ofir Hakim
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Oren Levy
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail: (ENW); (OL)
| |
Collapse
|
18
|
He S, Grasis JA, Nicotra ML, Juliano CE, Schnitzler CE. Cnidofest 2018: the future is bright for cnidarian research. EvoDevo 2019; 10:20. [PMID: 31508195 PMCID: PMC6724248 DOI: 10.1186/s13227-019-0134-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022] Open
Abstract
The 2018 Cnidarian Model Systems Meeting (Cnidofest) was held September 6-9th at the University of Florida Whitney Laboratory for Marine Bioscience in St. Augustine, FL. Cnidofest 2018, which built upon the momentum of Hydroidfest 2016, brought together research communities working on a broad spectrum of cnidarian organisms from North America and around the world. Meeting talks covered diverse aspects of cnidarian biology, with sessions focused on genomics, development, neurobiology, immunology, symbiosis, ecology, and evolution. In addition to interesting biology, Cnidofest also emphasized the advancement of modern research techniques. Invited technology speakers showcased the power of microfluidics and single-cell transcriptomics and demonstrated their application in cnidarian models. In this report, we provide an overview of the exciting research that was presented at the meeting and discuss opportunities for future research.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO 64110 USA
| | - Juris A. Grasis
- School of Natural Sciences, University of California, Merced, CA 95343 USA
| | - Matthew L. Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261 USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA USA
| | - Celina E. Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616 USA
| | - Christine E. Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
19
|
Leach WB, Carrier TJ, Reitzel AM. Diel patterning in the bacterial community associated with the sea anemone Nematostella vectensis. Ecol Evol 2019; 9:9935-9947. [PMID: 31534705 PMCID: PMC6745676 DOI: 10.1002/ece3.5534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/11/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Microbes can play an important role in the physiology of animals by providing essential nutrients, inducing immune pathways, and influencing the specific species that compose the microbiome through competitive or facilitatory interactions. The community of microbes associated with animals can be dynamic depending on the local environment, and factors that influence the composition of the microbiome are essential to our understanding of how microbes may influence the biology of their animal hosts. Regularly repeated changes in the environment, such as diel lighting, can result in two different organismal responses: a direct response to the presence and absence of exogenous light and endogenous rhythms resulting from a molecular circadian clock, both of which can influence the associated microbiota. Here, we report how diel lighting and a potential circadian clock impacts the diversity and relative abundance of bacteria in the model cnidarian Nematostella vectensis using an amplicon-based sequencing approach. Comparisons of bacterial communities associated with anemones cultured in constant darkness and in light:dark conditions revealed that individuals entrained in the dark had a more diverse microbiota. Overall community composition showed little variation over a 24-hr period in either treatment; however, abundances of individual bacterial OTUs showed significant cycling in each treatment. A comparative analysis of genes involved in the innate immune system of cnidarians showed differential expression between lighting conditions in N. vectensis, with significant up-regulation during long-term darkness for a subset of genes. Together, our studies support a hypothesis that the bacterial community associated with this species is relatively stable under diel light conditions when compared with static conditions and that particular bacterial members may have time-dependent abundance that coincides with the diel photoperiod in an otherwise stable community.
Collapse
Affiliation(s)
- Whitney B. Leach
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Tyler J. Carrier
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Adam M. Reitzel
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| |
Collapse
|
20
|
Leach WB, Reitzel AM. Transcriptional remodelling upon light removal in a model cnidarian: Losses and gains in gene expression. Mol Ecol 2019; 28:3413-3426. [PMID: 31264275 DOI: 10.1111/mec.15163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Organismal responses to light:dark cycles can result from two general processes: (a) direct response to light or (b) a free-running rhythm (i.e., a circadian clock). Previous research in cnidarians has shown that candidate circadian clock genes have rhythmic expression in the presence of diel lighting, but these oscillations appear to be lost quickly after removal of the light cue. Here, we measure whole-organism gene expression changes in 136 transcriptomes of the sea anemone Nematostella vectensis, entrained to a light:dark environment and immediately following light cue removal to distinguish two broadly defined responses in cnidarians: light entrainment and circadian regulation. Direct light exposure resulted in significant differences in expression for hundreds of genes, including more than 200 genes with rhythmic, 24-hr periodicity. Removal of the lighting cue resulted in the loss of significant expression for 80% of these genes after 1 day, including most of the hypothesized cnidarian circadian genes. Further, 70% of these candidate genes were phase-shifted. Most surprisingly, thousands of genes, some of which are involved in oxidative stress, DNA damage response and chromatin modification, had significant differences in expression in the 24 hr following light removal, suggesting that loss of the entraining cue may induce a cellular stress response. Together, our findings suggest that a majority of genes with significant differences in expression for anemones cultured under diel lighting are largely driven by the primary photoresponse rather than a circadian clock when measured at the whole animal level. These results provide context for the evolution of cnidarian circadian biology and help to disassociate two commonly confounded factors driving oscillating phenotypes.
