1
|
Linders DGJ, Bijlstra OD, Walker E, March TL, Pool M, Valentijn ARPM, Dijkhuis TH, Woltering JN, Pijl FR, Noordam G, van den Burg D, van der Sijp JRM, Guicherit OR, Marinelli AWKS, Burggraaf J, Rissmann R, Bogyo M, Hilling DE, Kuppen PJK, Straight B, Straver ME, Hazelbag HM, Basilion JP, Vahrmeijer AL. Ex vivo fluorescence-guided resection margin assessment in breast cancer surgery using a topically applied, cathepsin-activatable imaging agent. Pharmacol Res 2024; 209:107464. [PMID: 39401538 DOI: 10.1016/j.phrs.2024.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Up to 40 % of breast cancer patients have a tumor-positive resection margin (TPRM) - defined as cancer cells at the surface of the resected specimen - after breast-conserving surgery (BCS), necessitating re-resection or boost radiation. To prevent these additional treatments, intraoperative near-infrared (NIR) fluorescence imaging with the topically applied, cathepsin-activatable imaging agent AKRO-6qcICG might be used to detect TPRMs and guide additional resection. Here, to validate its performance, the agent is topically applied to all surfaces of freshly resected breast cancer specimens (n = 11 patients) and to 3-5 mm thick tissue slices of the specimens (n = 26 patients). NIR fluorescence images of the resection surfaces and tissue slices are acquired and correlated to final histopathology. AKRO-6qcICG detects TPRMs with a sensitivity, specificity, PVV, and NPV of 100 %, 67 %, 10 %, and 100 %, respectively. On the tissue slices, the fluorescence signal has a median tumor-to-background ratio of 1.8. These findings indicate that topically applied AKRO-6qcICG can visualize TPRMs ex vivo with a high sensitivity and NPV, with sufficient contrast to adjacent healthy breast tissue.
Collapse
Affiliation(s)
- Daan G J Linders
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Okker D Bijlstra
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Taryn L March
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - A Rob P M Valentijn
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Tom H Dijkhuis
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Jikke N Woltering
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Floor R Pijl
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Gilbert Noordam
- Department of Pathology, Haaglanden Medical Center, The Hague 2512 VA, The Netherlands
| | - Davey van den Burg
- Department of Pathology, Haaglanden Medical Center, The Hague 2512 VA, The Netherlands
| | | | - Onno R Guicherit
- Department of Surgery, Haaglanden Medical Center, The Hague 2512 VA, The Netherlands
| | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden 2333 CL, The Netherlands; Leiden Academic Center for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden 2333 CL, The Netherlands; Leiden Academic Center for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Matthew Bogyo
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Denise E Hilling
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands; Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | | | - Marieke E Straver
- Department of Surgery, Haaglanden Medical Center, The Hague 2512 VA, The Netherlands
| | - Hans Marten Hazelbag
- Department of Pathology, Haaglanden Medical Center, The Hague 2512 VA, The Netherlands
| | - James P Basilion
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Akrotome Imaging Inc., Cleveland, OH 44106, USA; Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| |
Collapse
|
2
|
Saleem M, Hanif M, Rafiq M, Raza H, Ja KS, Lu C. γ-Glutamyltranspeptidase (GGT) Sensitive Fluorescence Probes for Cancer Diagnosis; Brief Review. J Fluoresc 2024; 34:977-1006. [PMID: 37505365 DOI: 10.1007/s10895-023-03353-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Millions of deaths occur each year due to the late diagnosis of abnormal cellular growth within the body. However, the devastating impact of this can be significantly reduced if cancer metastasis is detected early through the use of enzymatic biomarkers. Among several biomarkers, γ-glutamyltranspeptidase (GGT) stands out as a member of the aminopeptidase family. It is primarily found on the surface of cancer cells such as glioma, ovarian, lung, and prostate cancer, without being overexpressed in normal cells or tissues. Recent years have witnessed significant progress in the field of cancer monitoring and imaging. Fluorescence sensing techniques have been employed, utilizing organic small molecular probes with enzyme-specific recognition sites. These probes emit a fluorescent signal upon interacting with GGT, enabling the imaging, identification, and differentiation of normal and cancerous cells, tissues, and organs. This review article presents a concise overview of recent progress in fluorescent probes developed for the selective detection of GGT, focusing on their applications in cancer imaging. It highlights the observed alterations in the fluorescence and absorption spectra of the probes before and after interaction with GGT. Additionally, the study investigates the changes in the probe molecule's structure following enzyme treatment, evaluates the sensor's detection limit, and consolidated imaging studies conducted using confocal fluorescence analysis. This comprehensive survey is expected to contribute to the advancement of sensing techniques for biomarker detection and cancer imaging, providing valuable insights for refining methodologies and inspiring future developments in this field.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
- Department of Chemistry, Thal University Bhakkar, Bhakkar, 30000, Pakistan.
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub Campus, Layyah, 31200, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Hussain Raza
- Department of Biological Sciences, Kongu National University, Kongju Chungnam, Republic of Korea
| | - Kim Song Ja
- Department of Biological Sciences, Kongu National University, Kongju Chungnam, Republic of Korea
| | - Changrui Lu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Fujita K, Urano Y. Activity-Based Fluorescence Diagnostics for Cancer. Chem Rev 2024; 124:4021-4078. [PMID: 38518254 DOI: 10.1021/acs.chemrev.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Fluorescence imaging is one of the most promising approaches to achieve intraoperative assessment of the tumor/normal tissue margins during cancer surgery. This is critical to improve the patients' prognosis, and therefore various molecular fluorescence imaging probes have been developed for the identification of cancer lesions during surgery. Among them, "activatable" fluorescence probes that react with cancer-specific biomarker enzymes to generate fluorescence signals have great potential for high-contrast cancer imaging due to their low background fluorescence and high signal amplification by enzymatic turnover. Over the past two decades, activatable fluorescence probes employing various fluorescence control mechanisms have been developed worldwide for this purpose. Furthermore, new biomarker enzymatic activities for specific types of cancers have been identified, enabling visualization of various types of cancers with high sensitivity and specificity. This Review focuses on recent advances in the design, function and characteristics of activatable fluorescence probes that target cancer-specific enzymatic activities for cancer imaging and also discusses future prospects in the field of activity-based diagnostics for cancer.
Collapse
|
4
|
Takahashi R, Ishizawa T, Inagaki Y, Tanaka M, Ogasawara A, Kuriki Y, Fujita K, Kamiya M, Ushiku T, Urano Y, Hasegawa K. Real-Time Fluorescence Imaging to Identify Cholangiocarcinoma in the Extrahepatic Biliary Tree Using an Enzyme-Activatable Probe. Liver Cancer 2023; 12:590-602. [PMID: 38058421 PMCID: PMC10697719 DOI: 10.1159/000530645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/03/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Complete resection is the only possible treatment for cholangiocarcinoma in the extrahepatic biliary tree (eCCA), although current imaging modalities are limited in their ability to accurately diagnose longitudinal spread. We aimed to develop fluorescence imaging techniques for real-time identification of eCCA using an enzyme-activatable probe, which emits fluorescence immediately after activation by a cancer-specific enzyme. Methods Using lysates and small tissue fragments collected from surgically resected specimens, we selected the most specific probe for eCCA from among 800 enzyme-activatable probes. The selected probe was directly sprayed onto resected specimens and fluorescence images were acquired; these images were evaluated for diagnostic accuracy. We also comprehensively searched for enzymes that could activate the probe, then compared their expression levels in cancer and non-cancer tissues. Results Analyses of 19 samples (four cancer lysates, seven non-cancer lysates, and eight bile samples) and 54 tissue fragments (13 cancer tissues and 41 non-cancer tissues) revealed that PM-2MeSiR was the most specific fluorophore for eCCA. Fluorescence images of 7 patients were obtained; these images enabled rapid identification of cancerous regions, which closely matched histopathology findings in 4 patients. Puromycin-sensitive aminopeptidase was identified as the enzyme that might activate the probe, and its expression was upregulated in eCCA. Conclusion Fluorescence imaging with PM-2MeSiR, which may be activated by puromycin-sensitive aminopeptidase, yielded generally high accuracy. This technique may be useful for real-time identification of the spread of eCCA during surgery and endoscopic examinations.
Collapse
Affiliation(s)
- Ryugen Takahashi
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Takeaki Ishizawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshinori Inagaki
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| | - Mariko Tanaka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Ogasawara
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yugo Kuriki
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyohhei Fujita
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuteru Urano
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku Tokyo, Japan
| |
Collapse
|
5
|
Tsuchimochi S, Wada-Hiraike O, Urano Y, Kukita A, Yamaguchi K, Honjo H, Taguchi A, Tanikawa M, Sone K, Mori-Uchino M, Tsuruga T, Oda K, Osuga Y. Characterization of a fluorescence imaging probe that exploits metabolic dependency of ovarian clear cell carcinoma. Sci Rep 2023; 13:20292. [PMID: 37985723 PMCID: PMC10662153 DOI: 10.1038/s41598-023-47637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The purpose of this study is to clarify the metabolic dependence of ovarian clear cell carcinoma (CCC) by comparing normal tissues and to examine the applicability of fluorescence imaging probe to exploit these metabolic differences. Enhanced glutathione synthesis was supported by the increased uptake of related metabolites and elevated expression levels of genes. Accumulation of intracellular iron and lipid peroxide, induction of cell death by inhibition of the glutathione synthesis pathway indicated that ferroptosis was induced. The activation of γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG), a fluorescent imaging probe that recognizes γ-glutamyl transferase, which is essential for the synthesis of glutathione, was investigated in fresh-frozen surgical specimens. gGlu-HMRG detected extremely strong fluorescent signals in the tumor lesions of CCC patients, compared to normal ovaries or endometrium. These results revealed that CCC occurs in the stressful and unique environment of free radical-rich endometrioma, and that glutathione metabolism is enhanced as an adaptation to oxidative stress. Furthermore, a modality that exploits these metabolic differences would be useful for distinguishing between CCC and normal tissues.
Collapse
Affiliation(s)
- Saki Tsuchimochi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan.
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
- CREST, Japan Agency for Medical Research and Development, Chiyoda, Tokyo, 100-0004, Japan
| | - Asako Kukita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Kohei Yamaguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Harunori Honjo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Katsutoshi Oda
- Department of Integrated Genomics, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| |
Collapse
|
6
|
Rapid imaging of thymoma and thymic carcinoma with a fluorogenic probe targeting γ-glutamyltranspeptidase. Sci Rep 2023; 13:3757. [PMID: 36882498 PMCID: PMC9992351 DOI: 10.1038/s41598-023-30753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
In recent years, thoracoscopic and robotic surgical procedures have increasingly replaced median sternotomy for thymoma and thymic carcinoma. In cases of partial thymectomy, the prognosis is greatly improved by ensuring a sufficient margin from the tumor, and therefore intraoperative fluorescent imaging of the tumor is especially valuable in thoracoscopic and robotic surgery, where tactile information is not available. γ-Glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) has been applied for fluorescence imaging of some types of tumors in the resected tissues, and here we aimed to examine its validity for the imaging of thymoma and thymic carcinoma. 22 patients with thymoma or thymic carcinoma who underwent surgery between February 2013 and January 2021 were included in the study. Ex vivo imaging of specimens was performed, and the sensitivity and specificity of gGlu-HMRG were 77.3% and 100%, respectively. Immunohistochemistry (IHC) staining was performed to confirm expression of gGlu-HMRG's target enzyme, γ-glutamyltranspeptidase (GGT). IHC revealed high GGT expression in thymoma and thymic carcinoma in contrast to absent or low expression in normal thymic parenchyma and fat tissue. These results suggest the utility of gGlu-HMRG as a fluorescence probe for intraoperative visualization of thymomas and thymic carcinomas.
