1
|
Xue X, Zhou J, Hao X, Jia S, Zeng Q, Ren X. Three-body deprotonation fragmentation dynamics of C6H63+ induced by electron-impact ionization. J Chem Phys 2024; 161:124305. [PMID: 39319653 DOI: 10.1063/5.0232319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
The three-body fragmentation dynamics of benzene trications C6H63+ induced by 200 eV electron-impact produced by a photoemission cathode is investigated. All three fragment ions are detected in coincidence, and their momentum vectors are determined by employing a COLTRIMS reaction microscope. The detailed kinematical information of three deprotonation fragmentation channels of H+ + C3H2+ + C3H3+, H+ + C2H3+ + C4H2+, and H+ + C2H2+ + C4H3+ are obtained. By analyzing the momentum and energy correlation spectra among all the three fragment ions, we find that all the three channels are primarily generated by sequential fragmentation processes. Each channel has two deprotonation pathways, corresponding to proton emission in the first or second step of sequential fragmentation, respectively. These results provide insight into the mechanisms and dynamics of deprotonation and ring-breaking reactions in the three-body fragmentation processes of aromatic ring molecules.
Collapse
Affiliation(s)
- Xiaorui Xue
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaqi Zhou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xintai Hao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaokui Jia
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qingrui Zeng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xueguang Ren
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Hanus V, Kangaparambil S, Richter M, Haßfurth L, Dorner-Kirchner M, Paulus GG, Xie X, Baltuška A, Gräfe S, Zeiler M. Carrier envelope phase sensitivity of photoelectron circular dichroism. Phys Chem Chem Phys 2023; 25:4656-4666. [PMID: 36722912 PMCID: PMC9906976 DOI: 10.1039/d2cp03077b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
We report on a combined experimental and numerical study of photoelectron circular dichroism (PECD) induced by intense few-cycle laser pulses, using methyloxirane as the molecular example. Our experiments reveal a remarkably pronounced sensitivity of the PECD strength of double-ionization on the carrier-envelope phase (CEP) of the laser pulses. By comparison to the simulations, which reproduce the measured CEP-dependence for specific orientations of the molecules in the lab frame, we attribute the origin of the observed CEP-dependence of PECD to the CEP-induced modulation of ionization from different areas of the wave functions of three dominant orbitals.
Collapse
Affiliation(s)
- Václav Hanus
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria.
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, 1121 Budapest, Hungary
| | | | - Martin Richter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
- Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
| | - Lukas Haßfurth
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
- Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
| | | | - Gerhard G Paulus
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Xinhua Xie
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria.
- SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Andrius Baltuška
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria.
| | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
- Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
| | - Markus Zeiler
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria.
| |
Collapse
|
3
|
Wei L, Lam CS, Zhang Y, Ren B, Han J, Wang B, Zou Y, Chen L, Lau KC, Wei B. Isomerization Dynamics in the Symmetric and Asymmetric Fragmentation of Ethane Dications. J Phys Chem Lett 2021; 12:5789-5795. [PMID: 34137607 DOI: 10.1021/acs.jpclett.1c01276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogen- or proton-migration-induced isomerization has recently been of concern for its critical role in the dissociation of organic molecules of astrophysical or biological relevance. Herein we present a combined experimental and theoretical study of the two-body C-C bond breakdown dissociation of ethane dication. For the asymmetric fragmentation channel CH2+ + CH4+, the kinetic energy release measurements and ab initio quantum chemical calculations demonstrate that the reaction pathway involving hydrogen-migration-induced isomerization of [CH3-CH3]2+ to [CH2-CH4]2+ can be accessed via the lowest triplet state rather than the ground singlet state of ethane dication. Interestingly, it is found that a considerable proportion of the yield of symmetric fragmentation CH3+ + CH3+, which is usually considered from a direct Coulomb explosion and seemingly independent of isomerization, could come from the dissociation of ethane dication in the ground singlet state with the involvement of [CH3-CH3]2+ isomerization to intermediate [H2C(H2)CH2]2+ of the diborane-like double-bridged structure.
