1
|
Serological Surveillance of the H1N1 and H3N2 Swine Influenza A Virus in Chinese Swine between 2016 and 2021. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5833769. [PMID: 35528158 PMCID: PMC9071888 DOI: 10.1155/2022/5833769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Background Swine influenza A virus (IAV-S) is a common cause of respiratory disease in pigs and poses a major public health threat. However, little attention and funding have been given to such studies. The aim of this study was to assess the prevalence of the Eurasian avian-like H1N1 (EA H1N1), 2009 pandemic H1N1 (pdm/09 H1N1), and H3N2 subtype antibodies in unvaccinated swine populations through serological investigations. Such data are helpful in understanding the prevalence of the IAV-S. Methods A total of 40,343 serum samples from 17 regions in China were examined using hemagglutination inhibition (HI) tests against EA H1N1, pdm/09 H1N1, and H3N2 IAV-S from 2016 to 2021. The results were analyzed based on a reginal distribution, seasonal distribution, and in different breeding stages. Results A total of 19,682 serum samples out of the 40,343 were positive for IAV-S (48.79%). The positivity rates to the EA H1N1 subtype, pdm/09 H1N1 subtype, and H3N2 subtype were 24.75% (9,986/40,343), 7.94% (3,205/40,343), and 0.06% (24/40,343), respectively. The occurrences of coinfections from two or more subtypes were also detected. In general, the positivity rates of serum samples were related to the regional distribution and feeding stages. Conclusions The results of this study showed that the anti-EA H1N1 subtype and pdm/09 H1N1 subtype antibodies were readily detected in swine serum samples. The EA H1N1 subtype has become dominant in the pig population. The occurrences of coinfections from two or more subtypes afforded opportunities for their reassortment to produce new viruses. Our findings emphasized the need for continuous surveillance of influenza viruses.
Collapse
|
2
|
Quan C, Zhang Z, Ding G, Sun F, Zhao H, Liu Q, Ma C, Wang J, Wang L, Zhao W, He J, Wang Y, He Q, Carr MJ, Wang D, Xiao Q, Shi W. Seroprevalence of influenza viruses in Shandong, Northern China during the COVID-19 pandemic. Front Med 2022; 16:984-990. [PMID: 36152125 PMCID: PMC9510416 DOI: 10.1007/s11684-022-0930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/21/2022] [Indexed: 01/19/2023]
Abstract
Nonpharmaceutical interventions (NPIs) have been commonly deployed to prevent and control the spread of the coronavirus disease 2019 (COVID-19), resulting in a worldwide decline in influenza prevalence. However, the influenza risk in China warrants cautious assessment. We conducted a cross-sectional, seroepidemiological study in Shandong Province, Northern China in mid-2021. Hemagglutination inhibition was performed to test antibodies against four influenza vaccine strains. A combination of descriptive and meta-analyses was adopted to compare the seroprevalence of influenza antibodies before and during the COVID-19 pandemic. The overall seroprevalence values against A/H1N1pdm09, A/H3N2, B/Victoria, and B/Yamagata were 17.8% (95% CI 16.2%-19.5%), 23.5% (95% CI 21.7%-25.4%), 7.6% (95% CI 6.6%-8.7%), and 15.0 (95% CI 13.5%-16.5%), respectively, in the study period. The overall vaccination rate was extremely low (2.6%). Our results revealed that antibody titers in vaccinated participants were significantly higher than those in unvaccinated individuals (P < 0.001). Notably, the meta-analysis showed that antibodies against A/H1N1pdm09 and A/H3N2 were significantly low in adults after the COVID-19 pandemic (P < 0.01). Increasing vaccination rates and maintaining NPIs are recommended to prevent an elevated influenza risk in China.
Collapse
Affiliation(s)
- Chuansong Quan
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 China
| | - Zhenjie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 China
| | - Guoyong Ding
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Fengwei Sun
- The Department of Infectious Disease, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000 China
| | - Hengxia Zhao
- Clinical Laboratory, The Department of Clinical Laboratory, Boshan District Hospital, Zibo, 255200 China
| | - Qinghua Liu
- Clinical Laboratory, The Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000 China
| | - Chuanmin Ma
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 China
| | - Jing Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 China
| | - Liang Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 China
| | - Wenbo Zhao
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 China
| | - Jinjie He
- Clinical Laboratory, The Department of Clinical Laboratory, Boshan District Hospital, Zibo, 255200 China
| | - Yu Wang
- The Department of Cancer Center, Taian Tumor Prevention and Treatment Hospital, Taian, 271000 China
| | - Qian He
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Michael J. Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin 4, Ireland ,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 0010020 Japan
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206 China
| | - Qiang Xiao
- Clinical Laboratory, The Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000 China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 China ,School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 China
| |
Collapse
|
3
|
Smith DW, Barr IG, Loh R, Levy A, Tempone S, O'Dea M, Watson J, Wong FYK, Effler PV. Respiratory Illness in a Piggery Associated with the First Identified Outbreak of Swine Influenza in Australia: Assessing the Risk to Human Health and Zoonotic Potential. Trop Med Infect Dis 2019; 4:tropicalmed4020096. [PMID: 31242646 PMCID: PMC6632059 DOI: 10.3390/tropicalmed4020096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022] Open
Abstract
Australia was previously believed to be free of enzootic swine influenza viruses due strict quarantine practices and use of biosecure breeding facilities. The first proven Australian outbreak of swine influenza occurred in Western Australian in 2012, revealing an unrecognized zoonotic risk, and a potential future pandemic threat. A public health investigation was undertaken to determine whether zoonotic infections had occurred and to reduce the risk of further transmission between humans and swine. A program of monitoring, testing, treatment, and vaccination was commenced, and a serosurvey of workers was also undertaken. No acute infections with the swine influenza viruses were detected. Serosurvey results were difficult to interpret due to previous influenza infections and past and current vaccinations. However, several workers had elevated haemagglutination inhibition (HI) antibody levels to the swine influenza viruses that could not be attributed to vaccination or infection with contemporaneous seasonal influenza A viruses. However, we lacked a suitable control population, so this was inconclusive. The experience was valuable in developing better protocols for managing outbreaks at the human–animal interface. Strict adherence to biosecurity practices, and ongoing monitoring of swine and their human contacts is important to mitigate pandemic risk. Strain specific serological assays would greatly assist in identifying zoonotic transmission.