Collapse
|
7
|
Gong P, Chin SL, Allen WM, Ballal H, Anstie JD, Chin L, Ismail HM, Zilkens R, Lakhiani DD, McCarthy M, Fang Q, Firth D, Newman K, Thomas C, Li J, Sanderson RW, Foo KY, Yeomans C, Dessauvagie BF, Latham B, Saunders CM, Kennedy BF. Quantitative Micro-Elastography Enables In Vivo Detection of Residual Cancer in the Surgical Cavity during Breast-Conserving Surgery. Cancer Res 2022; 82:4093-4104. [PMID: 36098983 PMCID: PMC9627129 DOI: 10.1158/0008-5472.can-22-0578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/29/2022] [Accepted: 09/08/2022] [Indexed: 01/07/2023]
Abstract
Breast-conserving surgery (BCS) is commonly used for the treatment of early-stage breast cancer. Following BCS, approximately 20% to 30% of patients require reexcision because postoperative histopathology identifies cancer in the surgical margins of the excised specimen. Quantitative micro-elastography (QME) is an imaging technique that maps microscale tissue stiffness and has demonstrated a high diagnostic accuracy (96%) in detecting cancer in specimens excised during surgery. However, current QME methods, in common with most proposed intraoperative solutions, cannot image cancer directly in the patient, making their translation to clinical use challenging. In this proof-of-concept study, we aimed to determine whether a handheld QME probe, designed to interrogate the surgical cavity, can detect residual cancer directly in the breast cavity in vivo during BCS. In a first-in-human study, 21 BCS patients were scanned in vivo with the QME probe by five surgeons. For validation, protocols were developed to coregister in vivo QME with postoperative histopathology of the resected tissue to assess the capability of QME to identify residual cancer. In four cavity aspects presenting cancer and 21 cavity aspects presenting benign tissue, QME detected elevated stiffness in all four cancer cases, in contrast to low stiffness observed in 19 of the 21 benign cases. The results indicate that in vivo QME can identify residual cancer by directly imaging the surgical cavity, potentially providing a reliable intraoperative solution that can enable more complete cancer excision during BCS. SIGNIFICANCE Optical imaging of microscale tissue stiffness enables the detection of residual breast cancer directly in the surgical cavity during breast-conserving surgery, which could potentially contribute to more complete cancer excision.
Collapse
Affiliation(s)
- Peijun Gong
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia.,Corresponding Author: Peijun Gong, BRITElab, Harry Perkins Institute of Medical Research, Perth 6009, Australia. Phone: 61-8-6488-6774; E-mail:
| | - Synn Lynn Chin
- Breast Centre, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Wes M. Allen
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Helen Ballal
- Breast Centre, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - James D. Anstie
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Lixin Chin
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Hina M. Ismail
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Renate Zilkens
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Division of Surgery, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Devina D. Lakhiani
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | | | - Qi Fang
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Daniel Firth
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Kyle Newman
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Caleb Thomas
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne, Victoria, Australia
| | - Rowan W. Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Ken Y. Foo
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Chris Yeomans
- PathWest, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Benjamin F. Dessauvagie
- PathWest, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.,Division of Pathology and Laboratory Medicine, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Bruce Latham
- PathWest, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.,The University of Notre Dame, Fremantle, Western Australia, Australia
| | - Christobel M. Saunders
- Breast Centre, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.,Division of Surgery, Medical School, The University of Western Australia, Perth, Western Australia, Australia.,Breast Clinic, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Shang W, Xia X, Lu N, Gao P, Peng L, Liu Y, Deng H, Jiang J, Li Z, Liu J. Colourful fluorescence-based carbon dots for tumour imaging-guided nanosurgery. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102583. [PMID: 35870765 DOI: 10.1016/j.nano.2022.102583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Fluorescent-intraoperative navigation is a visual technique that allows surgeons to accurately distinguish malignant and normal tissues during surgery. It has the advantages of immediacy, high resolution, and high specificity. However, a single fluorescent source cannot provide sufficient surgical information. Multicolour carbon dots (CDs) are more suitable since they provide outstanding water solubility, photostability, and multicolour-fluorescence imaging. Here, we prepared an optical probe with CD-based multicolour-fluorescence imaging via a hydrothermal method. CDs can be endocytosed by tumour cells, and after intravenous injection, they can effectively accumulate at the tumour site. In a pancreatic cancer mouse model, we demonstrated the multicolour-fluorescence imaging capabilities of CDs, which aided the accurate resection of tumours under fluorescent-intraoperative navigation. Stereoscopic fluorescence microscopy imaging and H&E staining proved that the removed tissue belonged to the pancreatic tumour. This study emphasizes the potential of CDs for fluorescence-guided intraoperative resection and expands the application of CDs in biological fields.
Collapse
Affiliation(s)
- Wenting Shang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xueer Xia
- Department of Gastrointestinal Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Ningning Lu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Pengli Gao
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
| | - Li Peng
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
| | - Han Deng
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingying Jiang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.
| | - Zhou Li
- Department of Gastrointestinal Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Jianhua Liu
- Department of Oncology, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China.
| |
Collapse
|
9
|
Fluorescence Imaging Using Enzyme-Activatable Probes for Detecting Diabetic Kidney Disease and Glomerular Diseases. Int J Mol Sci 2022; 23:ijms23158150. [PMID: 35897725 PMCID: PMC9332157 DOI: 10.3390/ijms23158150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
A clear identification of the etiology of glomerular disease is essential in patients with diabetes. Renal biopsy is the gold standard for assessing the underlying nephrotic pathology; however, it has the risk for potential complications. Here, we aimed to investigate the feasibility of urinary fluorescence imaging using an enzyme-activatable probe for differentiating diabetic kidney disease and the other glomerular diseases. Hydroxymethyl rhodamine green (HMRG)-based fluorescent probes targeting gamma-glutamyl transpeptidase (GGT) and dipeptidyl-peptidase (DPP) were used. Urinary fluorescence was compared between groups which were classified by their histopathological diagnoses (diabetic kidney disease, glomerulonephritis, and nephrosclerosis) as obtained by ultrasound-guided renal biopsy. Urinary fluorescence was significantly stronger in patients with diabetic kidney disease compared to those with glomerulonephritis/nephrosclerosis after DPP-HMRG, whereas it was stronger in patients with nephrosclerosis than in patients with glomerulonephritis after GGT-HMRG. Subgroup analyses of the fluorescence performed for patients with diabetes showed consistent results. Urinary fluorescence imaging using enzyme-activatable fluorescence probes thus represents a potential noninvasive assessment technique for kidney diseases in patients with diabetes.
Collapse
|
10
|
Kawashima S, Yoshida D, Yoshioka T, Ogasawara A, Fujita K, Yanagiya M, Nagano M, Konoeda C, Hino H, Kitano K, Sato M, Hino R, Kojima R, Komatsu T, Kamiya M, Urano Y, Nakajima J. Rapid imaging of lung cancer using a red fluorescent probe to detect dipeptidyl peptidase 4 and puromycin-sensitive aminopeptidase activities. Sci Rep 2022; 12:9100. [PMID: 35650221 PMCID: PMC9160295 DOI: 10.1038/s41598-022-12665-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Rapid identification of lung-cancer micro-lesions is becoming increasingly important to improve the outcome of surgery by accurately defining the tumor/normal tissue margins and detecting tiny tumors, especially for patients with low lung function and early-stage cancer. The purpose of this study is to select and validate the best red fluorescent probe for rapid diagnosis of lung cancer by screening a library of 400 red fluorescent probes based on 2-methyl silicon rhodamine (2MeSiR) as the fluorescent scaffold, as well as to identify the target enzymes that activate the selected probe, and to confirm their expression in cancer cells. The selected probe, glutamine-alanine-2-methyl silicon rhodamine (QA-2MeSiR), showed 96.3% sensitivity and 85.2% specificity for visualization of lung cancer in surgically resected specimens within 10 min. In order to further reduce the background fluorescence while retaining the same side-chain structure, we modified QA-2MeSiR to obtain glutamine-alanine-2-methoxy silicon rhodamine (QA-2OMeSiR). This probe rapidly visualized even borderline lesions. Dipeptidyl peptidase 4 and puromycin-sensitive aminopeptidase were identified as enzymes mediating the cleavage and consequent fluorescence activation of QA-2OMeSiR, and it was confirmed that both enzymes are expressed in lung cancer. QA-2OMeSiR is a promising candidate for clinical application.
Collapse
Affiliation(s)
- Shun Kawashima
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Yoshida
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takafusa Yoshioka
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Ogasawara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyohhei Fujita
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Yanagiya
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaaki Nagano
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihiro Konoeda
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruaki Hino
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Kitano
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rumi Hino
- Department of Sports and Health Science, Daito Bunka University, Saitama, Japan
| | - Ryosuke Kojima
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuteru Urano
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
11
|
Development of an intraoperative breast cancer margin assessment method using quantitative fluorescence measurements. Sci Rep 2022; 12:8520. [PMID: 35595810 PMCID: PMC9122917 DOI: 10.1038/s41598-022-12614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
Breast-conserving surgery has become the preferred treatment method for breast cancer. Surgical margin assessment is performed during surgery, as it can reduce local recurrence in the preserved breast. Development of reliable and lower-cost ex vivo cancer detection methods would offer several benefits for patient care. Here, a practical and quantitative evaluation method for the ex vivo fluorescent diagnosis of breast lesions was developed and confirmed through a three-step clinical study. Gamma-glutamyl-hydroxymethyl rhodamine green (gGlu-HMRG) has been reported to generate fluorescence in breast lesions. Using this probe, we constructed a reliable and reproducible procedure for the quantitative evaluation of fluorescence levels. We evaluated the reliability of the method by considering reproducibility, temperature sensitivity, and the effects of other clinicopathological factors. The results suggest that the fluorescence increase of gGlu-HMRG is a good indicator of the malignancy of breast lesions. However, the distributions overlapped. A 5 min reaction with this probe could be used to distinguish at least part of the normal breast tissue. This method did not affect the final pathological examination. In summary, our results indicate that the methods developed in this study may serve as a feasible intraoperative negative-margin assessment tool during breast-conserving surgery.