Collapse
Affiliation(s)
- Long Wei
- Institute of Modern Physics, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Chow-Shing Lam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Yu Zhang
- College of Data Science, Jiaxing University, Jiaxing 314001, China
| | - Baihui Ren
- Institute of Modern Physics, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Jie Han
- Institute of Modern Physics, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Bo Wang
- Institute of Modern Physics, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Yaming Zou
- Institute of Modern Physics, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Li Chen
- Institute of Modern Physics, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai 200433, China
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Baoren Wei
- Institute of Modern Physics, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Hanus V, Kangaparambil S, Larimian S, Dorner-Kirchner M, Xie X, Schöffler MS, Paulus GG, Baltuška A, Staudte A, Kitzler-Zeiler M. Experimental Separation of Subcycle Ionization Bursts in Strong-Field Double Ionization of H_{2}. PHYSICAL REVIEW LETTERS 2020; 124:103201. [PMID: 32216425 DOI: 10.1103/physrevlett.124.103201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
We report on the unambiguous observation of the subcycle ionization bursts in sequential strong-field double ionization of H_{2} and their disentanglement in molecular frame photoelectron angular distributions. This observation was made possible by the use of few-cycle laser pulses with a known carrier-envelope phase, in combination with multiparticle coincidence momentum imaging. The approach demonstrated here will allow sampling of the intramolecular electron dynamics and the investigation of charge-state-specific Coulomb distortions on emitted electrons in polyatomic molecules.
Collapse
Affiliation(s)
- Václav Hanus
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | | | - Seyedreza Larimian
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | | | - Xinhua Xie
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
- SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Markus S Schöffler
- Institut für Kernphysik, Goethe-Universität, D-60438 Frankfurt am Main, Germany
| | - Gerhard G Paulus
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Andrius Baltuška
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | - André Staudte
- Joint Attosecond Science Lab of the National Research Council and the University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
| | | |
Collapse
|
5
|
Hanus V, Kangaparambil S, Larimian S, Dorner-Kirchner M, Xie X, Schöffler MS, Paulus GG, Baltuška A, Staudte A, Kitzler-Zeiler M. Subfemtosecond Tracing of Molecular Dynamics during Strong-Field Interaction. PHYSICAL REVIEW LETTERS 2019; 123:263201. [PMID: 31951453 DOI: 10.1103/physrevlett.123.263201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 06/10/2023]
Abstract
We introduce and experimentally demonstrate a method where the two intrinsic timescales of a molecule, the slow nuclear motion and the fast electronic motion, are simultaneously measured in a photoelectron photoion coincidence experiment. In our experiment, elliptically polarized, 750 nm, 4.5 fs laser pulses were focused to an intensity of 9×10^{14} W/cm^{2} onto H_{2}. Using coincidence imaging, we directly observe the nuclear wave packet evolving on the 1sσ_{g} state of H_{2}^{+} during its first round-trip with attosecond temporal and picometer spatial resolution. The demonstrated method should enable insight into the first few femtoseconds of the vibronic dynamics of ionization-induced unimolecular reactions of larger molecules.
Collapse
Affiliation(s)
- Václav Hanus
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria, EU
| | | | - Seyedreza Larimian
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria, EU
| | | | - Xinhua Xie
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria, EU
- SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Markus S Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany, EU
| | - Gerhard G Paulus
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, EU
| | - Andrius Baltuška
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria, EU
| | - André Staudte
- Joint Laboratory for Attosecond Science of the National Research Council and the University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
| | | |
Collapse
|
6
|
Yatsuhashi T, Nakashima N. Multiple ionization and Coulomb explosion of molecules, molecular complexes, clusters and solid surfaces. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2017.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Jochim B, Siemering R, Zohrabi M, Voznyuk O, Mahowald JB, Schmitz DG, Betsch KJ, Berry B, Severt T, Kling NG, Burwitz TG, Carnes KD, Kling MF, Ben-Itzhak I, Wells E, de Vivie-Riedle R. The importance of Rydberg orbitals in dissociative ionization of small hydrocarbon molecules in intense laser fields. Sci Rep 2017; 7:4441. [PMID: 28667335 PMCID: PMC5493692 DOI: 10.1038/s41598-017-04638-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/18/2017] [Indexed: 11/10/2022] Open
Abstract
Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C2D2, C2D4 and C2D6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.