Collapse
Affiliation(s)
- David W Smith
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, WA 6009, Australia.
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Ian G Barr
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Richmond Loh
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth, WA 6151, Australia.
| | - Avram Levy
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, WA 6009, Australia.
| | - Simone Tempone
- Communicable Disease Control Directorate, Department of Health Western Australia, Perth, WA 6004, Australia.
| | - Mark O'Dea
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia.
| | - James Watson
- CSIRO Australian Animal Health Laboratory, Geelong, VIC 3219, Australia.
| | - Frank Y K Wong
- CSIRO Australian Animal Health Laboratory, Geelong, VIC 3219, Australia.
| | - Paul V Effler
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA 6009, Australia.
- Communicable Disease Control Directorate, Department of Health Western Australia, Perth, WA 6004, Australia.
| |
Collapse
|
4
|
Mikuła E, Silva CE, Kopera E, Zdanowski K, Radecki J, Radecka H. Highly sensitive electrochemical biosensor based on redox - active monolayer for detection of anti-hemagglutinin antibodies against swine-origin influenza virus H1N1 in sera of vaccinated mice. BMC Vet Res 2018; 14:328. [PMID: 30400888 PMCID: PMC6218974 DOI: 10.1186/s12917-018-1668-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
Background In this work, we report an electrochemical biosensor for the detection of anti-hemagglutinin antibodies against the swine virus H1N1 present in mice sera immunized with mixture of His6-H1 HA in monomeric and oligomeric form. The oriented immobilization of the recombinant His-tagged hemagglutinin (His6-H1 HA) consists of: (i) formation of a mixed layer of 4-mercaptobutanol (MBT) and the thiol derivative of dipyrromethene (DPM); (ii) complexation of Cu (II) by DPM; (iii) immobilization of His6-H1 HA via coordination bonds between Cu (II) sites from DPM–Cu (II) complex and imidazole nitrogen atoms of a histidine tag; (iv) filling free spaces with bovine serum albumin. The interactions between recombinant His6- H1 HA covalently attached to the electrode surface and the anti-hemagglutinin H1 antibodies present in mice sera were explored with Osteryoung square-wave voltammetry. Results This analytical device was able to detect the antibodies present in vaccinated mice sera diluted from 1 × 109 to 1 × 108 fold. Conclusions The unprecedented sensitivity of described biosensor is much better than widely use ELISA test and other analytical methods for determination of antibodies against the influenza A viruses. It has been proved that redox active DPM-Cu (II) monolayer is a universal platform suitable for stable and oriented immobilization of any His-tagged sensing elements. Thus, this universal layer could be a base of numerous analytical devices suitable for detection of antibodies against different viruses.
Collapse
Affiliation(s)
- Edyta Mikuła
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Cristiane Erdmann Silva
- Universidade Estadual de Ponta Grossa - UEPG, Setor de Ciências Exatas e da Terra, Departamento de Química, Av. Carlos Cavalcanti, 4748, CEP 84030-900, Ponta Grossa/ PR, Brazil
| | - Edyta Kopera
- Institute of Biochemistry and Biophysics of Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.,Research and Development Center, Olimp Laboratories, Pustynia, Dębica, Poland
| | - Konrad Zdanowski
- Institute of Biochemistry and Biophysics of Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.,Institute of Chemistry, University of Natural Sciences and Humanities, 3 Maja 54, 08-110, Siedlce, Poland
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
5
|
Sikkema RS, Freidl GS, de Bruin E, Koopmans M. Weighing serological evidence of human exposure to animal influenza viruses - a literature review. ACTA ACUST UNITED AC 2016; 21:30388. [PMID: 27874827 PMCID: PMC5114483 DOI: 10.2807/1560-7917.es.2016.21.44.30388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/30/2016] [Indexed: 02/02/2023]
Abstract
Assessing influenza A virus strains circulating in animals and their potential to cross the species barrier and cause human infections is important to improve human influenza surveillance and preparedness. We reviewed studies describing serological evidence of human exposure to animal influenza viruses. Comparing serological data is difficult due to a lack of standardisation in study designs and in laboratory methods used in published reports. Therefore, we designed a scoring system to assess and weigh specificity of obtained serology results in the selected articles. Many studies report reliable evidence of antibodies to swine influenza viruses among persons occupationally exposed to pigs. Most avian influenza studies target H5, H7 and H9 subtypes and most serological evidence of human exposure to avian influenza viruses is reported for these subtypes. Avian influenza studies receiving a low grade in this review often reported higher seroprevalences in humans compared with studies with a high grade. Official surveillance systems mainly focus on avian H5 and H7 viruses. Swine influenza viruses and avian subtypes other than H5 and H7 (emphasising H9) should be additionally included in official surveillance systems. Surveillance efforts should also be directed towards understudied geographical areas, such as Africa and South America.
Collapse
Affiliation(s)
- Reina Saapke Sikkema
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Gudrun Stephanie Freidl
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Erwin de Bruin
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Marion Koopmans
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|