Collapse
|
12
|
Kuriki Y, Yoshioka T, Kamiya M, Komatsu T, Takamaru H, Fujita K, Iwaki H, Nanjo A, Akagi Y, Takeshita K, Hino H, Hino R, Kojima R, Ueno T, Hanaoka K, Abe S, Saito Y, Nakajima J, Urano Y. Development of a fluorescent probe library enabling efficient screening of tumour-imaging probes based on discovery of biomarker enzymatic activities. Chem Sci 2022; 13:4474-4481. [PMID: 35656140 PMCID: PMC9019911 DOI: 10.1039/d1sc06889j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/07/2022] [Indexed: 01/05/2023] Open
Abstract
Fluorescent probes that can selectively detect tumour lesions have great potential for fluorescence imaging-guided surgery. Here, we established a library-based approach for efficient screening of probes for tumour-selective imaging based on discovery of biomarker enzymes. We constructed a combinatorial fluorescent probe library for aminopeptidases and proteases, which is composed of 380 probes with various substrate moieties. Using this probe library, we performed lysate-based in vitro screening and/or direct imaging-based ex vivo screening of freshly resected clinical specimens from lung or gastric cancer patients, and found promising probes for tumour-selective visualization. Further, we identified two target enzymes as novel biomarker enzymes for discriminating between tumour and non-tumour tissues. This library-based approach is expected to be an efficient tool to develop tumour-imaging probes and to discover new biomarker enzyme activities for various tumours and other diseases. Efficient methodology to develop tumor-imaging fluorescent probes based on screening with our newly constructed probe library for aminopeptidase/protease (380 probes) and clinical samples has been established.![]()
Collapse
Affiliation(s)
- Yugo Kuriki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Takafusa Yoshioka
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan .,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Hiroyuki Takamaru
- Endoscopy Division, National Cancer Center Hospital 5-1-1, Tsukiji Chuo-ku Tokyo Japan
| | - Kyohhei Fujita
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Hirohisa Iwaki
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Aika Nanjo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Yuki Akagi
- Institute of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei-shi Tokyo Japan
| | - Kohei Takeshita
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Haruaki Hino
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan .,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Rumi Hino
- Daito Bunka University, Department of Sports and Health Science 560, Iwadono Higashimatsuyama Saitama Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan .,PRESTO, Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi-shi Saitama Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Seiichiro Abe
- Endoscopy Division, National Cancer Center Hospital 5-1-1, Tsukiji Chuo-ku Tokyo Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital 5-1-1, Tsukiji Chuo-ku Tokyo Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan.,Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo Japan .,CREST, Agency for Medical Research and Development (AMED) 1-7-1 Otemachi Chiyoda-ku Tokyo Japan
| |
Collapse
|
13
|
Nakada A, Maruyama T, Kamiya M, Hanaoka K, Urano Y. Rapid Visualization of Deeply Located Tumors In Vivo by Intravenous Administration of a γ-Glutamyltranspeptidase-Activated Fluorescent Probe. Bioconjug Chem 2022; 33:523-529. [PMID: 35166539 DOI: 10.1021/acs.bioconjchem.2c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously showed that spraying the fluorescent probe gGlu-HMRG (γ-glutamyl hydroxymethyl rhodamine green) can visualize even tiny tumors on the mesentery and peritoneal wall of tumor-bearing mice. However, during surgery, repeated spraying is necessary to detect tumors located deep within organs. Here, we examine whether deeply located tumors can be stained by intravenous administration of this probe. In mice bearing subcutaneous tumors, intravenous administration of gGlu-HMRG resulted in a rapid and specific increase of fluorescence in the tumor, which was visible to the naked eye within 5 min, and the maximum fluorescence intensity ratio of tumor to normal tissue (T/N = 4.3) was reached at 30 min. In mice bearing lung tumors, the T/N ratio reached approximately 20 at 30 min after administration, and deeply located tumors were clearly visualized. These results suggest that intravenous administration of gGlu-HMRG may be a useful technique in fluorescence-guided surgery of tumors.
Collapse
Affiliation(s)
- Akihiro Nakada
- DMPK Research Laboratory, Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Company, Limited, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Takuma Maruyama
- Toxicology Research Laboratory, Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Company, Limited, 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
HIROSE Y, UCHIDA M, TSUBOI M, NAKAGAWA T, YAGA L, MAEDA S, MOMOI Y, KURIKI Y, KAMIYA M, URANO Y, YONEZAWA T. Rapid visualization of mammary gland tumor lesions of dogs using the enzyme-activated fluorogenic probe; γ-glutamyl hydroxymethyl rhodamine green. J Vet Med Sci 2022; 84:593-599. [PMID: 35249908 PMCID: PMC9096042 DOI: 10.1292/jvms.22-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since gamma-glutamyl transpeptidase (GGT) is highly and locally expressed in human breast
cancer, a GGT-enzymatically activatable fluorescent probe, gamma-glutamyl hydroxymethyl
rhodamine green (gGlu-HMRG), has been developed to detect the human breast cancer area
with high performance. In this study, GGT expression and the efficacy of gGlu-HMRG on
visualization were investigated in canine mammary gland tumors (MGT). Seventeen non-fixed
fresh-frozen MGT specimens and each peritumoral control tissue were utilized. The GGT mRNA
levels were highly observed in the tumor specimens compared with the control. GGT
immunostaining was mostly observed on the cell membrane and cytosol of the alveolar and
duct mammary epithelium of MGT tissues. These signals were strongly positive in several
cases while they were mild to not observed in other cases. When gGlu-HMRG solution was
dropped to the non-fixed tissue pieces of MGT or control tissues, the fluorescence
intensities (FIs) were measured using Maestro in-vivo imaging device. FIs
in MGT tissues were significantly higher than each control tissue 20 min after treatment.
Based on Youden index method said that the maximum sensitivity and specificity of FI was
82.4% and 82.4%. These findings suggest that GGT is highly expressed in several MGTs in
dogs and gGlu-HMRG could visualize at least a part of MGT tissues in dogs. Nevertheless,
it should be needed to assess the false-negative areas more carefully in canine than human
cases.
Collapse
Affiliation(s)
- Yui HIROSE
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Mona UCHIDA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | | | - Takayuki NAKAGAWA
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Leo YAGA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Shingo MAEDA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Yasuyuki MOMOI
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Yugo KURIKI
- Graduate School of Medicine, The University of Tokyo
| | - Mako KAMIYA
- Graduate School of Medicine, The University of Tokyo
| | | | - Tomohiro YONEZAWA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
15
|
Li W, Li X. Development of intraoperative assessment of margins in breast conserving surgery: a narrative review. Gland Surg 2022; 11:258-269. [PMID: 35242687 PMCID: PMC8825505 DOI: 10.21037/gs-21-652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/17/2021] [Indexed: 07/28/2023]
Abstract
OBJECTIVE We intend to provide an informative and up-to-date summary on the topic of intraoperative assessment of margins in breast conserving surgery (BCS). Conventional methods as well as cutting-edge technologies are analyzed for their advantages and limitations in the hope that clinicians can turn to this for reference. This review can also offer guidance for technicians in the future design of intraoperative margin assessment tools. BACKGROUND Achieving negative margins during BCS is one of the vital factors for preventing local recurrence. Conducting intraoperative margin assessment can ensure negative margins to a large extent and possibly relieve patients of the anguish of re-interventions. In recent years, innovative methods for margin assessment during BCS are advancing rapidly. And there is a lack of summary regarding the development of intraoperative margin assessment in BCS. METHODS A PubMed search with keywords "intraoperative margin assessment" and "breast conserving surgery" was conducted. Relevant publications were screened manually for its title, abstract and even full text to determine its true relevance. Publications on neo-adjuvant therapy and intraoperative radiotherapy were excluded. References from the searched articles and other supplementary articles were also looked into. CONCLUSIONS Conventional methods for margin assessment yields stable outcome but its use is limited because of the demand on pathology staff and the trade-off between time and precision. Conventional imaging techniques pass the workload to radiologists at the cost of a significantly low duration of time. Involving artificial intelligence for image-based assessment is a further improvement. However, conventional imaging is inherently flawed in that occult lesions can't show on the image and the showing ones are ambiguous and open to interpretation. Unconventional techniques which base their judgment on cellular composition are more reassuring. Nonetheless, unconventional techniques should be subjected to clinical trials before putting into practice. And studies regarding comparison between conventional methods and unconventional methods are also needed to evaluate their relative efficacy.
Collapse
Affiliation(s)
- Wanheng Li
- First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Xiru Li
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Zhang Y, Zhang G, Zeng Z, Pu K. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem Soc Rev 2021; 51:566-593. [PMID: 34928283 DOI: 10.1039/d1cs00525a] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The real-time, dynamic optical visualization of lesions and margins ensures not only complete resection of the malignant tissues but also better preservation of the vital organs/tissues during surgical procedures. Most imaging probes with an "always-on" signal encounter high background noise due to their non-specific accumulation in normal tissues. By contrast, activatable molecular probes only "turn on" their signals upon reaction with the targeted biomolecules that are overexpressed in malignant cells, offering high target-to-background ratios with high specificity and sensitivity. This review summarizes the recent progress of activatable molecular probes in surgical imaging and diagnosis. The design principle and mechanism of activatable molecular probes are discussed, followed by specific emphasis on applications ranging from fluorescence-guided surgery to endoscopy and tissue biopsy. Finally, potential challenges and perspectives in the field of activatable molecular probe-enabled surgical imaging are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guopeng Zhang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
17
|
Ueo H, Ueo H, Minoura I, Gamachi A, Doi T, Yamaguchi M, Yamashita T, Tsuda H, Moriya T, Yamaguchi R, Kozuka Y, Sasaki T, Masuda T, Kai Y, Kubota Y, Urano Y, Mori M, Mimori K. Clinical usefulness of a novel fluorescence technique for the intraoperative diagnosis of surgical margins in patients with breast cancer. Br J Surg 2021; 108:e340-e342. [PMID: 34428279 DOI: 10.1093/bjs/znab265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 11/12/2022]
Abstract
In both 5- and 15-min data, FI was significantly higher in malignant tissues than in benign tissues. The diagnostic accuracy was similar at 5 and 15 min. Therefore, the 5-min FI was enough applying in the further analyses.