Collapse
Affiliation(s)
- Whitney B Leach
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
21
|
Knighton LE, Nitika, Waller SJ, Strom O, Wolfgeher D, Reitzel AM, Truman AW. Dynamic remodeling of the interactomes of Nematostella vectensis Hsp70 isoforms under heat shock. J Proteomics 2019; 206:103416. [PMID: 31233900 DOI: 10.1016/j.jprot.2019.103416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023]
Abstract
Heat shock protein 70s (Hsp70s) are a highly conserved class of molecular chaperones that fold a large proportion of the proteome. Nematostella vectensis (Nv) is an estuarine sea anemone that has emerged as a model species to characterize molecular responses to physiological stressors due to its exposure to diverse, extreme abiotic conditions. Previous transcriptional data has shown dramatic differences among expression profiles of three NvHsp70 isoforms (NvHsp70A, B and D) under stress but it is unknown if, and to what extent, the client proteins for these chaperones differ. In order to determine client specificity, NvHsp70A, B and D were expressed in Saccharomyces cerevisiae budding yeast lacking native Hsp70 and interacting proteins for each Hsp70 were determined with mass spectrometry in yeast ambient and heat shock conditions. Our analyses showed <50% of identified interacting proteins were common to all three anemone Hsp70s and 3-18% were unique to an individual Hsp70. Mapping of temperature induced interactions suggest that under stress a proportion of clients are transferred from NvHsp70A and NvHsp70D to NvHsp70B. Together, these data suggest a diverse set of interacting proteins for Hsp70 isoforms that likely determines the precise functions for Hsp70s in organismal acclimation and potentially adaptation. BIOLOGICAL SIGNIFICANCE: Although the Hsp70 family of molecular chaperones has been studied for >50 years, it is still not fully understood why organisms encode and express many highly-similar Hsp70 isoforms. The prevailing theory is that these isoforms have identical function, but are expressed under unique cellular conditions that include heat shock to cope with increased number of unfolded/misfolded proteins. The sea anemone Nematostella vectensis encodes three Hsp70 isoforms A, B and D that when expressed in yeast demonstrate unique functionalities. This study provides the interactome of NvHsp70s A, B and D and demonstrates that Hsp70 isoforms, while highly similar in sequence, have unique co-chaperone and client interactors.
Collapse
Affiliation(s)
- Laura E Knighton
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA
| | - Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA
| | - Shawn J Waller
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA
| | - Owen Strom
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA
| | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, USA
| | - Adam M Reitzel
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA.
| | - Andrew W Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, USA.
