1
|
Xie L, Wu Q, Li K, Khan MAS, Zhang A, Sinha B, Li S, Chang SL, Brody DL, Grinstaff MW, Zhou S, Alterovitz G, Liu P, Wang X. Tryptophan Metabolism in Alzheimer's Disease with the Involvement of Microglia and Astrocyte Crosstalk and Gut-Brain Axis. Aging Dis 2024; 15:2168-2190. [PMID: 38916729 PMCID: PMC11346405 DOI: 10.14336/ad.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease characterized by extracellular Amyloid Aβ peptide (Aβ) deposition and intracellular Tau protein aggregation. Glia, especially microglia and astrocytes are core participants during the progression of AD and these cells are the mediators of Aβ clearance and degradation. The microbiota-gut-brain axis (MGBA) is a complex interactive network between the gut and brain involved in neurodegeneration. MGBA affects the function of glia in the central nervous system (CNS), and microbial metabolites regulate the communication between astrocytes and microglia; however, whether such communication is part of AD pathophysiology remains unknown. One of the potential links in bilateral gut-brain communication is tryptophan (Trp) metabolism. The microbiota-originated Trp and its metabolites enter the CNS to control microglial activation, and the activated microglia subsequently affect astrocyte functions. The present review highlights the role of MGBA in AD pathology, especially the roles of Trp per se and its metabolism as a part of the gut microbiota and brain communications. We (i) discuss the roles of Trp derivatives in microglia-astrocyte crosstalk from a bioinformatics perspective, (ii) describe the role of glia polarization in the microglia-astrocyte crosstalk and AD pathology, and (iii) summarize the potential of Trp metabolism as a therapeutic target. Finally, we review the role of Trp in AD from the perspective of the gut-brain axis and microglia, as well as astrocyte crosstalk, to inspire the discovery of novel AD therapeutics.
Collapse
Affiliation(s)
- Lushuang Xie
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Kelin Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mohammed A. S. Khan
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew Zhang
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| | - Sulie L. Chang
- Department of Biological Sciences, Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA.
| | - David L. Brody
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA.
| | - Gil Alterovitz
- Biomedical Cybernetics Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Wójcik P, Jastrzębski MK, Zięba A, Matosiuk D, Kaczor AA. Caspases in Alzheimer's Disease: Mechanism of Activation, Role, and Potential Treatment. Mol Neurobiol 2024; 61:4834-4853. [PMID: 38135855 PMCID: PMC11236938 DOI: 10.1007/s12035-023-03847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
With the aging of the population, treatment of conditions emerging in old age, such as neurodegenerative disorders, has become a major medical challenge. Of these, Alzheimer's disease, leading to cognitive dysfunction, is of particular interest. Neuronal loss plays an important role in the pathophysiology of this condition, and over the years, a great effort has been made to determine the role of various factors in this process. Unfortunately, until now, the exact pathomechanism of this condition remains unknown. However, the most popular theories associate AD with abnormalities in the Tau and β-amyloid (Aβ) proteins, which lead to their deposition and result in neuronal death. Neurons, like all cells, die in a variety of ways, among which pyroptosis, apoptosis, and necroptosis are associated with the activation of various caspases. It is worth mentioning that Tau and Aβ proteins are considered to be one of the caspase activators, leading to cell death. Moreover, the protease activity of caspases influences both of the previously mentioned proteins, Tau and Aβ, converting them into more toxic derivatives. Due to the variety of ways caspases impact the development of AD, drugs targeting caspases could potentially be useful in the treatment of this condition. Therefore, there is a constant need to search for novel caspase inhibitors and evaluate them in preclinical and clinical trials.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland.
| | - Michał K Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland
| | - Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland.
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
3
|
Gutti G, Leifeld J, Kakarla R, Bajad NG, Ganeshpurkar A, Kumar A, Krishnamurthy S, Klein-Schmidt C, Tapken D, Hollmann M, Singh SK. Discovery of triazole-bridged aryl adamantane analogs as an intriguing class of multifunctional agents for treatment of Alzheimer's disease. Eur J Med Chem 2023; 259:115670. [PMID: 37515920 DOI: 10.1016/j.ejmech.2023.115670] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Alzheimer's disease (AD) is a progressive brain disorder associated with slow loss of brain functions leading to memory failure and modest changes in behavior. The multifactorial neuropathological condition is due to a depletion of cholinergic neurons and accumulation of amyloid-beta (Aβ) plaques. Recently, a multi-target-directed ligand (MTDL) strategy has emerged as a robust drug discovery tool to overcome current challenges. In this research work, we aimed to design and develop a library of triazole-bridged aryl adamantane analogs for the treatment of AD. All synthesized analogs were characterized and evaluated through various in vitro and in vivo biological studies. The optimal compounds 32 and 33 exhibited potent inhibitory activities against acetylcholinesterase (AChE) (32 - IC50 = 0.086 μM; 33 - 0.135 μM), and significant Aβ aggregation inhibition (20 μM). N-methyl-d-aspartate (NMDA) receptor (GluN1-1b/GluN2B subunit combination) antagonistic activity of compounds 32 and 33 measured upon heterologous expression in Xenopus laevis oocytes showed IC50 values of 3.00 μM and 2.86 μM, respectively. The compounds possessed good blood-brain barrier permeability in the PAMPA assay and were safe for SH-SY5Y neuroblastoma (10 μM) and HEK-293 cell lines (30 μM). Furthermore, in vivo behavioral studies in rats demonstrated that both compounds improved cognitive and spatial memory impairment at a dose of 10 mg/kg oral administration. Together, our findings suggest triazole-bridged aryl adamantane as a promising new scaffold for the development of anti-Alzheimer's drugs.
Collapse
Affiliation(s)
- Gopichand Gutti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India; Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Leifeld
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Ramakrishna Kakarla
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Christina Klein-Schmidt
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Daniel Tapken
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
4
|
Belinskaia DA, Voronina PA, Krivorotov DV, Jenkins RO, Goncharov NV. Anticholinesterase and Serotoninergic Evaluation of Benzimidazole-Carboxamides as Potential Multifunctional Agents for the Treatment of Alzheimer's Disease. Pharmaceutics 2023; 15:2159. [PMID: 37631373 PMCID: PMC10459044 DOI: 10.3390/pharmaceutics15082159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The etiology and pathogenesis of Alzheimer's disease are multifactorial, so one of the treatment strategies is the development of the drugs that affect several targets associated with the pathogenesis of the disease. Within this roadmap, we investigated the interaction of several substituted 1,3-dihydro-2-oxo-1H-benzimidazol-2-ones with their potential molecular targets: cholinesterases (ChE) and three types of the Gs-protein-coupled serotonin receptors (5-HTR) 5-HT6, 5-HT4 and 5-HT7 (5-HT4R, 5-HT6R and 5-HT7R, respectively). A microplate modification of the Ellman method was used for the biochemical analysis of the inhibitory ability of the drugs towards ChE. Molecular modeling methods, such as molecular docking and molecular dynamics (MD) simulation in water and the lipid bilayer, were used to study the interaction of the compounds with ChE and 5-HTR. In vitro experiments showed that the tested compounds had moderate anticholinesterase activity. With the help of molecular modeling methods, the mechanism of interaction of the tested compounds with ChE was investigated, the binding sites were described and the structural features of the drugs that determine the strength of their anticholinesterase activity were revealed. Primary in silico evaluation showed that benzimidazole-carboxamides effectively bind to 5-HT4R and 5-HT7R. The pool of the obtained data allows us to choose N-[2-(diethylamino)ethyl]-2-oxo-3-(tert-butyl)-2,3-dihydro-1H-benzimidazole-1-carboxamide hydrochloride (compound 13) as the most promising for further experimental development.