Collapse
Affiliation(s)
- H Ueo
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Ueo Breast Cancer Hospital, Oita, Japan
| | - H Ueo
- Ueo Breast Cancer Hospital, Oita, Japan
| | - I Minoura
- Goryo Chemical, Inc., Sapporo, Japan
| | - A Gamachi
- Department of Pathology, Almeida Memorial Hospital, Oita, Japan
| | - T Doi
- Breast Cancer Centre, Shonan Memorial Hospital, Kamakura, Japan
| | - M Yamaguchi
- Department of Breast Surgery, JCHO Kurume General Hospital, Kurume, Japan
| | - T Yamashita
- Department of Breast and Endocrine Surgery, Kanagawa Cancer Centre, Yokohama, Japan
| | - H Tsuda
- Department of Basic Pathology, National Defence Medical College, Tokorozawa, Japan
| | - T Moriya
- Department of Pathology, Kawasaki Medical School, Kurashiki, Japan
| | - R Yamaguchi
- Department of Pathology and Laboratory Medicine, Kurume University Medical Centre, Kurume, Japan
| | - Y Kozuka
- Department of Pathology, Mie University Hospital, Tsu, Japan
| | - T Sasaki
- Department of Next-Generation Pathology Information and Networking, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - T Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Y Kai
- Ueo Breast Cancer Hospital, Oita, Japan
| | - Y Kubota
- Ueo Breast Cancer Hospital, Oita, Japan
| | - Y Urano
- Graduate School of Medicine and Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - M Mori
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - K Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| |
Collapse
|
18
|
Pradipta AR, Tanaka K. Biofunctional chemistry and reactivity of biogenic acrolein for cancer diagnosis and therapy. Chem Commun (Camb) 2021; 57:9798-9806. [PMID: 34581321 DOI: 10.1039/d1cc03590h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acrolein holds excellent potential as a biomarker in various oxidative stress-related diseases, including cancer, Alzheimer's, Parkinson's, and inflammatory disorders. Consequently, a direct method to target and visualize acrolein in biological systems might be essential to provide tools for diagnosis and therapeutic purposes. Previously, we discovered 1,3-dipolar cycloaddition between aryl azides and acrolein, which proceeds without a catalyst to give α-diazocarbonyl derivatives. The reaction proceeds with high reactivity and selectivity even under physiological conditions. We have successfully utilized the reaction as a robust method for detecting acrolein generated by cancer cells. This review discusses the utilization of the endogenous acrolein reaction with aryl azide to (1) distinguish breast cancer from normal tissue during breast-conserving surgery and (2) treat cancer through selective prodrug activation in a mouse model without causing adverse effects. The methods have potential clinical application for breast-conserving surgery and are highly advantageous for cancer therapy.
Collapse
Affiliation(s)
- Ambara R Pradipta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, 152-8552, Tokyo, Japan. .,Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, 152-8552, Tokyo, Japan. .,Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan.,Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, 420008, Kazan, Russian Federation
| |
Collapse
|
19
|
Ogawa S, Kubo H, Murayama Y, Kubota T, Yubakami M, Matsumoto T, Yamamoto Y, Morimura R, Ikoma H, Okamoto K, Kamiya M, Urano Y, Otsuji E. Rapid fluorescence imaging of human hepatocellular carcinoma using the β-galactosidase-activatable fluorescence probe SPiDER-βGal. Sci Rep 2021; 11:17946. [PMID: 34504174 PMCID: PMC8429424 DOI: 10.1038/s41598-021-97073-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
Fluorescence imaging of tumours facilitates rapid intraoperative diagnosis. Thus far, a promising activatable fluorescence probe for hepatocellular carcinoma (HCC) has not been developed. Herein, the utility of the fluorescence imaging of HCC using a β-galactosidase (β-Gal)-activatable fluorescence probe SPiDER-βGal was examined. β-Gal activity was measured in cryopreserved tissues from 68 patients. Live cell imaging of HCC cell lines and imaging of tumour-bearing model mice were performed using SPiDER-βGal. Furthermore, fluorescence imaging was performed in 27 freshly resected human HCC specimens. In cryopreserved samples, β-Gal activity was significantly higher in tumour tissues than in non-tumour tissues. Fluorescence was observed in HCC cell lines. In mouse models, tumours displayed stronger fluorescence than normal liver tissue. In freshly resected specimens, fluorescence intensity in the tumour was significantly higher than that in non-tumour liver specimens as early as 2 min after spraying. Receiver operating characteristic curves were generated to determine the diagnostic value of SPiDER-βGal 10 min after its spraying; an area under the curve of 0.864, sensitivity of 85.2%, and specificity of 74.1% were observed for SPiDER-βGal. SPiDER-βGal is useful for the rapid fluorescence imaging of HCC. Fluorescence imaging guided by SPiDER-βGal would help surgeons detect tumours rapidly and achieve complete liver resection.
Collapse
Affiliation(s)
- Soichiro Ogawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hidemasa Kubo
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masayuki Yubakami
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tatsuya Matsumoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yusuke Yamamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- CREST (Japan) Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
20
|
Takahashi R, Ishizawa T, Sato M, Inagaki Y, Takanka M, Kuriki Y, Kamiya M, Ushiku T, Urano Y, Hasegawa K. Fluorescence Imaging Using Enzyme-Activatable Probes for Real-Time Identification of Pancreatic Cancer. Front Oncol 2021; 11:714527. [PMID: 34490111 PMCID: PMC8417470 DOI: 10.3389/fonc.2021.714527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction Radical resection is the only curative treatment for pancreatic cancer, which is a life-threatening disease. However, it is often not easy to accurately identify the extent of the tumor before and during surgery. Here we describe the development of a novel method to detect pancreatic tumors using a tumor-specific enzyme-activatable fluorescence probe. Methods Tumor and non-tumor lysate or small specimen collected from the resected specimen were selected to serve as the most appropriate fluorescence probe to distinguish cancer tissues from noncancerous tissues. The selected probe was sprayed onto the cut surface of the resected specimen of cancer tissue to acquire a fluorescence image. Next, we evaluated the ability of the probe to detect the tumor and calculated the tumor-to-background ratio (TBR) by comparing the fluorescence image with the pathological extent of the tumor. Finally, we searched for a tumor-specific enzyme that optimally activates the selected probe. Results Using a library comprising 309 unique fluorescence probes, we selected GP-HMRG as the most appropriate activatable fluorescence probe. We obtained eight fluorescence images of resected specimens, among which four approximated the pathological findings of the tumor, which achieved the highest TBR. Finally, dipeptidyl-peptidase IV (DPP-IV) or a DPP-IV-like enzyme was identified as the target enzyme. Conclusion This novel method may enable rapid and real-time visualization of pancreatic cancer through the enzymatic activities of cancer tissues.
Collapse
Affiliation(s)
- Ryugen Takahashi
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takeaki Ishizawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masumitsu Sato
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshinori Inagaki
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mariko Takanka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yugo Kuriki
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuteru Urano
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Li H, Kim D, Yao Q, Ge H, Chung J, Fan J, Wang J, Peng X, Yoon J. Activity‐Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image‐Guided Surgery. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009796] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Haidong Li
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| | - Dayeh Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
| | - Jeewon Chung
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Jingyun Wang
- School of Bioengineering Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road, Hi-tech Zone Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
22
|
Ogawa S, Kubo H, Murayama Y, Kubota T, Yubakami M, Matsumoto T, Ohashi T, Okamoto K, Kuriki Y, Hanaoka K, Urano Y, Otsuji E. Matrix metalloprotease-14 is a target enzyme for detecting peritoneal metastasis in gastric cancer. Photodiagnosis Photodyn Ther 2021; 35:102420. [PMID: 34242818 DOI: 10.1016/j.pdpdt.2021.102420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Accurate diagnosis of peritoneal metastasis in gastric cancer (GC) is important to determine the appropriate treatment. This study aimed to examine whether matrix metalloprotease-14 (MMP-14) was a candidate enzyme in fluorescence imaging for the diagnosis of peritoneal metastasis in GC. METHODS GC and normal peritoneal (NP) tissues from 96 and 20 patients, respectively were evaluated for MMP-14 expression. Live cell imaging of GC cell lines (NUGC4, MKN45, MKN74, HGC-27, and Kato-III) was performed using the MMP-14-activatable fluorescence probe; BODIPY-MMP. Furthermore, the overall survival (OS) was calculated in all patients (n = 96). RESULTS MMP-14 expression was significantly higher in GC tissues (median: 3.57 ng/mg protein; range:0.64-24.4 ng/mg protein) than in NP tissues (median: 1.34 ng/mg protein; median: 0.53-3.09 ng/mg protein) (P < 0.01). Receiver operating characteristic curves showed that the area under the curve, sensitivity, and specificity were 0.907, 84.4%, and 90.0%, respectively. In live cell imaging using the BODIPY-MMP, fluorescence was observed in five GC cell lines. In the analysis of OS, the high expression of the MMP-14 group had a significantly poorer OS rate than the low expression of the MMP-14 group (P = 0.02). In the multivariate analyses, MMP-14 expression was an independent risk factor for OS (hazard ratio: 2.33; 95 % confidence interval: 1.05-5.45; P = 0.04). CONCLUSION MMP-14 is a promising enzyme in intraoperative fluorescence imaging for peritoneal metastasis in GC, especially in patients with poor prognosis.
Collapse
Affiliation(s)
- Soichiro Ogawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Hidemasa Kubo
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Masayuki Yubakami
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Tatsuya Matsumoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yugo Kuriki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST (Japan) Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
23
|
Abe A, Kamiya M. A versatile toolbox for investigating biological processes based on quinone methide chemistry: From self-immolative linkers to self-immobilizing agents. Bioorg Med Chem 2021; 44:116281. [PMID: 34216983 DOI: 10.1016/j.bmc.2021.116281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/12/2021] [Indexed: 11/26/2022]
Abstract
Quinone methide (QM) species have been included in the design of various functional molecules. In this review, we present a comprehensive overview of bioanalytical tools based on QM chemistry. In the first part, we focus on self-immolative linkers that have been incorporated into functional molecules such as prodrugs and fluorescent probes. In the latter half, we outline how the highly electrophilic property of QMs, enabling them to react rapidly with neighboring nucleophiles, has been applied to develop inhibitors or labeling probes for enzymes, as well as self-immobilizing fluorogenic probes with high spatial resolution. This review systematically summarizes the versatile QM toolbox available for investigating biological processes.
Collapse
Affiliation(s)
- Atsuki Abe
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
24
|
Kitagawa Y, Tanaka S, Kamiya M, Kuriki Y, Yamamoto K, Shimizu T, Nejo T, Hana T, Matsuura R, Koike T, Yamazawa E, Kushihara Y, Takahashi S, Nomura M, Takami H, Takayanagi S, Mukasa A, Urano Y, Saito N. A Novel Topical Fluorescent Probe for Detection of Glioblastoma. Clin Cancer Res 2021; 27:3936-3947. [PMID: 34031057 DOI: 10.1158/1078-0432.ccr-20-4518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Five-aminolevulinic acid (5-ALA) is widely used as an intraoperative fluorescent probe for radical resection of high-grade glioma, and thus aids in extending progression-free survival of patients. However, there exist some cases where 5-ALA fails to fluoresce. In some other cases, it may undergo fluorescence quenching but cannot be orally readministered during surgery. This study aimed to develop a novel hydroxymethyl rhodamine green (HMRG)-based fluorescence labeling system that can be repeatedly administered as a topical spray during surgery for the detection of glioblastoma. EXPERIMENTAL DESIGN We performed a three-stage probe screening using tumor lysates and fresh tumor tissues with our probe library consisting of a variety of HMRG probes with different dipeptides. We then performed proteome and transcript expression analyses to detect candidate enzymes responsible for cleaving the probe. Moreover, in vitro and ex vivo studies using U87 glioblastoma cell line were conducted to validate the findings. RESULTS The probe screening identified proline-arginine-HMRG (PR-HMRG) as the optimal probe that distinguished tumors from peritumoral tissues. Proteome analysis identified calpain-1 (CAPN1) to be responsible for cleaving the probe. CAPN1 was highly expressed in tumor tissues which reacted to the PR-HMRG probe. Knockdown of this enzyme suppressed fluorescence intensity in U87 glioblastoma cells. In situ assay using a mouse U87 xenograft model demonstrated marked contrast of fluorescence with the probe between the tumor and peritumoral tissues. CONCLUSIONS The novel fluorescent probe PR-HMRG is effective in detecting glioblastoma when applied topically. Further investigations are warranted to assess the efficacy and safety of its clinical use.