| |
Collapse
|
22
|
Kanaya HJ, Kobayakawa Y, Itoh TQ. Hydra vulgaris exhibits day-night variation in behavior and gene expression levels. ZOOLOGICAL LETTERS 2019; 5:10. [PMID: 30891311 PMCID: PMC6407280 DOI: 10.1186/s40851-019-0127-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/25/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Day-night behavioral variation is observed in most organisms, and is generally controlled by circadian clocks and/or synchronization to environmental cues. Hydra species, which are freshwater cnidarians, are thought to lack the core clock genes that form transcription-translation feedback loops in clock systems. In this study, we examined whether hydras exhibit diel rhythms in terms of behavior and gene expression levels without typical clock genes. RESULTS We found that the total behavior of hydras was elevated during the day and decreased at night under a 12-h light-dark cycle. Polyp contraction frequency, one component of behavior, exhibited a clear diel rhythm. However, neither total behavior nor polyp contraction frequency showed rhythmic changes under constant light and constant dark conditions. To identify the genes underlying diel behavior, we performed genome-wide transcriptome analysis of hydras under light-dark cycles. Using three different analytic algorithms, we found that 380 genes showed robust diel oscillations in expression. Some of these genes shared common features with diel cycle genes of other cnidarian species with endogenous clock systems. CONCLUSION Hydras show diel behavioral rhythms under light-dark cycles despite the absence of canonical core clock genes. Given the functions of the genes showing diel oscillations in hydras and the similarities of those genes with the diel cycle genes of other cnidarian species with circadian clocks, it is possible that diel cycle genes play an important role across cnidarian species regardless of the presence or absence of core clock genes under light-dark cycles.
Collapse
Affiliation(s)
- Hiroyuki J. Kanaya
- Department of Biology, School of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | | | - Taichi Q. Itoh
- Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
23
|
Circatidal gene expression in the mangrove cricket Apteronemobius asahinai. Sci Rep 2019; 9:3719. [PMID: 30842498 PMCID: PMC6403293 DOI: 10.1038/s41598-019-40197-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/08/2019] [Indexed: 11/11/2022] Open
Abstract
The mangrove cricket Apteronemobius asahinai is endemic to mangrove forest floors. It shows circatidal rhythmicity, with a 12.6-h period of locomotor activity under constant conditions. Its free-running activity also has a circadian component; i.e. it is more active during the subjective night than during the day. In this study, we investigated rhythmic gene expression under constant darkness by RNA sequencing to identify genes controlled by the biological clock. Samples collected every 3 h for 48 h were analysed (one cricket per time-point). We identified 284 significant circatidal cycling transcripts (period length 12–15 h). Almost half of them were annotated with known genes in the NCBI nr database, including enzymes related to metabolic processes and molecular chaperones. There were less transcripts with circadian rhythmicity than with circatidal rhythmicity, and the expression of core circadian clock genes did not show significant rhythmicity. This may reflect the nature of the mangrove cricket or may be due to the paucity of the sampling repeats: only two periods for circadian cycle with no replications. We evaluated for the first time the rhythmic transcriptome of an insect that shows circatidal rhythmic activity; our findings will contribute to future studies of circatidal clock genes.
Collapse
|
24
|
Waller SJ, Knighton LE, Crabtree LM, Perkins AL, Reitzel AM, Truman AW. Characterizing functional differences in sea anemone Hsp70 isoforms using budding yeast. Cell Stress Chaperones 2018; 23:933-941. [PMID: 29696514 PMCID: PMC6111083 DOI: 10.1007/s12192-018-0900-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Marine organisms experience abiotic stressors such as fluctuations in temperature, UV radiation, salinity, and oxygen concentration. Heat shock proteins (HSPs) assist in the response of cells to these stressors by refolding and maintaining the activity of damaged proteins. The well-conserved Hsp70 chaperone family is essential for cell viability as well as the response to stress. Organisms possess a variety of Hsp70 isoforms that differ slightly in amino acid sequence, yet very little is known about their functional relevance. In this study, we undertook analysis of three principal Hsp70 isoforms NvHsp70A, B, and D from the starlet sea anemone Nematostella vectensis. The functionality of Hsp70 isoforms in the starlet sea anemone was assessed through transcriptional analysis and by heterologous expression in budding yeast Saccharomyces cerevisiae. Interestingly, these isoforms were found to not only differ in expression under stress but also appear to have functional differences in their ability to mediate the cellular stress program. These results contribute to an understanding of Hsp70 isoform specificity, their shared and unique roles in response to acute and chronic environmental stress, and the potential basis of local adaptation in populations of N. vectensis.