Collapse
Affiliation(s)
- Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, St. Petersburg 194223, Russia
| | - Polina A. Voronina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, St. Petersburg 194223, Russia
| | - Denis V. Krivorotov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Federal Medical Biological Agency, p.o. Kuzmolovsky, St. Petersburg 188663, Russia
| | - Richard O. Jenkins
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez 44, St. Petersburg 194223, Russia
| |
Collapse
|
5
|
Peng Y, Jin H, Xue YH, Chen Q, Yao SY, Du MQ, Liu S. Current and future therapeutic strategies for Alzheimer's disease: an overview of drug development bottlenecks. Front Aging Neurosci 2023; 15:1206572. [PMID: 37600514 PMCID: PMC10438465 DOI: 10.3389/fnagi.2023.1206572] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Alzheimer's disease (AD) is the most common chronic neurodegenerative disease worldwide. It causes cognitive dysfunction, such as aphasia and agnosia, and mental symptoms, such as behavioral abnormalities; all of which place a significant psychological and economic burden on the patients' families. No specific drugs are currently available for the treatment of AD, and the current drugs for AD only delay disease onset and progression. The pathophysiological basis of AD involves abnormal deposition of beta-amyloid protein (Aβ), abnormal tau protein phosphorylation, decreased activity of acetylcholine content, glutamate toxicity, autophagy, inflammatory reactions, mitochondria-targeting, and multi-targets. The US Food and Drug Administration (FDA) has approved five drugs for clinical use: tacrine, donepezil, carbalatine, galantamine, memantine, and lecanemab. We have focused on the newer drugs that have undergone clinical trials, most of which have not been successful as a result of excessive clinical side effects or poor efficacy. Although aducanumab received rapid approval from the FDA on 7 June 2021, its long-term safety and tolerability require further monitoring and confirmation. In this literature review, we aimed to explore the possible pathophysiological mechanisms underlying the occurrence and development of AD. We focused on anti-Aβ and anti-tau drugs, mitochondria-targeting and multi-targets, commercially available drugs, bottlenecks encountered in drug development, and the possible targets and therapeutic strategies for future drug development. We hope to present new concepts and methods for future drug therapies for AD.
Collapse
Affiliation(s)
- Yong Peng
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-hui Xue
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shun-yu Yao
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-qiao Du
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Neurology Department, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
- Neurology Department, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
6
|
Cassels WR, Fulton JL, Johnson JS. Enantioconvergent iso-Pictet-Spengler Reactions: Organocatalytic Synthesis of Chiral Tetrahydro-γ-carbolines. Org Lett 2023; 25:5248-5252. [PMID: 37410881 PMCID: PMC10529283 DOI: 10.1021/acs.orglett.3c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Enantioconvergent iso-Pictet-Spengler reactions of chiral racemic ß-formyl esters and a ß-keto ester are reported, providing complex tetrahydro-γ-carbolines containing two contiguous stereocenters. The reactions are catalyzed by a chiral thiourea and benzoic acid cocatalytic system and constitute rare cases of nonhydrogenative stereoconvergent additions to racemic α-stereogenic-ß-dicarbonyls. Elaboration of the products to chiral aminoalcohols and carbamates is demonstrated.
Collapse
Affiliation(s)
- William R Cassels
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jennifer L Fulton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
7
|
Xu T, Li S, Li AJ, Zhao J, Sakamuru S, Huang W, Xia M, Huang R. Identification of Potent and Selective Acetylcholinesterase/Butyrylcholinesterase Inhibitors by Virtual Screening. J Chem Inf Model 2023; 63:2321-2330. [PMID: 37011147 PMCID: PMC10688023 DOI: 10.1021/acs.jcim.3c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play important roles in human neurodegenerative disorders such as Alzheimer's disease. In this study, machine learning methods were applied to develop quantitative structure-activity relationship models for the prediction of novel AChE and BChE inhibitors based on data from quantitative high-throughput screening assays. The models were used to virtually screen an in-house collection of ∼360K compounds. The optimal models achieved good performance with area under the receiver operating characteristic curve values ranging from 0.83 ± 0.03 to 0.87 ± 0.01 for the prediction of AChE/BChE inhibition activity and selectivity. Experimental validation showed that the best-performing models increased the assay hit rate by several folds. We identified 88 novel AChE and 126 novel BChE inhibitors, 25% (AChE) and 53% (BChE) of which showed potent inhibitory effects (IC50 < 5 μM). In addition, structure-activity relationship analysis of the BChE inhibitors revealed scaffolds for chemistry design and optimization. In conclusion, machine learning models were shown to efficiently identify potent and selective inhibitors against AChE and BChE and novel structural series for further design and development of potential therapeutics against neurodegenerative disorders.
Collapse
Affiliation(s)
- Tuan Xu
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Shuaizhang Li
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Andrew J. Li
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Jinghua Zhao
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Srilatha Sakamuru
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Wenwei Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland 20850, United States
| |
Collapse
|
8
|
Conjugates of Tacrine and Salicylic Acid Derivatives as New Promising Multitarget Agents for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24032285. [PMID: 36768608 PMCID: PMC9916969 DOI: 10.3390/ijms24032285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The structure of the salicylamide moiety exerted little effect on anticholinesterase activity, but AChE inhibition increased with spacer elongation. The most active conjugates were salicylimine derivatives: IC50 values of the lead compound 10c were 0.0826 µM (AChE) and 0.0156 µM (BChE), with weak inhibition of the off-target carboxylesterase. The hybrids were mixed-type reversible inhibitors of both cholinesterases and displayed dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking, which, along with experimental results on propidium iodide displacement, suggested their potential to block AChE-induced β-amyloid aggregation. All conjugates inhibited Aβ42 self-aggregation in the thioflavin test, and inhibition increased with spacer elongation. Salicylimine 10c and salicylamide 5c with (CH2)8 spacers were the lead compounds for inhibiting Aβ42 self-aggregation, which was corroborated by molecular docking to Aβ42. ABTS•+-scavenging activity was highest for salicylamides 5a-c, intermediate for salicylimines 10a-c, low for F-containing salicylamides 7, and non-existent for methoxybenzoylamides 6 and difluoromethoxybenzoylamides 8. In the FRAP antioxidant (AO) assay, the test compounds displayed little or no activity. Quantum chemical analysis and molecular dynamics (MD) simulations with QM/MM potentials explained the AO structure-activity relationships. All conjugates were effective chelators of Cu2+, Fe2+, and Zn2+, with molar compound/metal (Cu2+) ratios of 2:1 (5b) and ~1:1 (10b). Conjugates exerted comparable or lower cytotoxicity than tacrine on mouse hepatocytes and had favorable predicted intestinal absorption and blood-brain barrier permeability. The overall results indicate that the synthesized conjugates are promising new multifunctional agents for the potential treatment of AD.