Collapse
Affiliation(s)
- Yosuke Kitagawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yugo Kuriki
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyoko Yamamoto
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takenori Shimizu
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taijun Hana
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Matsuura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Koike
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Erika Yamazawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kushihara
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Nomura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuteru Urano
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
β-Galactosidase is a target enzyme for detecting peritoneal metastasis of gastric cancer. Sci Rep 2021; 11:10664. [PMID: 34021168 PMCID: PMC8139979 DOI: 10.1038/s41598-021-88982-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Diagnosis of peritoneal metastasis in gastric cancer (GC) is essential for determining appropriate therapeutic strategies and avoiding non-essential laparotomy or gastrectomy. Recently, a variety of activatable fluorescence probes that can detect enzyme activities have been developed for cancer imaging. The aim of this study was to identify the key enzyme involved in peritoneal metastasis in GC. The enzymatic activity of gamma-glutamyl transpeptidase, dipeptidyl peptidase IV, and β-galactosidase (β-Gal) was assessed in lysates prepared from preserved human GC (n = 89) and normal peritoneal (NP; n = 20) samples. β-Gal activity was significantly higher in the human GC samples than in NP samples, whereas no differences were observed in the activities of the other enzymes. Therefore, we used SPiDER-βGal, a fluorescent probe that can be activated by β-Gal, for imaging GC cell lines, peritoneal metastasis in a mouse model, and fresh human resected GC samples (n = 13). All cell lines showed fluorescence after applying SPiDER-βGal, and metastatic nodules in the mice gradually developed high fluorescence that could be visualized with SPiDER-βGal. The human GC samples showed significantly higher fluorescence than NP samples. β-Gal is a useful target enzyme for fluorescence imaging of peritoneal metastasis in GC.
Collapse
|
26
|
Pradipta AR, Tanaka K. Application of Acrolein Imines to Organic Synthesis, Biofunctional Studies, and Clinical Practice. CHEM REC 2021; 21:646-662. [PMID: 33769681 DOI: 10.1002/tcr.202000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/10/2021] [Indexed: 11/12/2022]
Abstract
N-alkyl unsaturated imines derived from acrolein, a toxin produced during oxidative stress, and biogenic alkyl amines occur naturally and are considered biologically relevant compounds. However, despite the recent conceptual and technological advances in organic synthesis, research on the new reactivity of these compounds is lacking. This personal account discusses research on the reactivity that has been overlooked in acrolein imines, including the discovery of new methods to synthesize biologically active compounds, the determination of new functions of relevant imines and their precursors, i. e., aldehydes and amines, and the application of these methods for clinical diagnosis.
Collapse
Affiliation(s)
- Ambara R Pradipta
- School of Materials and Chemical Technology, Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Katsunori Tanaka
- School of Materials and Chemical Technology, Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.,Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russian Federation
| |
Collapse
|
27
|
Activity‐Based NIR Enzyme Fluorescent Probes for the Diagnosis of Tumors and Image‐Guided Surgery. Angew Chem Int Ed Engl 2021; 60:17268-17289. [DOI: 10.1002/anie.202009796] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 02/02/2023]
|
28
|
Fujita K, Kamiya M, Urano Y. Rapid and Sensitive Detection of Cancer Cells with Activatable Fluorescent Probes for Enzyme Activity. Methods Mol Biol 2021; 2274:193-206. [PMID: 34050473 DOI: 10.1007/978-1-0716-1258-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescence (FL)-guided detection of cancer is one of the most promising approaches to achieve intraoperative assessment of surgical margins. Enzymes, such as aminopeptidase, carboxypeptidase, and glycosidase, whose activities are increased in cancer, have attracted great interest as imaging targets for rapid and sensitive visualization of cancerous tissues with fluorescent probes. Activatable probes, which are initially nonfluorescent but become strongly fluorescent upon rapid one-step cleavage of their substrate moiety by the target enzyme, are especially promising for practical clinical application during surgical or endoscopic procedures due to the highly amplified FL change generated by enzyme-catalyzed turnover at lesion sites. Here, we describe robust protocols for using activatable fluorescent probes targeting cancer-associated enzyme activities to visualize cultured cancer cells, metastatic cancer in a mouse model, and cancerous lesions in surgical specimens from patients.
Collapse
Affiliation(s)
- Kyohhei Fujita
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
29
|
Fujita K, Kamiya M, Yoshioka T, Ogasawara A, Hino R, Kojima R, Ueo H, Urano Y. Rapid and Accurate Visualization of Breast Tumors with a Fluorescent Probe Targeting α-Mannosidase 2C1. ACS CENTRAL SCIENCE 2020; 6:2217-2227. [PMID: 33376783 PMCID: PMC7760471 DOI: 10.1021/acscentsci.0c01189] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 05/21/2023]
Abstract
Accurate detection of breast tumors and discrimination of tumor from normal tissues during breast-conserving surgery are essential to reduce the risk of misdiagnosis or recurrence. However, existing probes show substantial background signals in normal breast tissues. In this study, we focus on glycosidase activities in breast tumors. We synthesized a series of 12 fluorescent probes and performed imaging-based evaluation on surgically resected human breast specimens. Among them, the α-mannosidase-reactive fluorescent probe HMRef-αMan detected breast cancer with 90% sensitivity and 100% specificity. We identified α-mannosidase 2C1 as the target enzyme and confirmed its overexpression in various breast tumors. We found that fibroadenoma, the most common benign breast lesion in young woman, tends to have higher α-mannosidase 2C1 activity than malignant cancer. Combined application of green-emitting HMRef-αMan and a red-emitting γ-glutamyltranspeptidase probe enabled efficient dual-color, dual-target optical discrimination of malignant and benign tumors.
Collapse
Affiliation(s)
- Kyohhei Fujita
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takafusa Yoshioka
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Akira Ogasawara
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Rumi Hino
- Daito
Bunka University, Department of Sports and
Health Science, 560 Iwadono, Higashimatsuyama, Saitama 355-8501, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroaki Ueo
- Ueo
Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Yasuteru Urano
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- CREST,
Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda,
Tokyo 100-0004, Japan
- E-mail
| |
Collapse
|
30
|
Obara R, Kamiya M, Tanaka Y, Abe A, Kojima R, Kawaguchi T, Sugawara M, Takahashi A, Noda T, Urano Y. γ‐Glutamyltranspeptidase (GGT)‐Activatable Fluorescence Probe for Durable Tumor Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rui Obara
- Graduate School of Medicine The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Mako Kamiya
- Graduate School of Medicine The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
- PRESTO Japan Science and Technology Agency 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Yoko Tanaka
- Cancer Institute Japanese Foundation for Cancer Research Koto-ku Tokyo 135-8550 Japan
| | - Atsuki Abe
- Graduate School of Medicine The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Ryosuke Kojima
- Graduate School of Medicine The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
- PRESTO Japan Science and Technology Agency 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Tokuichi Kawaguchi
- Cancer Institute Japanese Foundation for Cancer Research Koto-ku Tokyo 135-8550 Japan
- Cancer Precision Medicine Center Japanese Foundation for Cancer Research Koto-ku Tokyo 135-8550 Japan
| | - Minoru Sugawara
- Cancer Precision Medicine Center Japanese Foundation for Cancer Research Koto-ku Tokyo 135-8550 Japan
| | - Akiko Takahashi
- PRESTO Japan Science and Technology Agency 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- Cancer Institute Japanese Foundation for Cancer Research Koto-ku Tokyo 135-8550 Japan
| | - Tetsuo Noda
- Cancer Institute Japanese Foundation for Cancer Research Koto-ku Tokyo 135-8550 Japan
| | - Yasuteru Urano
- Graduate School of Medicine The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- CREST Japan Agency for Medical Research and Development (AMED) 1-7-1 Otemachi, Chiyoda-ku Tokyo 100-0004 Japan
| |
Collapse
|
31
|
Obara R, Kamiya M, Tanaka Y, Abe A, Kojima R, Kawaguchi T, Sugawara M, Takahashi A, Noda T, Urano Y. γ-Glutamyltranspeptidase (GGT)-Activatable Fluorescence Probe for Durable Tumor Imaging. Angew Chem Int Ed Engl 2020; 60:2125-2129. [PMID: 33096584 DOI: 10.1002/anie.202013265] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 01/17/2023]
Abstract
γ-Glutamyltranspeptidase (GGT) is overexpressed in several types of cancer. Existing GGT-targeting fluorescence probes can image these cancers, but the fluorescent hydrolysis product leaks from the target cancer cells during prolonged incubation or fixation. Here, we present a functionalized fluorescence probe for GGT, 4-CH2 F-HMDiEtR-gGlu, which is designed to generate an azaquinone methide intermediate during activation by GGT; this intermediate reacts with intracellular nucleophiles to generate a fluorescent adduct that is trapped inside the cells, without loss of the target enzyme activity. Application of the probe to patient-derived xenograft (PDX) mice enabled in vivo cancer imaging for a prolonged period and was also compatible with fixation and immunostaining of the cancer tissue.
Collapse
Affiliation(s)
- Rui Obara
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,PRESTO Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yoko Tanaka
- Cancer Institute Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Atsuki Abe
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,PRESTO Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Tokuichi Kawaguchi
- Cancer Institute Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan.,Cancer Precision Medicine Center Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Minoru Sugawara
- Cancer Precision Medicine Center Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Akiko Takahashi
- PRESTO Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.,Cancer Institute Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Tetsuo Noda
- Cancer Institute Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,CREST Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| |
Collapse
|
32
|
Lima IFP, Brand LM, de Figueiredo JAP, Steier L, Lamers ML. Use of autofluorescence and fluorescent probes as a potential diagnostic tool for oral cancer: A systematic review. Photodiagnosis Photodyn Ther 2020; 33:102073. [PMID: 33232819 DOI: 10.1016/j.pdpdt.2020.102073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The prognosis of patients with Oral squamous cell carcinoma (OSCC) are directly related to the stage of development of the tumor at the time of diagnosis, but it is estimated an average delay in diagnosis of 2-5 months. New non-invasive techniques for the early diagnosis of OSCC are being developed, such as methodologies to detect spectral changes of tumor cells. We conducted a systematic review to analyze the potential use of autofluorescence and/or fluorescent probes for OSCC diagnosis. MATERIAL AND METHODS Four databases (PubMed, Scopus, Embase and Web of Science) were used as research sources. Protocol was registered with PROSPERO. It was included studies that evaluated tissue autofluorescence and/or used fluorescent probes as a method of diagnosing and/or treatment of oral cancer in humans. RESULTS Forty-five studies were selected for this systematic review, of which 28 dealt only with autofluorescence, 18 on fluorescent probes and 1 evaluated both methods. The VELscope® was the most used device for autofluorescence, exhibiting sensitivity (33%-100%) and specificity (12%-88.6%). 5-Aminolevulinic acid (5-ALA) was the most used fluorescent probe, exhibiting high sensitivity (90%-100%) and specificity (51.3%-96%). Hypericin, rhodamine 6 G, rhodamine 610, porphyrin and γ-glutamyl hydroxymethyl rhodamine green have also been reported. CONCLUSION Thus, the autofluorescence and fluorescent probes can provide an accurate diagnosis of oral cancer, assisting the dentist during daily clinical activity, but it is not yet possible to suggest that this method may replace histopathological examination.
