1
|
Na D, Lim DH, Hong JS, Lee HM, Cho D, Yu MS, Shaker B, Ren J, Lee B, Song JG, Oh Y, Lee K, Oh KS, Lee MY, Choi MS, Choi HS, Kim YH, Bui JM, Lee K, Kim HW, Lee YS, Gsponer J. A multi-layered network model identifies Akt1 as a common modulator of neurodegeneration. Mol Syst Biol 2023; 19:e11801. [PMID: 37984409 DOI: 10.15252/msb.202311801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The accumulation of misfolded and aggregated proteins is a hallmark of neurodegenerative proteinopathies. Although multiple genetic loci have been associated with specific neurodegenerative diseases (NDs), molecular mechanisms that may have a broader relevance for most or all proteinopathies remain poorly resolved. In this study, we developed a multi-layered network expansion (MLnet) model to predict protein modifiers that are common to a group of diseases and, therefore, may have broader pathophysiological relevance for that group. When applied to the four NDs Alzheimer's disease (AD), Huntington's disease, and spinocerebellar ataxia types 1 and 3, we predicted multiple members of the insulin pathway, including PDK1, Akt1, InR, and sgg (GSK-3β), as common modifiers. We validated these modifiers with the help of four Drosophila ND models. Further evaluation of Akt1 in human cell-based ND models revealed that activation of Akt1 signaling by the small molecule SC79 increased cell viability in all models. Moreover, treatment of AD model mice with SC79 enhanced their long-term memory and ameliorated dysregulated anxiety levels, which are commonly affected in AD patients. These findings validate MLnet as a valuable tool to uncover molecular pathways and proteins involved in the pathophysiology of entire disease groups and identify potential therapeutic targets that have relevance across disease boundaries. MLnet can be used for any group of diseases and is available as a web tool at http://ssbio.cau.ac.kr/software/mlnet.
Collapse
Affiliation(s)
- Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Do-Hwan Lim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae-Sang Hong
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Daeahn Cho
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Bomi Lee
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Jae Gwang Song
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Yuna Oh
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kyungeun Lee
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kwang-Seok Oh
- Information-based Drug Research Center, Korea Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Mi Young Lee
- Information-based Drug Research Center, Korea Research Institute of Chemical Technology, Deajeon, Republic of Korea
| | - Min-Seok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Han Saem Choi
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Yang-Hee Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Jennifer M Bui
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyung Wook Kim
- College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Kontaxi C, Edwards RH. Synuclein phosphorylation: pathogenic or physiologic? NPJ Parkinsons Dis 2023; 9:47. [PMID: 36977661 PMCID: PMC10050171 DOI: 10.1038/s41531-023-00487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Affiliation(s)
- Christiana Kontaxi
- UCSF School of Medicine, Departments of Neurology and Physiology, San Francisco, USA
| | - Robert H Edwards
- UCSF School of Medicine, Departments of Neurology and Physiology, San Francisco, USA.
| |
Collapse
|
4
|
Ramalingam N, Jin SX, Moors TE, Fonseca-Ornelas L, Shimanaka K, Lei S, Cam HP, Watson AH, Brontesi L, Ding L, Hacibaloglu DY, Jiang H, Choi SJ, Kanter E, Liu L, Bartels T, Nuber S, Sulzer D, Mosharov EV, Chen WV, Li S, Selkoe DJ, Dettmer U. Dynamic physiological α-synuclein S129 phosphorylation is driven by neuronal activity. NPJ Parkinsons Dis 2023; 9:4. [PMID: 36646701 PMCID: PMC9842642 DOI: 10.1038/s41531-023-00444-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
In Parkinson's disease and other synucleinopathies, the elevation of α-synuclein phosphorylated at Serine129 (pS129) is a widely cited marker of pathology. However, the physiological role for pS129 has remained undefined. Here we use multiple approaches to show for the first time that pS129 functions as a physiological regulator of neuronal activity. Neuronal activity triggers a sustained increase of pS129 in cultured neurons (200% within 4 h). In accord, brain pS129 is elevated in environmentally enriched mice exhibiting enhanced long-term potentiation. Activity-dependent α-synuclein phosphorylation is S129-specific, reversible, confers no cytotoxicity, and accumulates at synapsin-containing presynaptic boutons. Mechanistically, our findings are consistent with a model in which neuronal stimulation enhances Plk2 kinase activity via a calcium/calcineurin pathway to counteract PP2A phosphatase activity for efficient phosphorylation of membrane-bound α-synuclein. Patch clamping of rat SNCA-/- neurons expressing exogenous wild-type or phospho-incompetent (S129A) α-synuclein suggests that pS129 fine-tunes the balance between excitatory and inhibitory neuronal currents. Consistently, our novel S129A knock-in (S129AKI) mice exhibit impaired hippocampal plasticity. The discovery of a key physiological function for pS129 has implications for understanding the role of α-synuclein in neurotransmission and adds nuance to the interpretation of pS129 as a synucleinopathy biomarker.