Collapse
|
9
|
Multipharmacophore strategy in medicinal chemistry for the design of drugs for the treatment of Alzheimer’s and some other neurodegenerative diseases. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Conjugates of Methylene Blue with Cycloalkaneindoles as New Multifunctional Agents for Potential Treatment of Neurodegenerative Disease. Int J Mol Sci 2022; 23:ijms232213925. [PMID: 36430413 PMCID: PMC9697446 DOI: 10.3390/ijms232213925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The development of multi-target-directed ligands (MTDLs) would provide effective therapy of neurodegenerative diseases (ND) with complex and nonclear pathogenesis. A promising method to create such potential drugs is combining neuroactive pharmacophoric groups acting on different biotargets involved in the pathogenesis of ND. We developed a synthetic algorithm for the conjugation of indole derivatives and methylene blue (MB), which are pharmacophoric ligands that act on the key stages of pathogenesis. We synthesized hybrid structures and performed a comprehensive screening for a specific set of biotargets participating in the pathogenesis of ND (i.e., cholinesterases, NMDA receptor, mitochondria, and microtubules assembly). The results of the screening study enabled us to find two lead compounds (4h and 4i) which effectively inhibited cholinesterases and bound to the AChE PAS, possessed antioxidant activity, and stimulated the assembly of microtubules. One of them (4i) exhibited activity as a ligand for the ifenprodil-specific site of the NMDA receptor. In addition, this lead compound was able to bypass the inhibition of complex I and prevent calcium-induced mitochondrial depolarization, suggesting a neuroprotective property that was confirmed using a cellular calcium overload model of neurodegeneration. Thus, these new MB-cycloalkaneindole conjugates constitute a promising class of compounds for the development of multitarget neuroprotective drugs which simultaneously act on several targets, thereby providing cognitive stimulating, neuroprotective, and disease-modifying effects.
Collapse
|
11
|
Elkina NA, Grishchenko MV, Shchegolkov EV, Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Radchenko EV, Palyulin VA, Zhilina EF, Perminova AN, Lapshin LS, Burgart YV, Saloutin VI, Richardson RJ. New Multifunctional Agents for Potential Alzheimer's Disease Treatment Based on Tacrine Conjugates with 2-Arylhydrazinylidene-1,3-Diketones. Biomolecules 2022; 12:1551. [PMID: 36358901 PMCID: PMC9687805 DOI: 10.3390/biom12111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2023] Open
Abstract
Alzheimer's disease (AD) is considered a modern epidemic because of its increasing prevalence worldwide and serious medico-social consequences, including the economic burden of treatment and patient care. The development of new effective therapeutic agents for AD is one of the most urgent and challenging tasks. To address this need, we used an aminoalkylene linker to combine the well-known anticholinesterase drug tacrine with antioxidant 2-tolylhydrazinylidene-1,3-diketones to create 3 groups of hybrid compounds as new multifunctional agents with the potential for AD treatment. Lead compounds of the new conjugates effectively inhibited acetylcholinesterase (AChE, IC50 0.24-0.34 µM) and butyrylcholinesterase (BChE, IC50 0.036-0.0745 µM), with weak inhibition of off-target carboxylesterase. Anti-AChE activity increased with elongation of the alkylene spacer, in agreement with molecular docking, which showed compounds binding to both the catalytic active site and peripheral anionic site (PAS) of AChE, consistent with mixed type reversible inhibition. PAS binding along with effective propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. All of the conjugates demonstrated metal chelating ability for Cu2+, Fe2+, and Zn2+, as well as high antiradical activity in the ABTS test. Non-fluorinated hybrid compounds 6 and 7 also showed Fe3+ reducing activity in the FRAP test. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters acceptable for potential lead compounds at the early stages of anti-AD drug development.
Collapse
Affiliation(s)
- Natalia A. Elkina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Maria V. Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Evgeny V. Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina F. Zhilina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Anastasiya N. Perminova
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Luka S. Lapshin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Huang Y, Wei Y, Xu J, Wei X. A comprehensive review on the prevention and regulation of Alzheimer's disease by tea and its active ingredients. Crit Rev Food Sci Nutr 2022; 63:10560-10584. [PMID: 35647742 DOI: 10.1080/10408398.2022.2081128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) has brought a heavy burden to society as a representative neurodegenerative disease. The etiology of AD combines multiple factors, concluding family, gender, head trauma, diseases and social psychology. There are multiple hypotheses explaining the pathogenesis of AD such as β-amyloid (Aβ) deposition and tau hyperphosphorylation, which lead to extracellular amyloid plaques and neurofibrillary tangles in neurons. The existing therapeutic drugs have several disadvantages including single target, poor curative effect, and obvious side effects. Tea contains many bioactive components, such as tea polyphenols (TPP), L-theanine (L-TH), tea pigment, tea polysaccharides and caffeine. The epidemiological investigations have shown that drinking tea can reduce the risk of AD. The mechanisms of tea active ingredients in the prevention and regulation of AD includes reducing the generation and aggregation of Aβ; inhibiting tau aggregation and hyperphosphorylation; inhibiting neuronal apoptosis and regulate neurotransmitters; relieving oxidative stress and neuroinflammation as well as the regulation of intestinal flora. This review summarizes the different signaling pathways that tea active ingredients regulate AD. Furthermore, we propose the main limitations of current research and future research directions, hoping to contribute to the development of natural functional foods based on tea active ingredients in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
13
|
Makhaeva GF, Kovaleva NV, Boltneva NP, Rudakova EV, Lushchekina SV, Astakhova TY, Serkov IV, Proshin AN, Radchenko EV, Palyulin VA, Korabecny J, Soukup O, Bachurin SO, Richardson RJ. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer’s Activity Profile. Molecules 2022; 27:molecules27031060. [PMID: 35164325 PMCID: PMC8839189 DOI: 10.3390/molecules27031060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug–drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a–c exhibited an IC50(AChE) = 2.9–1.4 µM, IC50(BChE) = 0.13–0.067 µM, and 14–18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c–e (m = 4, 5, 6) showed mild (13–17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2–2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood–brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c–e appear promising for future optimization and development as multitarget anti-AD agents.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Tatiana Yu. Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Eugene V. Radchenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-0769
| |
Collapse
|
14
|
Bachurin SO. Meet the Editorial Board Member. Curr Med Chem 2022. [DOI: 10.2174/092986732906220218163557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sergey O. Bachurin
- Institute of Physiologically Active Compounds,
Russian Academy of Sciences (RAS),
Moscow,
Russia
| |
Collapse
|
15
|