Collapse
Affiliation(s)
- Igor Felipe Pereira Lima
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza Meurer Brand
- Academic in Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Antônio Poli de Figueiredo
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Liviu Steier
- Division of Restorative Dentistry, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo Lazzaron Lamers
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
33
|
Nunez A, Jones V, Schulz-Costello K, Schmolze D. Accuracy of gross intraoperative margin assessment for breast cancer: experience since the SSO-ASTRO margin consensus guidelines. Sci Rep 2020; 10:17344. [PMID: 33060797 PMCID: PMC7567822 DOI: 10.1038/s41598-020-74373-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022] Open
Abstract
Gross intraoperative assessment can be used to ensure negative margins at the time of surgery. Previous studies of this technique were conducted before the introduction of consensus guidelines defining a “positive” margin. We performed a retrospective study examining the accuracy of this technique since these guidelines were published. We identified all specimens that were grossly examined at the time of breast conserving surgery from January 2014 to July 2020. Gross and final microscopic diagnoses were compared and the performance of intraoperative examination was assessed in terms of false positive and false negative rates. Logistic regression models were used to examine the effect of clinicopathologic covariates on discordance. 327 cases were reviewed. Gross exam prompted re-excision in 166 cases (61%). The rate of false negative discordance was 8.6%. In multivariate analysis, multifocality on final pathology was associated with discordance. We consider the false negative rate acceptable for routine clinical use; however, there is an ongoing need for more accurate methods for the intraoperative assessment of margins.
Collapse
Affiliation(s)
- Alberto Nunez
- Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Veronica Jones
- Department of Surgery, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Katherine Schulz-Costello
- Department of Surgery, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
34
|
Tachibana R, Kamiya M, Suzuki S, Morokuma K, Nanjo A, Urano Y. Molecular design strategy of fluorogenic probes based on quantum chemical prediction of intramolecular spirocyclization. Commun Chem 2020; 3:82. [PMID: 36703479 PMCID: PMC9814528 DOI: 10.1038/s42004-020-0326-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/27/2020] [Indexed: 01/29/2023] Open
Abstract
Fluorogenic probes are essential tools for real-time visualization of dynamic intracellular processes in living cells, but so far, their design has been largely dependent on trial-and-error methods. Here we propose a quantum chemical calculation-based method for rational prediction of the fluorescence properties of hydroxymethyl rhodamine (HMR)-based fluorogenic probes. Our computational analysis of the intramolecular spirocyclization reaction, which switches the fluorescence properties of HMR derivatives, reveals that consideration of the explicit water molecules is essential for accurate estimation of the free energy difference between the open (fluorescent) and closed (non-fluorescent) forms. We show that this approach can predict the open-closed equilibrium (pKcycl values) of unknown HMR derivatives in aqueous media. We validate this pKcycl prediction methodology by designing red and yellow fluorogenic peptidase probes that are highly activated by γ-glutamyltranspeptidase, without the need for prior synthesis of multiple candidates.
Collapse
Affiliation(s)
- Ryo Tachibana
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Mako Kamiya
- grid.26999.3d0000 0001 2151 536XGraduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan ,grid.419082.60000 0004 1754 9200PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
| | - Satoshi Suzuki
- grid.258799.80000 0004 0372 2033Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishibiraki-cho 34-4, Sakyou-ku, Kyoto, 606-8103 Japan
| | - Keiji Morokuma
- grid.258799.80000 0004 0372 2033Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishibiraki-cho 34-4, Sakyou-ku, Kyoto, 606-8103 Japan
| | - Aika Nanjo
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yasuteru Urano
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan ,grid.26999.3d0000 0001 2151 536XGraduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan ,grid.480536.c0000 0004 5373 4593AMED CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004 Japan
| |
Collapse
|
35
|
Kawashima S, Yoshioka T, Hino H, Kitano K, Nagayama K, Sato M, Kojima R, Kamiya M, Urano Y, Nakajima J. ɤ-glutamyl hydroxymethyl rhodamine green fluorescence as a prognostic indicator for lung cancer. Gen Thorac Cardiovasc Surg 2020; 68:1418-1424. [PMID: 32488832 DOI: 10.1007/s11748-020-01395-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/19/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE ɤ-glutamyltranspeptidase is an enzyme expressed in various malignancies including lung cancer. It rapidly activates non-fluorescent ɤ-glutamyl hydroxymethyl rhodamine green to highly fluorescent hydroxymethyl rhodamine green. The resultant tumor fluorescence is therefore an indicator of cellular ɤ-glutamyltranspeptidase activity. We have explored the use of ɤ-glutamyl hydroxymethyl rhodamine green as an intraoperative imaging tool for visualizing cancers. Herein, we evaluated the potential of the tumor fluorescence as a postoperative prognostic indicator. METHODS We included patients with non-small cell lung cancer who had undergone radical resection from 2012 to 2014 in the study. We assessed the fluorescence intensity of the resected tumor and normal lung tissue by ex vivo imaging using ɤ-glutamyl hydroxymethyl rhodamine green. RESULTS Sixty-seven patients were eligible for the study (adenocarcinomas, n = 44; squamous cell carcinoma, n = 14; other histologies, n = 8). The pathological stages were I, II, III, and IV in 39, 15, 12, and 1 patient, respectively. Based on the fluorescence of the tumor tissue, the patients were divided into high fluorescence (n = 33) and low fluorescence (n = 34) groups. The 5-year overall survival rate was significantly higher in the high fluorescence group (72.7%) compared to the low fluorescence group (47.1%, P = 0.025). Similarly, pathological stage I patients of the high fluorescence group had higher 5-year overall survival (85.7% vs. 44.4%, P = 0.009) and recurrence-free survival (76.2% vs. 44.4% P = 0.044) rates compared to those of the low fluorescence group. CONCLUSIONS ɤ-glutamyl hydroxymethyl rhodamine green fluorescence is a good postoperative prognostic indicator in patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Shun Kawashima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takafusa Yoshioka
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Haruaki Hino
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Thoracic Surgery, Kansai Medical University, 2-3-1 Shinmachi, Hirakata City, Osaka, Japan
| | - Kentaro Kitano
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiro Nagayama
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryosuke Kojima
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yasuteru Urano
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
36
|
Pradipta AR, Tanei T, Morimoto K, Shimazu K, Noguchi S, Tanaka K. Emerging Technologies for Real-Time Intraoperative Margin Assessment in Future Breast-Conserving Surgery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901519. [PMID: 32382473 PMCID: PMC7201251 DOI: 10.1002/advs.201901519] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/16/2020] [Accepted: 02/14/2020] [Indexed: 05/23/2023]
Abstract
Clean surgical margins in breast-conserving surgery (BCS) are essential for preventing recurrence. Intraoperative pathologic diagnostic methods, such as frozen section analysis and imprint cytology, have been recognized as crucial tools in BCS. However, the complexity and time-consuming nature of these pathologic procedures still inhibit their broader applicability worldwide. To address this situation, two issues should be considered: 1) the development of nonpathologic intraoperative diagnosis methods that have better sensitivity, specificity, speed, and cost; and 2) the promotion of new imaging algorithms to standardize data for analyzing positive margins, as represented by artificial intelligence (AI), without the need for judgment by well-trained pathologists. Researchers have attempted to develop new methods or techniques; several have recently emerged for real-time intraoperative management of breast margins in live tissues. These methods include conventional imaging, spectroscopy, tomography, magnetic resonance imaging, microscopy, fluorescent probes, and multimodal imaging techniques. This work summarizes the traditional pathologic and newly developed techniques and discusses the advantages and disadvantages of each method. Taking into consideration the recent advances in analyzing pathologic data from breast cancer tissue with AI, the combined use of new technologies with AI algorithms is proposed, and future directions for real-time intraoperative margin assessment in BCS are discussed.
Collapse
Affiliation(s)
- Ambara R. Pradipta
- Biofunctional Synthetic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2‐1 HirosawaWakoSaitama351‐0198Japan
- School of Materials and Chemical TechnologyDepartment of Chemical Science and EngineeringTokyo Institute of Technology2‐12‐1 Ookayama, Meguro‐kuTokyo152‐8552Japan
| | - Tomonori Tanei
- Department of Breast and Endocrine SurgeryGraduate School of MedicineOsaka University2‐2‐E10 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Koji Morimoto
- Biofunctional Synthetic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine SurgeryGraduate School of MedicineOsaka University2‐2‐E10 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Shinzaburo Noguchi
- Department of Breast and Endocrine SurgeryGraduate School of MedicineOsaka University2‐2‐E10 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2‐1 HirosawaWakoSaitama351‐0198Japan
- School of Materials and Chemical TechnologyDepartment of Chemical Science and EngineeringTokyo Institute of Technology2‐12‐1 Ookayama, Meguro‐kuTokyo152‐8552Japan
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya StreetKazan420008Russia
- GlycoTargeting Research LaboratoryRIKEN Baton Zone Program2‐1 HirosawaWakoSaitama351‐0198Japan
| |
Collapse
|
37
|
Fluorescein- and EGFR-Antibody Conjugated Silica Nanoparticles for Enhancement of Real-time Tumor Border Definition Using Confocal Laser Endomicroscopy in Squamous Cell Carcinoma of the Head and Neck. NANOMATERIALS 2019; 9:nano9101378. [PMID: 31561451 PMCID: PMC6835239 DOI: 10.3390/nano9101378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 11/17/2022]
Abstract
Intraoperative definition of tumor free resection margins in head and neck cancer is challenging. In the current proof-of-principle study we evaluated a novel silica nanoparticle-based agent for its potential use as contrast enhancer. We synthesized silica nanoparticles with an average size of 45 nm and modified these particles with the fluorescence stain fluorescein isocyanate (FITC) for particle detection and with epidermal growth factor receptor (EGFR)-targeting antibodies for enhanced tumor specificity. The nanoparticles exhibited good biocompatibility and could be detected in vitro and in vivo by confocal laser scanning microscopy. Additionally, we show in an ex vivo setting that these modified nanoparticles specifically bind to tumor samples and could be detected using a handheld confocal fluorescence endomicroscope. From a clinical point of view, we believe that this method could be used for tumor border contrast enhancement and for better intraoperative definition of R-0 tumor resection.