Collapse
Affiliation(s)
- Shawn J Waller
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Laura E Knighton
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Lenora M Crabtree
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Abigail L Perkins
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
25
|
Abstract
Sleep is nearly ubiquitous throughout the animal kingdom, yet little is known about how ecological factors or perturbations to the environment shape the duration and timing of sleep. In diverse animal taxa, poor sleep negatively impacts development, cognitive abilities and longevity. In addition to mammals, sleep has been characterized in genetic model organisms, ranging from the nematode worm to zebrafish, and, more recently, in emergent models with simplified nervous systems such as Aplysia and jellyfish. In addition, evolutionary models ranging from fruit flies to cavefish have leveraged natural genetic variation to investigate the relationship between ecology and sleep. Here, we describe the contributions of classical and emergent genetic model systems to investigate mechanisms underlying sleep regulation. These studies highlight fundamental interactions between sleep and sensory processing, as well as a remarkable plasticity of sleep in response to environmental changes. Understanding how sleep varies throughout the animal kingdom will provide critical insight into fundamental functions and conserved genetic mechanisms underlying sleep regulation. Furthermore, identification of naturally occurring genetic variation regulating sleep may provide novel drug targets and approaches to treat sleep-related diseases.
Collapse
Affiliation(s)
- Alex C Keene
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
26
|
Leach WB, Macrander J, Peres R, Reitzel AM. Transcriptome-wide analysis of differential gene expression in response to light:dark cycles in a model cnidarian. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 26:40-49. [PMID: 29605490 DOI: 10.1016/j.cbd.2018.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 10/17/2022]
Abstract
Animals respond to diurnal shifts in their environment with a combination of behavioral, physiological, and molecular changes to synchronize with regularly-timed external cues. Reproduction, movement, and metabolism in cnidarians have all been shown to be regulated by diurnal lighting, but the molecular mechanisms that may be responsible for these phenotypes remain largely unknown. The starlet sea anemone, Nematostella vectensis, has oscillating patterns of locomotion and respiration, as well as the molecular components of a putative circadian clock that may provide a mechanism for these light-induced responses. Here, we compare transcriptomic responses of N. vectensis when cultured under a diurnal lighting condition (12 h light: 12 h dark) with sea anemones cultured under constant darkness for 20 days. More than 3,000 genes (~13% of transcripts) had significant differences in expression between light and dark, with most genes having higher expression in the photoperiod. Following removal of the light cue 678 genes lost differential expression, suggesting that light-entrained gene expression by the circadian clock has temporal limits. Grouping of genes differentially expressed in light:dark conditions showed that cell cycle and transcription maintained diel expression in the absence of light, while many of the genes related to metabolism, antioxidants, immunity, and signal transduction lost differential expression without a light cue. Our data highlight the importance of diel light cycles on circadian mechanisms in this species, prompting new hypotheses for the role of photoreception in major biological processes, e.g., metabolism, immunity.
Collapse
Affiliation(s)
- W B Leach
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - J Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - R Peres
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - A M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States.
| |
Collapse
|
27
|
Tarrant AM, Payton SL, Reitzel AM, Porter DT, Jenny MJ. Ultraviolet radiation significantly enhances the molecular response to dispersant and sweet crude oil exposure in Nematostella vectensis. MARINE ENVIRONMENTAL RESEARCH 2018; 134:96-108. [PMID: 29336831 DOI: 10.1016/j.marenvres.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/29/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
Estuarine organisms are subjected to combinations of anthropogenic and natural stressors, which together can reduce an organisms' ability to respond to either stress or can potentiate or synergize the cellular impacts for individual stressors. Nematostella vectensis (starlet sea anemone) is a useful model for investigating novel and evolutionarily conserved cellular and molecular responses to environmental stress. Using RNA-seq, we assessed global changes in gene expression in Nematostella in response to dispersant and/or sweet crude oil exposure alone or combined with ultraviolet radiation (UV). A total of 110 transcripts were differentially expressed by dispersant and/or crude oil exposure, primarily dominated by the down-regulation of 74 unique transcripts in the dispersant treatment. In contrast, UV exposure alone or combined with dispersant and/or oil resulted in the differential expression of 1133 transcripts, of which 436 were shared between all four treatment combinations. Most significant was the differential expression of 531 transcripts unique to one or more of the combined UV/chemical exposures. Main categories of genes affected by one or more of the treatments included enzymes involved in xenobiotic metabolism and transport, DNA repair enzymes, and general stress response genes conserved among vertebrates and invertebrates. However, the most interesting observation was the induction of several transcripts indicating de novo synthesis of mycosporine-like amino acids and other novel cellular antioxidants. Together, our data suggest that the toxicity of oil and/or dispersant and the complexity of the molecular response are significantly enhanced by UV exposure, which may co-occur for shallow water species like Nematostella.