Aksinenko AY, Sokolov VB, Gabrel’yan AV, Grigoriev VV, Bachurin SO. Modification of phenothiazine and carbazole derivatives with trifluoromethyl-containing 1,3,5-oxadiazines and imidazolidinediones. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Cetin A, Bursal E, Türkan F. 2-methylindole analogs as cholinesterases and glutathione S-transferase inhibitors: Synthesis, biological evaluation, molecular docking, and pharmacokinetic studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
17
|
Memudu AE, Adewumi AE. Alpha lipoic acid ameliorates scopolamine induced memory deficit and neurodegeneration in the cerebello-hippocampal cortex. Metab Brain Dis 2021; 36:1729-1745. [PMID: 34021876 DOI: 10.1007/s11011-021-00720-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Scopolamine- induced memory loss is used to study new drug discovery in Alzheimer's disease (AD) pathogenesis. This study was aimed at evaluating the role of an antioxidant supplement alpha-lipoic acid (AHA), in ameliorating the oxidative damaging effects of scopolamine on cognition, memory, and the neurohistology of the cerebello-hippocampal cortex. Twenty adult male Wistar rats used were categorized into four (4) groups (n = 5): Group A- Control, Group B- 200 mg/kg of AHA, Group C- Scopolamine (memory-impaired model), and Group D- Neurodegenerative repair model (Scopolamine + AHA). The treatment lasted for fourteen (14) days. Y-maze and hang-wire (limb use test) were used as behavioural index to assess memory and motor function while brain tissues were processed for histology (H and E stain), histochemistry using Cresyl Fast violet stain for Nissl bodies, and immunohistochemistry of astrocytes using glial fibrillary acidic protein (GFAP). Results showed that scopolamine led to a decline in brain weight, impaired memory and motor function, induced oxidative tissue damage cumulating in loss of neuronal cells, chromatolysis, the proliferation of reactive astrocytes (neuroinflammation biomarker) in the cerebello-hippocampal cortex; but upon administration of AHA these neuropathological characterizations were inhibited and reversed by AHA demonstrating its antioxidant and neuro- repair potential. In conclusion, AHA is a useful therapeutic agent against scopolamine-induced cognitive and memory deficit because it has the ability to ameliorate oxidative tissue damage by attenuating reactive astrocytes proliferation and neuron chromatolysis thereby improving memory and motor function.
Collapse
Affiliation(s)
- Adejoke Elizabeth Memudu
- Department of Anatomy Faculty of Basic Medical Science, College of Medical Sciences, Edo University, KM 7 Auchi-Abuja Road Iyamho-Uzairue, P.M.B 04, Auchi, Zip Code 312102, Nigeria.
| | - Abosede Esther Adewumi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Bingham University, P.M.B 005, Karu, Nassarawa State, Nigeria
| |
Collapse
|
18
|
Conjugation of Aminoadamantane and γ-Carboline Pharmacophores Gives Rise to Unexpected Properties of Multifunctional Ligands. Molecules 2021; 26:molecules26185527. [PMID: 34576998 PMCID: PMC8471380 DOI: 10.3390/molecules26185527] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
A new series of conjugates of aminoadamantane and γ-carboline, which are basic scaffolds of the known neuroactive agents, memantine and dimebon (Latrepirdine) was synthesized and characterized. Conjugates act simultaneously on several biological structures and processes involved in the pathogenesis of Alzheimer’s disease and some other neurodegenerative disorders. In particular, these compounds inhibit enzymes of the cholinesterase family, exhibiting higher inhibitory activity against butyrylcholinesterase (BChE), but having almost no effect on the activity of carboxylesterase (anti-target). The compounds serve as NMDA-subtype glutamate receptor ligands, show mitoprotective properties by preventing opening of the mitochondrial permeability transition (MPT) pore, and act as microtubule stabilizers, stimulating the polymerization of tubulin and microtubule-associated proteins. Structure–activity relationships were studied, with particular attention to the effect of the spacer on biological activity. The synthesized conjugates showed new properties compared to their prototypes (memantine and dimebon), including the ability to bind to the ifenprodil-binding site of the NMDA receptor and to occupy the peripheral anionic site of acetylcholinesterase (AChE), which indicates that these compounds can act as blockers of AChE-induced β-amyloid aggregation. These new attributes of the conjugates represent improvements to the pharmacological profiles of the separate components by conferring the potential to act as neuroprotectants and cognition enhancers with a multifunctional mode of action.
Collapse
|
19
|
Zhou X, Zhang L. The Neuroprotective Effects of Moderate and Regular Caffeine Consumption in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5568011. [PMID: 34447487 PMCID: PMC8384510 DOI: 10.1155/2021/5568011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/27/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022]
Abstract
The increasing numbers of elderly Alzheimer's disease (AD) patients because of a steady increase in the average lifespan and aging society attract great scientific concerns, while there were fewer effective treatments on AD progression due to unclear exact causes and pathogenesis of AD. Moderate (200-500 mg/d) and regular caffeine consumption from coffee and tea are considered to alleviate the risk of AD and have therapeutic potential. This paper reviewed epidemiological studies about the relationship of caffeine intake from coffee or/and tea with the risk of AD and summarized the caffeine-related AD therapies based on experimental models. And further well-designed and well-conducted studies are suggested to investigate the optimal dosages, frequencies, and durations of caffeine consumption to slow down AD progression and treat AD.
Collapse
Affiliation(s)
- Xiangyu Zhou
- School of Food Science and Nutrition, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Lin Zhang
- The Key Laboratory for Special Medical Food Process in Hunan Province, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
20
|
Schwarthoff S, Tischer N, Sager H, Schätz B, Rohrbach MM, Raztsou I, Robaa D, Gaube F, Arndt HD, Winckler T. Evaluation of γ-carboline-phenothiazine conjugates as simultaneous NMDA receptor blockers and cholinesterase inhibitors. Bioorg Med Chem 2021; 46:116355. [PMID: 34391122 DOI: 10.1016/j.bmc.2021.116355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. It is associated with the impairment of memory and other cognitive functions that are mainly caused by progressive defects in cholinergic and glutamatergic signaling in the central nervous system. Inhibitors of acetylcholinesterase (AChE) and ionotropic glutamate receptors of the N-methyl-d-aspartate (NMDA) receptor family are currently approved as AD therapeutics. We previously showed using a cell-based assay of NMDA receptor-mediated glutamate-induced excitotoxicity that bis-γ-carbolinium conjugates are useful NMDA receptor blockers. However, these compounds also act as subnanomolar AChE inhibitors, which may cause serious anticholinergic side effects when applied in vivo. Here, we evaluated new structures containing γ-carbolines linked to phenothiazine via a propionyl spacer. These compounds were superior to the previously characterized bis-γ-carbolinium conjugates because they blocked NMDA receptors without requiring a quaternary pyridine N-atom and inhibited AChE with moderate IC50 values of 0.54-5.3 µM. In addition, these new compounds displayed considerable selectivity for the inhibition of butyrylcholinesterase (BChE; IC50 = 0.008-0.041 µM), which may be favorable for AD treatment. Inhibitory activities towards the NMDA receptors and AChE were in the same micromolar range, which may be beneficial for equal dosing against multiple targets in AD patients.