Collapse
|
38
|
Akashi T, Isomoto H, Matsushima K, Kamiya M, Kanda T, Nakano M, Onoyama T, Fujii M, Akada J, Akazawa Y, Ohnita K, Takeshima F, Nakao K, Urano Y. A novel method for rapid detection of a Helicobacter pylori infection using a γ-glutamyltranspeptidase-activatable fluorescent probe. Sci Rep 2019; 9:9467. [PMID: 31263136 PMCID: PMC6603024 DOI: 10.1038/s41598-019-45768-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
A γ-glutamyl hydroxymethyl rhodamine green probe (gGlu-HMRG) reacts with γ-glutamyltranspeptidase (GGT) and immediately produces fluorescence, is clinically applied for real-time cancers' visualization. Since Helicobacter pylori produces GGT, this study aimed to investigate whether gGlu-HMRG can be used to detect H. pylori infections. A wild-type H. pylori strain and the ggt gene-disrupted mutant were cultured and treated with gGlu-HMRG. This fluorescent probe assay was used to quantify GGT activity of H. pylori ex vivo using gastric biopsy specimens. The H. pylori diagnostic capabilities of the assay were determined from altered fluorescence intensity (FI) values at 5 min (FIV-5) and 15 minutes (FIV-15). Distinct fluorescence was identified in wild H. pylori strain, using gGlu-HMRG, whereas no fluorescence was observed in ggt gene-disrupted mutant strain. On ex vivo imaging of gGlu-HMRG, fluorescence intensity increased markedly with time in H. pylori-positive specimens; however, the H. pylori-negative specimens displayed a slight increase in FI. FIV-5 and FIV-15 differed significantly between H. pylori-positive and -negative specimens. FIV-15 differed significantly between H. pylori-positive and -eradicated group. This assay sensitivity and specificity were 75.0% and 83.3% in the antrum and 82.6% and 89.5% in the stomach body. GGT-activatable fluorescence probe is applicable for rapid diagnosis of H. pylori.
Collapse
Affiliation(s)
- Taro Akashi
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hajime Isomoto
- Divison of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan.
| | - Kayoko Matsushima
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tsutomu Kanda
- Divison of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Masayuki Nakano
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Takumi Onoyama
- Divison of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Masashi Fujii
- Divison of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, 683-8504, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Yuko Akazawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ken Ohnita
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Fuminao Takeshima
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
39
|
Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019; 10:510. [PMID: 31139085 PMCID: PMC6527780 DOI: 10.3389/fphar.2019.00510] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.
Collapse
Affiliation(s)
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
40
|
Hashoul D, Shapira R, Falchenko M, Tepper O, Paviov V, Nissan A, Yavin E. Red-emitting FIT-PNAs: "On site" detection of RNA biomarkers in fresh human cancer tissues. Biosens Bioelectron 2019; 137:271-278. [PMID: 31121464 DOI: 10.1016/j.bios.2019.04.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 01/17/2023]
Abstract
To date, there are limited approaches for the direct and rapid visualization (on site) of tumor tissues for pathological assessment and for aiding cytoreductive surgery. Herein, we have designed FIT-PNAs (forced-intercalation-peptide nucleic acids) to detect two RNA cancer biomarkers. Firstly, a lncRNA (long noncoding RNA) termed CCAT1, has been shown as an oncogenic lncRNA over-expressed in a variety of cancers. The latter, an mRNA termed KRT20, has been shown to be over-expressed in metastases originating from colorectal cancer (CRC). To these FIT-PNAs, we have introduced the bis-quinoline (BisQ) cyanine dye that emits light in the red region (605-610 nm) of the visible spectrum. Most strikingly, spraying fresh human tissue taken from patients during cytoreductive surgery for peritoneal metastasis of colon cancer with an aqueous solution of CCAT1 FIT-PNA results in bright fluorescence in a matter of minutes. In fresh healthy tissue (from bariatric surgeries), no appreciable fluorescence is detected. In addition, a non-targeted FIT-PNA shows no fluorescent signal after spraying this FIT-PNA on fresh tumor tissue emphasizing the specificity of these molecular sensors. This study is the first to show on-site direct and immediate visualization of an RNA cancer biomarker on fresh human cancer tissues by topical application (spraying) of a molecular sensor.
Collapse
Affiliation(s)
- Dina Hashoul
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, 91120, Israel
| | - Rachel Shapira
- Department of General and Oncological Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Maria Falchenko
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, 91120, Israel
| | - Odelia Tepper
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, 91120, Israel
| | - Vera Paviov
- Department of General and Oncological Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Aviram Nissan
- Department of General and Oncological Surgery, The Chaim Sheba Medical Center, Tel Hashomer, Israel.
| | - Eylon Yavin
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, 91120, Israel.
| |
Collapse
|
41
|
Ogasawara A, Kamiya M, Sakamoto K, Kuriki Y, Fujita K, Komatsu T, Ueno T, Hanaoka K, Onoyama H, Abe H, Tsuji Y, Fujishiro M, Koike K, Fukayama M, Seto Y, Urano Y. Red Fluorescence Probe Targeted to Dipeptidylpeptidase-IV for Highly Sensitive Detection of Esophageal Cancer. Bioconjug Chem 2019; 30:1055-1060. [PMID: 30920803 DOI: 10.1021/acs.bioconjchem.9b00198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have developed an activatable red fluorescence probe for dipeptidylpeptidase-IV (DPP-IV) by precisely controlling the photoinduced electron transfer (PeT) process of a red fluorescent scaffold, SiR600. The developed probe exhibited an extremely low background signal and showed significant fluorescence activation upon reaction with DPP-IV, enabling sensitive detection of esophageal cancer in clinical specimens from cancer patients.
Collapse
Affiliation(s)
| | - Mako Kamiya
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | | | | | | | | | | | | | | | | | | | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology , Nagoya University Graduate School of Medicine 65 Tsurumai-cho , Showa-ku , Nagoya , 466-8550 , Japan
| | | | | | | | - Yasuteru Urano
- AMED-CREST, Japan Agency for Medical Research and Development , 1-7-1 Otemachi , Chiyoda-ku , Tokyo 100-0004 , Japan
| |
Collapse
|
42
|
Zeng HC, Hu JL, Bai JW, Zhang GJ. Detection of Sentinel Lymph Nodes with Near-Infrared Imaging in Malignancies. Mol Imaging Biol 2019; 21:219-227. [PMID: 29931432 DOI: 10.1007/s11307-018-1237-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Optical molecular imaging, a highly sensitive and noninvasive technique which is simple to operate, inexpensive, and has the real-time capability, is increasingly being used in the diagnosis and treatment of carcinomas. The near-infrared fluorescence dye indocyanine green (ICG) is widely used in optical imaging for the dynamic detection of sentinel lymph nodes (SLNs) in real time improving the detection rate and accuracy. ICG has the advantages of low scattering in tissue absorbance, low auto-fluorescence, and high signal-to-background ratio. The detection rate of axillary sentinel lymph nodes biopsy (SLNB) in breast cancers with ICG was more than 95 %, the false-negative rate was lower than 10 %, and the average detected number ranged from 1.75 to 3.8. The combined use of ICG with nuclein or blue dye resulted in a lower false-negative rate. ICG is also being used for the sentinel node detection in other malignant cancers such as head and neck, gastrointestinal, and gynecological carcinomas. In this article, we provide an overview of numerous studies that used the near-infrared fluorescence imaging to detect the sentinel lymph nodes in breast carcinoma and other malignant cancers. It is expected that with improvements in the optical imaging systems together with the use of a combination of multiple dyes and verification in large clinical trials, optical molecular imaging will become an essential tool for SLN detection and image-guided precise resection.
Collapse
Affiliation(s)
- Huan-Cheng Zeng
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- ChangJiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Jia-Lin Hu
- Chancheng Center Hospital of Foshan, Foshan, Guangdong, China
| | - Jing-Wen Bai
- Xiang'an Hospital, Xiamen University, No. 2000, Xiang'an East Road, Xiamen, 361101, Fujian, China
| | - Guo-Jun Zhang
- ChangJiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong, China.
- Xiang'an Hospital, Xiamen University, No. 2000, Xiang'an East Road, Xiamen, 361101, Fujian, China.
| |
Collapse
|
43
|
Tanei T, Pradipta AR, Morimoto K, Fujii M, Arata M, Ito A, Yoshida M, Saigitbatalova E, Kurbangalieva A, Ikeda J, Morii E, Noguchi S, Tanaka K. Cascade Reaction in Human Live Tissue Allows Clinically Applicable Diagnosis of Breast Cancer Morphology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801479. [PMID: 30693189 PMCID: PMC6343070 DOI: 10.1002/advs.201801479] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/31/2018] [Indexed: 05/30/2023]
Abstract
Clean operating margins in breast cancer surgery are important for preventing recurrence. However, the current methods for determining margins such as intraoperative frozen section analysis or imprint cytology are not satisfactory since they are time-consuming and cause a burden on the patient and on hospitals with a limited accuracy. A "click-to-sense" probe is developed based on the detection of acrolein, which is a substance released by oxidatively stressed cancer cells and can be visualized under fluorescence microscopy. Using live breast tissues resected from breast cancer patients, it is demonstrated that this method can quickly, selectively, and sensitively differentiate cancer lesion from normal breast gland or benign proliferative lesions. Since acrolein is accumulated in all types of cancers, this method could be used to quickly assess the surgical margins in other types of cancer.
Collapse
Affiliation(s)
- Tomonori Tanei
- Department of Breast and Endocrine SurgeryGraduate School of MedicineOsaka University2‐2‐E10 YamadaokaSuitaOsaka565‐0871Japan
| | - Ambara R. Pradipta
- Biofunctional Synthetic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Koji Morimoto
- Biofunctional Synthetic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2‐1 HirosawaWakoSaitama351‐0198Japan
- Osaka Women's Junior College3‐8‐1 KasugaokaFujiideraOsaka583‐8558Japan
| | - Motoko Fujii
- Biofunctional Synthetic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Mayumi Arata
- Seed Compounds Exploratory Unit for Drug Discovery PlatformRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Akihiro Ito
- Chemical Genomics Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
- School of Life SciencesTokyo University of Pharmacy and Life Sciences1432‐1 HorinouchiHachiojiTokyo192‐0392Japan
| | - Minoru Yoshida
- Seed Compounds Exploratory Unit for Drug Discovery PlatformRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
- Chemical Genomics Research GroupRIKEN Center for Sustainable Resource Science2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Elena Saigitbatalova
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya StreetKazan420008Russian Federation
| | - Almira Kurbangalieva
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya StreetKazan420008Russian Federation
| | - Jun‐ichiro Ikeda
- Department of Pathology (C3)Graduate School of MedicineOsaka University2‐2 YamadaokaSuitaOsaka565‐0871Japan
| | - Eiichi Morii
- Department of Pathology (C3)Graduate School of MedicineOsaka University2‐2 YamadaokaSuitaOsaka565‐0871Japan
| | - Shinzaburo Noguchi
- Department of Breast and Endocrine SurgeryGraduate School of MedicineOsaka University2‐2‐E10 YamadaokaSuitaOsaka565‐0871Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2‐1 HirosawaWakoSaitama351‐0198Japan
- GlycoTargeting Research LaboratoryRIKEN Baton Zone Program2‐1 HirosawaWakoSaitama351‐0198Japan
| |
Collapse
|
44
|
Rapid detection of metastatic lymph nodes of colorectal cancer with a gamma-glutamyl transpeptidase-activatable fluorescence probe. Sci Rep 2018; 8:17781. [PMID: 30542087 PMCID: PMC6290796 DOI: 10.1038/s41598-018-36062-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Rapid diagnosis of metastatic lymph nodes (mLNs) of colorectal cancer (CRC) is desirable either intraoperatively or in resected fresh specimens. We have developed a series of activatable fluorescence probes for peptidase activities that are specifically upregulated in various tumors. We aimed to discover a target enzyme for detecting mLNs of CRC. Among our probes, we found that gGlu-HMRG, a gamma-glutamyl transpeptidase (GGT)-activatable fluorescence probe, could detect mLNs. This was unexpected, because we have previously reported that gGlu-HMRG could not detect primary CRC. We confirmed that the GGT activity of mLNs was high, whereas that of non-metastatic lymph nodes and CRC cell lines was low. We investigated the reason why GGT activity was upregulated in mLNs, and found that GGT was induced under conditions of hypoxia or low nutritional status. We utilized this feature to achieve rapid detection of mLNs with gGlu-HMRG. GGT appears to be a promising candidate enzyme for fluorescence imaging of mLNs.