Collapse
Affiliation(s)
- Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Shan-Xue Jin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tim E Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Luis Fonseca-Ornelas
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Kazuma Shimanaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Shi Lei
- Leveragen, Inc., 17 Briden Street, Worcester, MA, 01605, USA
| | - Hugh P Cam
- Leveragen, Inc., 17 Briden Street, Worcester, MA, 01605, USA
| | | | - Lisa Brontesi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Lai Ding
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dinc Yasat Hacibaloglu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Haiyang Jiang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Se Joon Choi
- Division of Molecular Therapeutics, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, 10032, USA
| | - Ellen Kanter
- Division of Molecular Therapeutics, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, 10032, USA
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London, UK
| | - Silke Nuber
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - David Sulzer
- Division of Molecular Therapeutics, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, 10032, USA
- Departments of Neurology and Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Molecular Therapeutics and Pharmacology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Eugene V Mosharov
- Division of Molecular Therapeutics, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, 10032, USA
- Departments of Neurology and Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
| | - Weisheng V Chen
- Leveragen, Inc., 17 Briden Street, Worcester, MA, 01605, USA
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Sheng J, Olrichs NK, Gadella BM, Kaloyanova DV, Helms JB. Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins. Int J Mol Sci 2020; 21:E6530. [PMID: 32906672 PMCID: PMC7554809 DOI: 10.3390/ijms21186530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.S.); (N.K.O.); (B.M.G.); (D.V.K.)
| |
Collapse
|
6
|
Junqueira SC, Centeno EGZ, Wilkinson KA, Cimarosti H. Post-translational modifications of Parkinson's disease-related proteins: Phosphorylation, SUMOylation and Ubiquitination. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2001-2007. [PMID: 30412791 DOI: 10.1016/j.bbadis.2018.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the nigrostriatal pathway. The etiology of PD remains unclear and most cases are sporadic, however genetic mutations in more than 20 proteins have been shown to cause inherited forms of PD. Many of these proteins are linked to mitochondrial function, defects in which are a central characteristic of PD. Post-translational modifications (PTMs) allow rapid and reversible control over protein function. Largely focussing on mitochondrial dysfunction in PD, here we review findings on the PTMs phosphorylation, SUMOylation and ubiquitination that have been shown to affect PD-related proteins.
Collapse
Affiliation(s)
- Stella C Junqueira
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Eduarda G Z Centeno
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, UK.
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil.
| |
Collapse
|
7
|
Rhoads SN, Monahan ZT, Yee DS, Shewmaker FP. The Role of Post-Translational Modifications on Prion-Like Aggregation and Liquid-Phase Separation of FUS. Int J Mol Sci 2018; 19:ijms19030886. [PMID: 29547565 PMCID: PMC5877747 DOI: 10.3390/ijms19030886] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/13/2022] Open
Abstract
Subcellular mislocalization and aggregation of the human FUS protein occurs in neurons of patients with subtypes of amyotrophic lateral sclerosis and frontotemporal dementia. FUS is one of several RNA-binding proteins that can functionally self-associate into distinct liquid-phase droplet structures. It is postulated that aberrant interactions within the dense phase-separated state can potentiate FUS's transition into solid prion-like aggregates that cause disease. FUS is post-translationally modified at numerous positions, which affect both its localization and aggregation propensity. These modifications may influence FUS-linked pathology and serve as therapeutic targets.