Collapse
Affiliation(s)
- Sigrid Schwarthoff
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Nicolas Tischer
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Henrike Sager
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Bianca Schätz
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Marius M Rohrbach
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Ihar Raztsou
- Institute of Organic Chemistry and Macromolecular Chemistry, University of Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle/Saale, Germany
| | - Friedemann Gaube
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany
| | - Hans-Dieter Arndt
- Institute of Organic Chemistry and Macromolecular Chemistry, University of Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Thomas Winckler
- Institute of Pharmacy, Pharmaceutical Biology, University of Jena, Semmelweisstrasse 10, 07743 Jena, Germany.
| |
Collapse
|
21
|
Wang D, Fei Z, Luo S, Wang H. MiR-335-5p Inhibits β-Amyloid (Aβ) Accumulation to Attenuate Cognitive Deficits Through Targeting c-jun-N-terminal Kinase 3 in Alzheimer's Disease. Curr Neurovasc Res 2021; 17:93-101. [PMID: 32003672 DOI: 10.2174/1567202617666200128141938] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD), also known as senile dementia, is a common neurodegenerative disease characterized by progressive cognitive impairment and personality changes. Numerous evidences have suggested that microRNAs (miRNAs) are involved in the pathogenesis and development of AD. However, the exact role of miR-335-5p in the progression of AD is still not clearly clarified. METHODS The protein and mRNA levels were measured by western blot and RNA extraction and quantitative real-time PCR (qRT-PCR), respectively. The relationship between miR-335-5p and c-jun-N-terminal kinase 3 (JNK3) was confirmed by dual-luciferase reporter assay. SH-SY5Y cells were transfected with APP mutant gene to establish the in vitro AD cell model. Flow cytometry and western blot were performed to evaluate cell apoptosis. The APP/PS1 transgenic mice were used as an in vivo AD model. Morris water maze test was performed to assess the effect of miR- 335-5p on the cognitive deficits in APP/PS1 transgenic mice. RESULTS The JNK3 mRNA expression and protein levels of JNK3 and β-Amyloid (Aβ) were significantly up-regulated, and the mRNA expression of miR-335-5p was down-regulated in the brain tissues of AD patients. The expression levels of miR-335-5p and JNK3 were significantly inversely correlated. Further, the dual Luciferase assay verified the relationship between miR-335- 5p and JNK3. Overexpression of miR-335-5p significantly decreased the protein levels of JNK3 and Aβ and inhibited apoptosis in SH-SY5Y/APPswe cells, whereas the inhibition of miR-335-5p obtained the opposite results. Moreover, the overexpression of miR-335-5p remarkably improved the cognitive abilities of APP/PS1 mice. CONCLUSION The results revealed that the increased JNK3 expression, negatively regulated by miR-335-5p, may be a potential mechanism that contributes to Aβ accumulation and AD progression, indicating a novel approach for AD treatment.
Collapse
Affiliation(s)
- Dan Wang
- Department of Geriatrics, Hefei Binhu Hospital, Hefei, Anhui, China
| | - Zhifu Fei
- Department of Internal Medicine, Yingshang County People's Hospital, Fuyang, Anhui, China
| | - Song Luo
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Hai Wang
- Department of Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
23
|
Makhaeva GF, Lushchekina SV, Kovaleva NV, Yu Astakhova T, Boltneva NP, Rudakova EV, Serebryakova OG, Proshin AN, Serkov IV, Trofimova TP, Tafeenko VA, Radchenko EV, Palyulin VA, Fisenko VP, Korábečný J, Soukup O, Richardson RJ. Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for Alzheimer's disease treatment. Bioorg Chem 2021; 112:104974. [PMID: 34029971 DOI: 10.1016/j.bioorg.2021.104974] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
We synthesized eleven new amiridine-piperazine hybrids 5a-j and 7 as potential multifunctional agents for Alzheimer's disease (AD) treatment by reacting N-chloroacetylamiridine with piperazines. The compounds displayed mixed-type reversible inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Conjugates were moderate inhibitors of equine and human BChE with negligible fluctuation in anti-BChE activity, whereas anti-AChE activity was substantially dependent on N4-substitution of the piperazine ring. Compounds with para-substituted aromatic moieties (5g, 5h, and bis-amiridine 7) had the highest anti-AChE activity in the low micromolar range. Top-ranked compound 5h, N-(2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]quinolin-9-yl)-2-[4-(4-nitro-phenyl)-piperazin-1-yl]-acetamide, had an IC50 for AChE = 1.83 ± 0.03 μM (Ki = 1.50 ± 0.12 and αKi = 2.58 ± 0.23 μM). The conjugates possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. In agreement with analysis of inhibition kinetics and molecular modeling studies, the lead compounds were found to bind effectively to the peripheral anionic site of AChE and displace propidium, indicating their potential to block AChE-induced β-amyloid aggregation. Similar propidium displacement activity was first shown for amiridine. Two compounds, 5c (R = cyclohexyl) and 5e (R = 2-MeO-Ph), exhibited appreciable antioxidant capability with Trolox equivalent antioxidant capacity values of 0.47 ± 0.03 and 0.39 ± 0.02, respectively. Molecular docking and molecular dynamics simulations provided insights into the structure-activity relationships for AChE and BChE inhibition, including the observation that inhibitory potencies and computed pKa values of hybrids were generally lower than those of the parent molecules. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters comparable to those of amiridine and therefore acceptable for potential lead compounds at the early stages of anti-AD drug development.
Collapse
Affiliation(s)
- Galina F Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sofya V Lushchekina
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia; Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Tatiana Yu Astakhova
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Olga G Serebryakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Alexey N Proshin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Igor V Serkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Tatiana P Trofimova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor A Tafeenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Eugene V Radchenko
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A Palyulin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir P Fisenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119881, Russia
| | - Jan Korábečný
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Rudy J Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109 USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA; Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA.
| |
Collapse
|
24
|
Whitmore CA, Boules MI, Behof WJ, Haynes JR, Koktysh D, Rosenberg AJ, Tantawy MN, Pham W. Design, Synthesis, and Validation of a Novel [ 11C]Promethazine PET Probe for Imaging Abeta Using Autoradiography. Molecules 2021; 26:molecules26082182. [PMID: 33920113 PMCID: PMC8070574 DOI: 10.3390/molecules26082182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Promethazine, an antihistamine drug used in the clinical treatment of nausea, has been demonstrated the ability to bind Abeta in a transgenic mouse model of Alzheimer’s disease. However, so far, all of the studies were performed in vitro using extracted tissues. In this work, we report the design and synthesis of a novel [11C]promethazine PET radioligand for future in vivo studies. The [11C]promethazine was isolated by RP-HPLC with radiochemical purity >95% and molar activity of 48 TBq/mmol. The specificity of the probe was demonstrated using human hippocampal tissues via autoradiography.