Collapse
|
45
|
Ou-Yang J, Li Y, Jiang WL, He SY, Liu HW, Li CY. Fluorescence-Guided Cancer Diagnosis and Surgery by a Zero Cross-Talk Ratiometric Near-Infrared γ-Glutamyltranspeptidase Fluorescent Probe. Anal Chem 2018; 91:1056-1063. [DOI: 10.1021/acs.analchem.8b04416] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juan Ou-Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Shuang-Yan He
- Hunan SJA Laboratory
Animal Co., Ltd., Changsha 400125, PR China
| | - Hong-Wen Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
46
|
Hino R, Inoshita N, Yoshimoto T, Ogawa M, Miura D, Watanabe R, Watanabe K, Kamiya M, Urano Y. Rapid detection of papillary thyroid carcinoma by fluorescence imaging using a γ-glutamyltranspeptidase-specific probe: a pilot study. Thyroid Res 2018; 11:16. [PMID: 30479665 PMCID: PMC6249847 DOI: 10.1186/s13044-018-0060-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background Nodular lesions of the thyroid gland, including papillary thyroid carcinoma (PTC), may be difficult to diagnose by imaging, such as in ultrasonic echo testing, or by needle biopsy. Definitive diagnosis is made by pathological examination but takes several days. A more rapid and simple method to clarify whether thyroid nodular lesions are benign or malignant is needed. Fluorescence imaging with γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) uses γ-glutamyltranspeptidase (GGT), a cell-surface enzyme, to hydrolyze the γ-glutamyl peptide and transfer the γ-glutamyl group. GGT is overexpressed in several cancers, such as breast, lung, and liver cancers. This imaging method is rapid and useful for detecting such cancers. In this study, we tried to develop a rapid fluorescence detection method for clinical samples of thyroid cancer, especially papillary carcinoma. Methods Fluorescence imaging with gGlu-HMRG was performed to detect PTC using 23 surgically resected clinical samples. A portable imaging device conveniently captured white-light images and fluorescence images with blue excitation light. Hematoxylin-eosin (HE) staining was used to evaluate which fluorescent regions coincided with cancer, and immunohistochemical examination was used to detect GGT expression. Results All 16 PTC samples exhibited fluorescence after topical application of gGlu-HMRG, whereas the normal sections of each sample showed no fluorescence. HE staining revealed that each fluorescent region corresponded to a region with carcinoma. The PTC samples also exhibited GGT expression, as confirmed by immunohistochemistry. Conclusions All PTC samples were detected by fluorescence imaging with gGlu-HMRG. Thus, fluorescence imaging with gGlu-HMRG is a rapid, simple, and powerful detection tool for PTC.
Collapse
Affiliation(s)
- Rumi Hino
- 1Department of Sports and Health Science, Daito Bunka University, 560 Iwadono, Higashimathuyama-shi, Saitama, 355-8501 Japan.,2Department of Pathology, Toranomon Hospital, Tokyo, 105-0001 Japan
| | - Naoko Inoshita
- 2Department of Pathology, Toranomon Hospital, Tokyo, 105-0001 Japan
| | - Toyoki Yoshimoto
- 2Department of Pathology, Toranomon Hospital, Tokyo, 105-0001 Japan
| | - Makiko Ogawa
- 2Department of Pathology, Toranomon Hospital, Tokyo, 105-0001 Japan
| | | | - Ryoko Watanabe
- 4Department of Otolaryngology, Toranomon Hospital, Tokyo, 105-0001 Japan
| | - Kenta Watanabe
- 4Department of Otolaryngology, Toranomon Hospital, Tokyo, 105-0001 Japan
| | - Mako Kamiya
- 5Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan.,6PRESTO, Japan Science and Technology Agency (JST), Saitama, 332-0012 Japan
| | - Yasteru Urano
- 5Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan.,7Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033 Japan.,8AMED CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004 Japan
| |
Collapse
|
47
|
Mochida A, Ogata F, Maruoka Y, Nagaya T, Okada R, Inagaki F, Fujimura D, Choyke PL, Kobayashi H. Pitfalls on sample preparation for ex vivo imaging of resected cancer tissue using enzyme-activatable fluorescent probes. Oncotarget 2018; 9:36039-36047. [PMID: 30542517 PMCID: PMC6267600 DOI: 10.18632/oncotarget.26320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/22/2018] [Indexed: 01/14/2023] Open
Abstract
In vivo and ex vivo fluorescence imaging-assisted surgery can aid in determining the margins of tumors during surgical resection. While a variety of fluorescent probes have been proposed for this task, small molecule enzyme-activatable fluorescent probes are ideal for this application. They are quickly activated at tumor sites and result in bright signal with little background, resulting in high sensitivity. Testing in resected specimens, however, can be difficult. Enzymes are usually stable after freezing and thawing but catalytic reactions are generally temperature-dependent. Therefore, tissue sample temperature should be carefully considered. In this study two enzyme activatable probes, γ-glutamylhydroxymethyl rhodamine green (gGlu-HMRG) that reacted with γ-glutamyltransferase and SPiDER-βGal that reacted with β-galactosidase, were employed to determine the effects of temperature on fluorescence signal kinetics in both fresh and frozen and then thawed ex vivo experimental ovarian cancer tissue samples. The results suggest γ-glutamyltransferase was less sensitive to temperature than β-galactosidase. Fresh samples showed higher fluorescence signals of gGlu-HMRG compared with thawed samples likely because the freeze-thaw cycle decreased the rate of internalization of the activated probe into the lysosome. In contrast, no significant difference of SPiDER-βGal fluorescence signal was observed between fresh and frozen tissues. In conclusion, although imaging of fresh samples at 37°C is the best condition for both probes, successful imaging with gGlu-HMRG could be achieved even at room temperature with thawed samples. We demonstrate that temperature regulation and tissue handling of resected tissue are two pitfalls that may influence ex vivo imaging signals with enzyme-activatable fluorescent probes.
Collapse
Affiliation(s)
- Ai Mochida
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fusa Ogata
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ryuhei Okada
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fuyuki Inagaki
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daiki Fujimura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
48
|
Luo Z, An R, Ye D. Recent Advances in the Development of Optical Imaging Probes for γ-Glutamyltranspeptidase. Chembiochem 2018; 20:474-487. [PMID: 30062708 DOI: 10.1002/cbic.201800370] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 12/11/2022]
Abstract
γ-Glutamyltranspeptidase (GGT) is a cell-membrane-bound protease that participates in cellular glutathione and cysteine homeostasis, which are closely related to many physiological and pathological processes. The accurate measurement of GGT activity is useful for the early diagnosis of diseases. In the past few years, many efforts have been made to build optical imaging probes for the detection of GGT activity both in vitro and in vivo. In this Minireview, recent advances in the development of various optical imaging probes for GGT, including activatable fluorescence probes, ratiometric fluorescence probes, and activatable bioluminescence probes, are summarized. This review starts from the instruction of the GGT enzyme and its biological functions, followed by a discussion of activatable fluorescence probes that show off-on fluorescence in response to GGT. GGT-activatable two-photon fluorescence imaging probes with improved imaging depth and spatial resolution are also discussed. Ratiometric fluorescence probes capable of accurately reporting on GGT levels through a self-calibration mechanism are discussed, followed by describing GGT-activatable bioluminescence probes that can offer a high signal-to-background ratio to detect GGT in living mice. Finally, current challenges and further perspectives for the development of molecular imaging probes for GGT are addressed.
Collapse
Affiliation(s)
- Zhiliang Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
49
|
Abstract
In vivo molecular imaging is a powerful tool to analyze the human body. Precision medicine is receiving high attention these days, and molecular imaging plays an important role as companion diagnostics in precision medicine. Nuclear imaging with PET or SPECT and optical imaging technologies are used for in vivo molecular imaging. Nuclear imaging is superior for quantitative imaging, and whole-body analysis is possible even for humans. Optical imaging is superior due to its ease of use, and highly targeted specific imaging is possible with activatable agents. However, with optical imaging using fluorescence, it is difficult to obtain a signal from deep tissue and quantitation is difficult due to the attenuation and scattering of the fluorescent signal. Recently, to overcome these issues, optoacoustic imaging has been used in in vivo imaging. In this article, we review in vivo molecular imaging with nuclear and optical imaging and discuss their utility for precision medicine.
Collapse
Affiliation(s)
- Mikako Ogawa
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University.,JST, PRESTO
| | - Hideo Takakura
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
50
|
A topically-sprayable, activatable fluorescent and retaining probe, SPiDER-βGal for detecting cancer: Advantages of anchoring to cellular proteins after activation. Oncotarget 2018; 8:39512-39521. [PMID: 28467810 PMCID: PMC5503628 DOI: 10.18632/oncotarget.17080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/22/2017] [Indexed: 01/11/2023] Open
Abstract
SPiDER-βGal is a newly-developed probe that is activated by β-galactosidase and is then retained within cells by anchoring to intracellular proteins. Previous work has focused on gGlu-HMRG, a probe activated by γ-glutamyltranspeptidase, which demonstrated high sensitivity for the detection of peritoneal ovarian cancer metastases in an animal model. However, its fluorescence, after activation by γ-glutamyltranspeptidase, rapidly declines over time, limiting the actual imaging window and the ability to define the border of lesions. The purpose of this study is to compare the fluorescence signal kinetics of SPiDER-βGal with that of gGlu-HMRG using ovarian cancer cell lines in vitro and ex vivo tissue imaging. In vitro removal of gGlu-HMRG resulted in a rapid decrease of fluorescence intensity followed by a more gradual decrease up to 60 min while there was a gradual increase in fluorescence up to 60 min after removal of SPiDER-βGal. This is most likely due to internalization and retention of the dye within cells. This was also confirmed ex vivo tissue imaging using a red fluorescence protein (RFP)-labeled tumor model in which the intensity of fluorescence increased gradually after activation of SPiDER-βGal. Additionally, SPiDER-βGal resulted in intense enhancement within the tumor due to the high target-to-background ratio, which extended up to 60 min after activation. In contrast, gGlu-HMRG fluorescence resulted in decreasing fluorescence over time in extracted tumors. Thus, SPiDER-βGal has the advantages of higher signal with more signal retention, resulting in improved contrast of the tumor margin and suggesting it may be an alternative to existing activatable probes.
Collapse
|