Collapse
Affiliation(s)
- Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Samantha L Payton
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Adam M Reitzel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Danielle T Porter
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Matthew J Jenny
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
28
|
Payton L, Perrigault M, Hoede C, Massabuau JC, Sow M, Huvet A, Boullot F, Fabioux C, Hegaret H, Tran D. Remodeling of the cycling transcriptome of the oyster Crassostrea gigas by the harmful algae Alexandrium minutum. Sci Rep 2017; 7:3480. [PMID: 28615697 PMCID: PMC5471176 DOI: 10.1038/s41598-017-03797-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/04/2017] [Indexed: 11/24/2022] Open
Abstract
As a marine organism, the oyster Crassostrea gigas inhabits a complex biotope governed by interactions between the moon and the sun cycles. We used next-generation sequencing to investigate temporal regulation of oysters under light/dark entrainment and the impact of harmful algal exposure. We found that ≈6% of the gills' transcriptome exhibits circadian expression, characterized by a nocturnal and bimodal pattern. Surprisingly, a higher number of ultradian transcripts were also detected under solely circadian entrainment. The results showed that a bloom of Alexandrium minutum generated a remodeling of the bivalve's temporal structure, characterized by a loss of oscillations, a genesis of de novo oscillating transcripts, and a switch in the period of oscillations. These findings provide unprecedented insights into the diurnal landscape of the oyster's transcriptome and pleiotropic remodeling due to toxic algae exposure, revealing the intrinsic plasticity of the cycling transcriptome in oysters.
Collapse
Affiliation(s)
- Laura Payton
- University of Bordeaux, EPOC, UMR 5805, F-33120, Arcachon, France
- CNRS, EPOC, UMR 5805, F-33120, Arcachon, France
| | - Mickael Perrigault
- University of Bordeaux, EPOC, UMR 5805, F-33120, Arcachon, France
- CNRS, EPOC, UMR 5805, F-33120, Arcachon, France
| | - Claire Hoede
- Plate-forme bio-informatique Genotoul, MIAT, Université de Toulouse, INRA, F-31326, Castanet-Tolosan, France
| | - Jean-Charles Massabuau
- University of Bordeaux, EPOC, UMR 5805, F-33120, Arcachon, France
- CNRS, EPOC, UMR 5805, F-33120, Arcachon, France
| | - Mohamedou Sow
- University of Bordeaux, EPOC, UMR 5805, F-33120, Arcachon, France
| | - Arnaud Huvet
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER), CS 10070, F-29280, Plouzané, France
| | - Floriane Boullot
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER), CS 10070, F-29280, Plouzané, France
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/IFREMER, F-29280, Plouzané, France
| | - Caroline Fabioux
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER), CS 10070, F-29280, Plouzané, France
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/IFREMER, F-29280, Plouzané, France
| | - Hélène Hegaret
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER), CS 10070, F-29280, Plouzané, France
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/IFREMER, F-29280, Plouzané, France
| | - Damien Tran
- University of Bordeaux, EPOC, UMR 5805, F-33120, Arcachon, France.