Collapse
Affiliation(s)
- Clayton A. Whitmore
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mariam I. Boules
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William J. Behof
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R. Haynes
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dmitry Koktysh
- Department of Chemistry, Vanderbilt University, VU Station, Nashville, TN 37235, USA;
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Adam J. Rosenberg
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mohammed N. Tantawy
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wellington Pham
- Vanderbilt University Medical Center, Vanderbilt University Institute of Imaging Science, Nashville, TN 37232, USA; (C.A.W.); (M.I.B.); (W.J.B.); (J.R.H.); (A.J.R.); (M.N.T.)
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Institute of Imaging Science, Vanderbilt University, 1161, 21st Avenue South, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-(615)-936-7621
| |
Collapse
|
25
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Mine M, Matsumoto N, Mizuguchi H, Takayanagi T. Kinetic analysis of an enzymatic hydrolysis of p-nitrophenyl acetate with carboxylesterase by pressure-assisted capillary electrophoresis/dynamic frontal analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5846-5851. [PMID: 33230513 DOI: 10.1039/d0ay01736a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An enzymatic hydrolysis of p-nitrophenyl acetate with carboxylesterase was analyzed by capillary electrophoresis/dynamic frontal analysis (CE/DFA). A plateau signal was expected with the anionic product of p-nitrophenol by the CE/DFA applying in-capillary reaction and the continuous CE resolution of the product from the substrate zone. However, the plateau height was not sufficient, and/or the plateau signal fluctuated and drifted. Therefore, a pressure assist was utilized in the CE/DFA to detect the product zone fast and to average the fluctuated plateau signal by mixing in a laminar flow. The plateau signal became relatively flat and its height was developed by the pressure-assisted capillary electrophoresis/dynamic frontal analysis (pCE/DFA). The plateau height was used for the Michaelis-Menten analysis, and a Michaelis-Menten constant was determined as KM = 0.83 mmol L-1. An enzyme inhibition was also examined with bis(p-nitrophenyl) phosphate by adding it in the separation buffer. The height of the plateau signal decreased by the inhibition, and a 50% inhibitory concentration was determined as IC50 = 0.79 μmol L-1. The values of KM and IC50 obtained in this study agreed well with the reported values. Since the proposed pCE/DFA includes electrophoretic migration of the substrate zone in a capillary, it is also noticed that the deactivation of the enzyme by ethanol on the preparation of the substrate solution can be avoided, as well as the exclusion of the inhibition by the product.
Collapse
Affiliation(s)
- Masanori Mine
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijyousanjimacho, Tokushima 770-8506, Japan
| | | | | | | |
Collapse
|
27
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Faingold II, Poletaeva DA, Soldatova YV, Kotelnikova RA, Serkov IV, Ustinov AK, Proshin AN, Radchenko EV, Palyulin VA, Richardson RJ. New Multifunctional Agents Based on Conjugates of 4-Amino-2,3-polymethylenequinoline and Butylated Hydroxytoluene for Alzheimer's Disease Treatment. Molecules 2020; 25:molecules25245891. [PMID: 33322783 PMCID: PMC7763995 DOI: 10.3390/molecules25245891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/18/2023] Open
Abstract
New hybrids of 4-amino-2,3-polymethylenequinoline with different sizes of the aliphatic ring linked to butylated hydroxytoluene (BHT) by enaminoalkyl (7) or aminoalkyl (8) spacers were synthesized as potential multifunctional agents for Alzheimer's disease (AD) treatment. All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. Lead compound 8c, 2,6-di-tert-butyl-4-{[2-(7,8,9,10- tetrahydro-6H-cyclohepta[b]quinolin-11-ylamino)-ethylimino]-methyl}-phenol exhibited an IC50(AChE) = 1.90 ± 0.16 µM, IC50(BChE) = 0.084 ± 0.008 µM, and 13.6 ± 1.2% propidium displacement at 20 μM. Compounds possessed low activity against carboxylesterase, indicating likely absence of clinically unwanted drug-drug interactions. Kinetics were consistent with mixed-type reversible inhibition of both cholinesterases. Docking indicated binding to catalytic and peripheral AChE sites; peripheral site binding along with propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. Compounds demonstrated high antioxidant activity in ABTS and FRAP assays as well as inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Conjugates 8 with amine-containing spacers were better antioxidants than those with enamine spacers 7. Computational ADMET profiles for all compounds predicted good blood-brain barrier distribution (permeability), good intestinal absorption, and medium cardiac toxicity risk. Overall, based on their favorable pharmacological and ADMET profiles, conjugates 8 appear promising as candidates for AD therapeutics.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, 119334 Moscow, Russia
| | - Irina I. Faingold
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia; (I.I.F.); (D.A.P.); (Y.V.S.); (R.A.K.)
| | - Darya A. Poletaeva
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia; (I.I.F.); (D.A.P.); (Y.V.S.); (R.A.K.)
| | - Yuliya V. Soldatova
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia; (I.I.F.); (D.A.P.); (Y.V.S.); (R.A.K.)
| | - Raisa A. Kotelnikova
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia; (I.I.F.); (D.A.P.); (Y.V.S.); (R.A.K.)
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Anatoly K. Ustinov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-0769
| |
Collapse
|
28
|
Purgatorio R, de Candia M, Catto M, Rullo M, Pisani L, Denora N, Carrieri A, Nevskaya AA, Voskressensky LG, Altomare CD. Evaluation of Water-Soluble Mannich Base Prodrugs of 2,3,4,5-Tetrahydroazepino[4,3-b]indol-1(6H)-one as Multitarget-Directed Agents for Alzheimer's Disease. ChemMedChem 2020; 16:589-598. [PMID: 33156950 DOI: 10.1002/cmdc.202000583] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Different Mannich base derivatives have been studied with the aim of addressing the poor aqueous solubility of the recently disclosed 6-phenethyl-2,3,4,5-tetrahydroazepino[4,3-b]indol-1(6H)-one (1), a human butyrylcholinesterase inhibitor (hBChE, IC50 13 nM) and protective agent in NMDA-induced neurotoxicity, in in vivo assays. The N-(4-methylpiperazin-1-yl)methyl derivative 2 c showed a 50-fold increase in solubility in pH 7.4-buffered solution, high stability in serum and (half-life >24 h) and rapid (<3 min) conversion to 1 at acidic pH. Although less active than 1, 2 c retained moderate hBChE inhibition (IC50 =3.35 μM) and a significant protective effect against NMDA-induced neurotoxicity at 0.1 μM. Moreover, 2 c resulted a weaker serum albumin binder than 1, could pass the blood-brain barrier, and exerted negligible cytotoxicity on HepG2 cells. These findings suggest that 2 c could be a water-soluble prodrug candidate of 1 for oral administration or a slow-release injectable derivative in in vivoAlzheimer's disease models.