Collapse
Affiliation(s)
- Shannon N Rhoads
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Zachary T Monahan
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Debra S Yee
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Frank P Shewmaker
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
8
|
Reimer L, Vesterager LB, Betzer C, Zheng J, Nielsen LD, Kofoed RH, Lassen LB, Bølcho U, Paludan SR, Fog K, Jensen PH. Inflammation kinase PKR phosphorylates α-synuclein and causes α-synuclein-dependent cell death. Neurobiol Dis 2018; 115:17-28. [PMID: 29501855 DOI: 10.1016/j.nbd.2018.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy comprise a group of neurodegenerative diseases termed synucleinopathies. Synucleinopathie are, characterized by presence of inclusion bodies in degenerating brain cells which contain aggregated α-synuclein phosphorylated on Ser129. Although the inflammation-associated serine-threonine kinase, PKR (EIF2AK2), promotes cellular protection against infection, we demonstrate a pro-degenerative role of activated PKR in an α-synuclein-dependent cell model of multiple system atrophy, where inhibition and silencing of PKR decrease cellular degeneration. In vitro phosphorylation demonstrates that PKR can directly bind and phosphorylate monomeric and filamenteous α-synuclein on Ser129. Inhibition and knockdown of PKR reduce Ser129 phosphorylation in different models (SH-SY5Y ASYN cells, OLN-AS7 cells, primary mouse hippocampal neurons, and acute brain slices), while overexpression of constitutively active PKR increases Ser129 α-syn phosphorylation. Treatment with pre-formed α-synuclein fibrils, proteostatic stress-promoting MG-132 and known PKR activators, herpes simplex virus-1-∆ICP34.5 and LPS, as well as PKR inducer, IFN-β-1b, lead to increased levels of phosphorylated Ser129 α-synuclein that is completely blocked by simultaneous PKR inhibition. These results reveal a direct link between PKR and the phosphorylation and toxicity of α-synuclein, and they support that neuroinflammatory processes play a role in modulating the pathogenicity of α-synuclein.
Collapse
Affiliation(s)
- Lasse Reimer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark.
| | | | - Cristine Betzer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | - Jin Zheng
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | - Lærke Dalsgaard Nielsen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | - Rikke Hahn Kofoed
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | - Louise Berkhoudt Lassen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | - Ulrik Bølcho
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| | | | | | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Denmark; Department of Biomedicine, Aarhus University, Denmark
| |
Collapse
|
9
|
Phosphorylated α-Synuclein-Copper Complex Formation in the Pathogenesis of Parkinson's Disease. PARKINSONS DISEASE 2017; 2017:9164754. [PMID: 29333317 PMCID: PMC5733240 DOI: 10.1155/2017/9164754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/11/2017] [Indexed: 11/17/2022]
Abstract
Parkinson's disease is the second most important neurodegenerative disorder worldwide. It is characterized by the presence of Lewy bodies, which are mainly composed of α-synuclein and ubiquitin-bound proteins. Both the ubiquitin proteasome system (UPS) and autophagy-lysosomal pathway (ALS) are altered in Parkinson's disease, leading to aggregation of proteins, particularly α-synuclein. Interestingly, it has been observed that copper promotes the protein aggregation process. Additionally, phosphorylation of α-synuclein along with copper also affects the protein aggregation process. The interrelation among α-synuclein phosphorylation and its capability to interact with copper, with the subsequent disruption of the protein degradation systems in the neurodegenerative process of Parkinson's disease, will be analyzed in detail in this review.
Collapse
|
10
|
Ottolini D, Calí T, Szabò I, Brini M. Alpha-synuclein at the intracellular and the extracellular side: functional and dysfunctional implications. Biol Chem 2017; 398:77-100. [DOI: 10.1515/hsz-2016-0201] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
Abstract
Alpha-synuclein (α-syn) is an abundant neuronal protein whose physiological function, even if still not completely understood, has been consistently related to synaptic function and vesicle trafficking. A group of disorders known as synucleinopathies, among which Parkinson’s disease (PD), is deeply associated with the misfolding and aggregation of α-syn, which can give rise to proteinaceous inclusion known as Lewy bodies (LB). Proteostasis stress is a relevant aspect in these diseases and, currently, the presence of oligomeric α-syn species rather than insoluble aggregated forms, appeared to be associated with cytotoxicity. Many observations suggest that α-syn is responsible for neurodegeneration by interfering with multiple signaling pathways. α-syn protein can directly form plasma membrane channels or modify with their activity, thus altering membrane permeability to ions, abnormally associate with mitochondria and cause mitochondrial dysfunction (i.e. mitochondrial depolarization, Ca2+ dys-homeostasis, cytochrome c release) and interfere with autophagy regulation. The picture is further complicated by the fact that single point mutations, duplications and triplication in α-syn gene are linked to autosomal dominant forms of PD. In this review we discuss the multi-faced aspect of α-syn biology and address the main hypothesis at the basis of its involvement in neuronal degeneration.