- CNRS, EPOC, UMR 5805, F-33120, Arcachon, France.
| |
Collapse
|
29
|
Oldach MJ, Workentine M, Matz MV, Fan TY, Vize PD. Transcriptome dynamics over a lunar month in a broadcast spawning acroporid coral. Mol Ecol 2017; 26:2514-2526. [DOI: 10.1111/mec.14043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/08/2017] [Accepted: 01/11/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Matthew J. Oldach
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary Alberta Canada T2N1N4
| | - Matthew Workentine
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary Alberta Canada T2N1N4
| | | | - Tung-Yung Fan
- National Museum of Marine Biology and Aquarium; Checheng Pingtung 944 Taiwan
| | - Peter D. Vize
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary Alberta Canada T2N1N4
- School of Biological Sciences; University of Queensland; St. Lucia Qld 4072 Australia
| |
Collapse
|
30
|
Gutner-Hoch E, Schneider K, Stolarski J, Domart-Coulon I, Yam R, Meibom A, Shemesh A, Levy O. Evidence for Rhythmicity Pacemaker in the Calcification Process of Scleractinian Coral. Sci Rep 2016; 6:20191. [PMID: 26847144 PMCID: PMC4742845 DOI: 10.1038/srep20191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 12/17/2015] [Indexed: 11/09/2022] Open
Abstract
Reef-building scleractinian (stony) corals are among the most efficient bio-mineralizing organisms in nature. The calcification rate of scleractinian corals oscillates under ambient light conditions, with a cyclic, diurnal pattern. A fundamental question is whether this cyclic pattern is controlled by exogenous signals or by an endogenous 'biological-clock' mechanism, or both. To address this problem, we have studied calcification patterns of the Red Sea scleractinian coral Acropora eurystoma with frequent measurements of total alkalinity (AT) under different light conditions. Additionally, skeletal extension and ultra-structure of newly deposited calcium carbonate were elucidated with (86)Sr isotope labeling analysis, combined with NanoSIMS ion microprobe and scanning electron microscope imaging. Our results show that the calcification process persists with its cyclic pattern under constant light conditions while dissolution takes place within one day of constant dark conditions, indicating that an intrinsic, light-entrained mechanism may be involved in controlling the calcification process in photosymbiotic corals.
Collapse
Affiliation(s)
- Eldad Gutner-Hoch
- The Mina &Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Kenneth Schneider
- The Mina &Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Jaroslaw Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818 Warsaw, Poland
| | - Isabelle Domart-Coulon
- MCAM UMR7245, Sorbonne Universités, Muséum National d'Histoire Naturelle, (CP54) 57 rue Cuvier, 75005 Paris, France
| | - Ruth Yam
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, P.O.Box 26, 76100 Rehovot, Israel
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Aldo Shemesh
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, P.O.Box 26, 76100 Rehovot, Israel
| | - Oren Levy
- The Mina &Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| |
Collapse
|
31
|
Maas AE, Jones IT, Reitzel AM, Tarrant AM. Daily cycle in oxygen consumption by the sea anemone Nematostella vectensis Stephenson. Biol Open 2016; 5:161-4. [PMID: 26772201 PMCID: PMC4823979 DOI: 10.1242/bio.013474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bilaterian animals, the circadian clock is intimately involved in regulating energetic metabolism. Although cnidarians exhibit diel behavioral rhythms including cycles in locomotor activity, tentacle extension and spawning, daily cycles in cnidarian metabolism have not been described. To explore a possible circadian metabolic cycle, we maintained the anemone Nematostella vectensis in a 12 h light/dark cycle, a reversed light cycle, or in constant darkness. Oxygen consumption rates were measured at intervals using an optical oxygen meter. Respiration rates responded to entrainment with higher rates during light periods. During a second experiment with higher temporal resolution, respiration rates peaked late in the light period. The diel pattern could be detected after six days in constant darkness. Together, our results suggest that respiration rates in Nematostella exhibit a daily cycle that may be under circadian control and that the cycle in respiration rate is not driven by the previously described nocturnal increase in locomotor activity in this species. Summary: This study demonstrates that the sea anemone Nematostella exhibits a daily cycle in respiration rate that is not driven by the previously described nocturnal increase in movement in this species.
Collapse
Affiliation(s)
- Amy E Maas
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Bermuda Institute of Ocean Sciences, St. George's GE01, Bermuda
| | - Ian T Jones
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|