Collapse
Affiliation(s)
- Rosa Purgatorio
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Mariagrazia Rullo
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Alisa A Nevskaya
- Organic Chemistry Department, RUDN University, Miklukho-Maklai St. 6, Moscow, 117198, Russia
| | - Leonid G Voskressensky
- Organic Chemistry Department, RUDN University, Miklukho-Maklai St. 6, Moscow, 117198, Russia
| | - Cosimo D Altomare
- Department of Pharmacy-Drug-Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
29
|
Phenothiazine‐based chalcones as potential dual‐target inhibitors toward cholinesterases (AChE, BuChE) and monoamine oxidases (MAO‐A, MAO‐B). J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Uddin MS, Al Mamun A, Kabir MT, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Multi-Target Drug Candidates for Multifactorial Alzheimer's Disease: AChE and NMDAR as Molecular Targets. Mol Neurobiol 2020; 58:281-303. [PMID: 32935230 DOI: 10.1007/s12035-020-02116-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia among elder people, which is a progressive neurodegenerative disease that results from a chronic loss of cognitive activities. It has been observed that AD is multifactorial, hence diverse pharmacological targets that could be followed for the treatment of AD. The Food and Drug Administration has approved two types of medications for AD treatment such as cholinesterase inhibitors (ChEIs) and N-methyl-D-aspartic acid receptor (NMDAR) antagonists. Rivastigmine, donepezil, and galantamine are the ChEIs that have been approved to treat AD. On the other hand, memantine is the only non-competitive NMDAR antagonist approved in AD treatment. As compared with placebo, it has been revealed through clinical studies that many single-target therapies are unsuccessful to treat multifactorial Alzheimer's symptoms or disease progression. Therefore, due to the complex nature of AD pathophysiology, diverse pharmacological targets can be hunted. In this article, based on the entwined link of acetylcholinesterase (AChE) and NMDAR, we represent several multifunctional compounds in the rational design of new potential AD medications. This review focus on the significance of privileged scaffolds in the generation of the multi-target lead compound for treating AD, investigating the idea and challenges of multi-target drug design. Furthermore, the most auspicious elementary units for designing as well as synthesizing hybrid drugs are demonstrated as pharmacological probes in the rational design of new potential AD therapeutics.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
31
|
New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer's Disease Treatment. Molecules 2020; 25:molecules25173915. [PMID: 32867324 PMCID: PMC7504258 DOI: 10.3390/molecules25173915] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/31/2023] Open
Abstract
New hybrid compounds of 4-amino-2,3-polymethylene-quinoline containing different sizes of the aliphatic ring and linked to p-tolylsulfonamide with alkylene spacers of increasing length were synthesized as potential drugs for treatment of Alzheimer’s disease (AD). All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The lead compound 4-methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-pentyl)-benzenesulfonamide (7h) exhibited an IC50 (AChE) = 0.131 ± 0.01 µM (five times more potent than tacrine), IC50(BChE) = 0.0680 ± 0.0014 µM, and 17.5 ± 1.5% propidium displacement at 20 µM. The compounds possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. Kinetics studies were consistent with mixed-type reversible inhibition of both cholinesterases. Molecular docking demonstrated dual binding sites of the conjugates in AChE and clarified the differences in the structure-activity relationships for AChE and BChE inhibition. The conjugates could bind to the AChE peripheral anionic site and displace propidium, indicating their potential to block AChE-induced β-amyloid aggregation, thereby exerting a disease-modifying effect. All compounds demonstrated low antioxidant activity. Computational ADMET profiles predicted that all compounds would have good intestinal absorption, medium blood-brain barrier permeability, and medium cardiac toxicity risk. Overall, the results indicate that the novel conjugates show promise for further development and optimization as multitarget anti-AD agents.
Collapse
|
32
|
Kumar V, De P, Ojha PK, Saha A, Roy K. A Multi-layered Variable Selection Strategy for QSAR Modeling of Butyrylcholinesterase Inhibitors. Curr Top Med Chem 2020; 20:1601-1627. [DOI: 10.2174/1568026620666200616142753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023]
Abstract
Background:
Alzheimer’s disease (AD), a neurological disorder, is the most common cause
of senile dementia. Butyrylcholinesterase (BuChE) enzyme plays a vital role in regulating the brain acetylcholine
(ACh) neurotransmitter, but in the case of Alzheimer’s disease (AD), BuChE activity gradually
increases in patients with a decrease in the acetylcholine (ACh) concentration via hydrolysis. ACh
plays an essential role in regulating learning and memory as the cortex originates from the basal forebrain,
and thus, is involved in memory consolidation in these sites.
Methods:
In this work, we have developed a partial least squares (PLS)-regression based two dimensional
quantitative structure-activity relationship (2D-QSAR) model using 1130 diverse chemical classes
of compounds with defined activity against the BuChE enzyme. Keeping in mind the strict Organization
for Economic Co-operation and Development (OECD) guidelines, we have tried to select significant
descriptors from the large initial pool of descriptors using multi-layered variable selection strategy using
stepwise regression followed by genetic algorithm (GA) followed by again stepwise regression technique
and at the end best subset selection prior to development of final model thus reducing noise in the
input. Partial least squares (PLS) regression technique was employed for the development of the final
model while model validation was performed using various stringent validation criteria.
Results:
The results obtained from the QSAR model suggested that the quality of the model is acceptable
in terms of both internal (R2= 0.664, Q2= 0.650) and external (R2
Pred= 0.657) validation parameters.
The QSAR studies were analyzed, and the structural features (hydrophobic, ring aromatic and hydrogen
bond acceptor/donor) responsible for enhancement of the activity were identified. The developed model
further suggests that the presence of hydrophobic features like long carbon chain would increase the
BuChE inhibitory activity and presence of amino group and hydrazine fragment promoting the hydrogen
bond interactions would be important for increasing the inhibitory activity against BuChE enzyme.
Conclusion:
Furthermore, molecular docking studies have been carried out to understand the molecular
interactions between the ligand and receptor, and the results are then correlated with the structural features
obtained from the QSAR models. The information obtained from the QSAR models are well corroborated
with the results of the docking study.