Collapse
Affiliation(s)
- Bethany Jochim
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - R Siemering
- Department für Chemie, Ludwig-Maximilians-Universität München, Butenandt-Strasse 11, D-81377, München, Germany
| | - M Zohrabi
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - O Voznyuk
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - J B Mahowald
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - D G Schmitz
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - K J Betsch
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Ben Berry
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - T Severt
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Nora G Kling
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.,Department für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748, Garching, Germany
| | - T G Burwitz
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - K D Carnes
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - M F Kling
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.,Department für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748, Garching, Germany
| | - I Ben-Itzhak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - E Wells
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA.
| | - R de Vivie-Riedle
- Department für Chemie, Ludwig-Maximilians-Universität München, Butenandt-Strasse 11, D-81377, München, Germany.
| |
Collapse
|
8
|
Sándor P, Tagliamonti V, Zhao A, Rozgonyi T, Ruckenbauer M, Marquetand P, Weinacht T. Strong Field Molecular Ionization in the Impulsive Limit: Freezing Vibrations with Short Pulses. PHYSICAL REVIEW LETTERS 2016; 116:063002. [PMID: 26918985 DOI: 10.1103/physrevlett.116.063002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 06/05/2023]
Abstract
We study strong-field molecular ionization as a function of pulse duration. Experimental measurements of the photoelectron yield for a number of molecules reveal competition between different ionization continua (cationic states) which depends strongly on pulse duration. Surprisingly, in the limit of short pulse duration, we find that a single ionic continuum dominates the yield, whereas multiple continua are produced for longer pulses. Using calculations which take vibrational dynamics into account, we interpret our results in terms of nuclear motion and nonadiabatic dynamics during the ionization process.
Collapse
Affiliation(s)
- Péter Sándor
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Vincent Tagliamonti
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Arthur Zhao
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Tamás Rozgonyi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Matthias Ruckenbauer
- University of Vienna, Faculty of Chemistry, Institute of Theoretical Chemistry, Währinger Strasse 17, 1090 Wien, Austria
| | - Philipp Marquetand
- University of Vienna, Faculty of Chemistry, Institute of Theoretical Chemistry, Währinger Strasse 17, 1090 Wien, Austria
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| |
Collapse
|
9
|
Erattupuzha S, Larimian S, Baltuška A, Xie X, Kitzler M. Two-pulse control over double ionization pathways in CO2. J Chem Phys 2016; 144:024306. [PMID: 26772570 DOI: 10.1063/1.4939638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We visualize and control molecular dynamics taking place on intermediately populated states during different sequential double ionization pathways of CO2 using a sequence of two delayed laser pulses which exhibit different peak intensities. Measured yields of CO2 (2+) and of fragment pairs CO(+)/O(+) as a function of delay between the two pulses are weakly modulated by various vibronic dynamics taking place in CO2 (+). By Fourier analysis of the modulations we identify the dynamics and show that they can be assigned to merely two double ionization pathways. We demonstrate that by reversing the sequence of the two pulses it becomes possible to control the pathway which is taken across CO2 (+) towards the final state in CO2 (2+). A comparison between the yields of CO2 (2+) and CO(+)/O(+) reveals that the modulating vibronic dynamics oscillate out-of-phase with each other, thus opening up opportunities for strong-field fragmentation control on extended time scales.
Collapse
Affiliation(s)
- Sonia Erattupuzha
- Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, A-1040 Vienna, Austria
| | - Seyedreza Larimian
- Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, A-1040 Vienna, Austria
| | - Andrius Baltuška
- Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, A-1040 Vienna, Austria
| | - Xinhua Xie
- Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, A-1040 Vienna, Austria
| | - Markus Kitzler
- Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, A-1040 Vienna, Austria
| |
Collapse
|