Collapse
|
11
|
Ma MR, Hu ZW, Zhao YF, Chen YX, Li YM. Phosphorylation induces distinct alpha-synuclein strain formation. Sci Rep 2016; 6:37130. [PMID: 27853185 PMCID: PMC5112567 DOI: 10.1038/srep37130] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/24/2016] [Indexed: 12/26/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases associated with alpha-synuclein (α-Syn) aggregation. Recently, increasing evidence has demonstrated the existence of different structural characteristics or 'strains' of α-Syn, supporting the concept that synucleinopathies share several common features with prion diseases and possibly explaining how a single protein results in different clinical phenotypes within synucleinopathies. In earlier studies, the different strains were generated through the regulation of solution conditions, temperature, or repetitive seeded fibrillization in vitro. Here, we synthesize homogeneous α-Syn phosphorylated at serine 129 (pS129 α-Syn), which is highly associated with the pathological changes, and demonstrate that phosphorylation at Ser129 induces α-Syn to form a distinct strain with different structures, propagation properties, and higher cytotoxicity compared with the wild-type α-Syn. The results are the first demonstration that post-translational modification of α-Syn can induce different strain formation, offering a new mechanism for strain formation.
Collapse
Affiliation(s)
- Meng-Rong Ma
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wen Hu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yu-Fen Zhao
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yong-Xiang Chen
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yan-Mei Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.,Beijing Institute for Brain Disorders, Beijing 100069, P. R. China
| |
Collapse
|
12
|
Environmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity. Proc Natl Acad Sci U S A 2016; 113:E6506-E6515. [PMID: 27708160 DOI: 10.1073/pnas.1606791113] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Synucleinopathies are a group of progressive disorders characterized by the abnormal aggregation and accumulation of α-synuclein (aSyn), an abundant neuronal protein that can adopt different conformations and biological properties. Recently, aSyn pathology was shown to spread between neurons in a prion-like manner. Proteins like aSyn that exhibit self-propagating capacity appear to be able to adopt different stable conformational states, known as protein strains, which can be modulated both by environmental and by protein-intrinsic factors. Here, we analyzed these factors and found that the unique combination of the neurodegeneration-related metal copper and the pathological H50Q aSyn mutation induces a significant alteration in the aggregation properties of aSyn. We compared the aggregation of WT and H50Q aSyn with and without copper, and assessed the effects of the resultant protein species when applied to primary neuronal cultures. The presence of copper induces the formation of structurally different and less-damaging aSyn aggregates. Interestingly, these aggregates exhibit a stronger capacity to induce aSyn inclusion formation in recipient cells, which demonstrates that the structural features of aSyn species determine their effect in neuronal cells and supports a lack of correlation between toxicity and inclusion formation. In total, our study provides strong support in favor of the hypothesis that protein aggregation is not a primary cause of cytotoxicity.
Collapse
|
13
|
Rutherford NJ, Brooks M, Giasson BI. Novel antibodies to phosphorylated α-synuclein serine 129 and NFL serine 473 demonstrate the close molecular homology of these epitopes. Acta Neuropathol Commun 2016; 4:80. [PMID: 27503460 PMCID: PMC4977832 DOI: 10.1186/s40478-016-0357-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/28/2016] [Indexed: 11/15/2022] Open
Abstract
Pathological inclusions containing aggregated, highly phosphorylated (at serine129) α-synuclein (αS pSer129) are characteristic of a group of neurodegenerative diseases termed synucleinopathies. Antibodies to the pSer129 epitope can be highly sensitive in detecting αS inclusions in human tissue and experimental models of synucleinopathies. However, the generation of extensively specific pSer129 antibodies has been problematic, in some cases leading to the misinterpretation of αS inclusion pathology. One common issue is cross-reactivity to the low molecular mass neurofilament subunit (NFL) phosphorylated at Ser473. Here, we generated a series of monoclonal antibodies to the pSer129 αS and pSer473 NFL epitopes. We determined the relative abilities of the known αS kinases, polo-like kinases (PLK) 1, 2 and 3 and casein kinase (CK) II in phosphorylating NFL and αS, while using this information to characterize the specificity of the new antibodies. NFL can be phosphorylated by PLK1, 2 and 3 at Ser473; however CKII shows the highest phosphorylation efficiency and specificity for this site. Conversely, PLK3 is the most efficient kinase at phosphorylating αS at Ser129, but there is overlay in the ability of these kinases to phosphorylate both epitopes. Antibody 4F8, generated to the pSer473 NFL epitope, was relatively specific for phosphorylated NFL, however it could uniquely cross-react with pSer129 αS when highly phosphorylated, further showing the structural similarity between these phospho-epitopes. All of the new pSer129 antibodies detected pathological αS inclusions in human brains and mouse and cultured cell experimental models of induced synucleinopathies. Several of these pSer129 αS antibodies reacted with the pSer473 NFL epitope, but 2 clones (LS3-2C2 and LS4-2G12) did not. However, LS3-2C2 demonstrated cross-reactivity with other proteins. Our findings further demonstrate the difficulties in generating specific pSer129 αS antibodies, but highlights that the use of multiple antibodies, such as those generated here, can provide a sensitive and accurate assessment of αS pathology.
Collapse
|