Collapse
Affiliation(s)
- Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Priyanka De
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92 APC Road, Kolkata 700 032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
33
|
Zagórska A, Jaromin A. Perspectives for New and More Efficient Multifunctional Ligands for Alzheimer's Disease Therapy. Molecules 2020; 25:E3337. [PMID: 32717806 PMCID: PMC7435667 DOI: 10.3390/molecules25153337] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Despite tremendous research efforts at every level, globally, there is still a lack of effective drugs for the treatment of Alzheimer's disease (AD). The biochemical mechanisms of this devastating neurodegenerative disease are not yet clearly understood. This review analyses the relevance of multiple ligands in drug discovery for AD as a versatile toolbox for a polypharmacological approach to AD. Herein, we highlight major targets associated with AD, ranging from acetylcholine esterase (AChE), beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), glycogen synthase kinase 3 beta (GSK-3β), N-methyl-d-aspartate (NMDA) receptor, monoamine oxidases (MAOs), metal ions in the brain, 5-hydroxytryptamine (5-HT) receptors, the third subtype of histamine receptor (H3 receptor), to phosphodiesterases (PDEs), along with a summary of their respective relationship to the disease network. In addition, a multitarget strategy for AD is presented, based on reported milestones in this area and the recent progress that has been achieved with multitargeted-directed ligands (MTDLs). Finally, the latest publications referencing the enlarged panel of new biological targets for AD related to the microglia are highlighted. However, the question of how to find meaningful combinations of targets for an MTDLs approach remains unanswered.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383 Wrocław, Poland;
| |
Collapse
|
34
|
Abstract
Abstract
A new series of homobivalent Dimebon analogs, bis-γ-carbolines with alkylene, phenylenedialkylene, and triazole-containing spacers, was synthesized. Doubling the γ-carboline pharmacophore increased inhibitory potency against acetylcholinesterase (AChE) compared with Dimebon, while keeping Dimebon’s anti-butyrylcholinesterase activity; therefore, leading to inversion of selectivity. Molecular docking revealed the reasons for the increased anti-AChE activity and ability to block AChE-induced aggregation of β-amyloid for bis-γ-carbolines, which became double-site inhibitors of AChE. Conjugates with ditriazole-containing spacers were the most active antioxidants in both the ABTS-test and prevention of lipid peroxidation in brain homogenates without inhibiting the mitochondrial permeability transition (MPT). Conjugates with alkylene (4a–d), phenylenedialkylene (4e), and monotriazole (8) spacers were less active as antioxidants but prevented induction of the MPT and increased the calcium retention capacity of mitochondria. Lead compound 4e showed neuroprotective potential in a cellular calcium overload model of neurodegeneration. Computational studies showed that all the bis-γ-carbolines were expected to have high values for intestinal absorption and very good blood-brain barrier permeability along with good drug-likeness. Overall, the results showed that new homobivalent Dimebon analogs exhibit an expanded spectrum of biological activity and improved pharmacological properties, making them promising candidates for further research and optimization as multitarget agents for Alzheimer’s disease treatment.
Collapse
|
35
|
Taliyan R, Chandran SK, Kakoty V. Therapeutic Approaches to Alzheimer's Type of Dementia: A Focus on FGF21 Mediated Neuroprotection. Curr Pharm Des 2020; 25:2555-2568. [PMID: 31333086 DOI: 10.2174/1381612825666190716101411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
Neurodegenerative disorders are the most devastating disorder of the nervous system. The pathological basis of neurodegeneration is linked with dysfunctional protein trafficking, mitochondrial stress, environmental factors and aging. With the identification of insulin and insulin receptors in some parts of the brain, it has become evident that certain metabolic conditions associated with insulin dysfunction like Type 2 diabetes mellitus (T2DM), dyslipidemia, obesity etc., are also known to contribute to neurodegeneration mainly Alzheimer's Disease (AD). Recently, a member of the fibroblast growth factor (FGF) superfamily, FGF21 has proved tremendous efficacy in diseases like diabetes mellitus, obesity and insulin resistance (IR). Increased levels of FGF21 have been reported to exert multiple beneficial effects in metabolic syndrome. FGF21 receptors are present in certain areas of the brain involved in learning and memory. However, despite extensive research, its function as a neuroprotectant in AD remains elusive. FGF21 is a circulating endocrine hormone which is mainly secreted by the liver primarily in fasting conditions. FGF21 exerts its effects after binding to FGFR1 and co-receptor, β-klotho (KLB). It is involved in regulating energy via glucose and lipid metabolism. It is believed that aberrant FGF21 signalling might account for various anomalies like neurodegeneration, cancer, metabolic dysfunction etc. Hence, this review will majorly focus on FGF21 role as a neuroprotectant and potential metabolic regulator. Moreover, we will also review its potential as an emerging candidate for combating metabolic stress induced neurodegenerative abnormalities.
Collapse
Affiliation(s)
- Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Sarathlal K Chandran
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Violina Kakoty
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| |
Collapse
|
36
|
Bobkova NV, Poltavtseva RA, Leonov SV, Sukhikh GT. Neuroregeneration: Regulation in Neurodegenerative Diseases and Aging. BIOCHEMISTRY (MOSCOW) 2020; 85:S108-S130. [PMID: 32087056 DOI: 10.1134/s0006297920140060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It had been commonly believed for a long time, that once established, degeneration of the central nervous system (CNS) is irreparable, and that adult person merely cannot restore dead or injured neurons. The existence of stem cells (SCs) in the mature brain, an organ with minimal regenerative ability, had been ignored for many years. Currently accepted that specific structures of the adult brain contain neural SCs (NSCs) that can self-renew and generate terminally differentiated brain cells, including neurons and glia. However, their contribution to the regulation of brain activity and brain regeneration in natural aging and pathology is still a subject of ongoing studies. Since the 1970s, when Fuad Lechin suggested the existence of repair mechanisms in the brain, new exhilarating data from scientists around the world have expanded our knowledge on the mechanisms implicated in the generation of various cell phenotypes supporting the brain, regulation of brain activity by these newly generated cells, and participation of SCs in brain homeostasis and regeneration. The prospects of the SC research are truthfully infinite and hitherto challenging to forecast. Once researchers resolve the issues regarding SC expansion and maintenance, the implementation of the SC-based platform could help to treat tissues and organs impaired or damaged in many devastating human diseases. Over the past 10 years, the number of studies on SCs has increased exponentially, and we have already become witnesses of crucial discoveries in SC biology. Comprehension of the mechanisms of neurogenesis regulation is essential for the development of new therapeutic approaches for currently incurable neurodegenerative diseases and neuroblastomas. In this review, we present the latest achievements in this fast-moving field and discuss essential aspects of NSC biology, including SC regulation by hormones, neurotransmitters, and transcription factors, along with the achievements of genetic and chemical reprogramming for the safe use of SCs in vitro and in vivo.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - R A Poltavtseva
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia
| | - S V Leonov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Moscow Institute of Physics and Technology (National Research University), The Phystech School of Biological and Medical Physics, Dolgoprudny, Moscow Region, 141700, Russia
| | - G T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, 117997, Russia.
| |
Collapse
|
37
|
Makhaeva GF, Kovaleva NV, Boltneva NP, Lushchekina SV, Rudakova EV, Stupina TS, Terentiev AA, Serkov IV, Proshin AN, Radchenko EV, Palyulin VA, Bachurin SO, Richardson RJ. Conjugates of tacrine and 1,2,4-thiadiazole derivatives as new potential multifunctional agents for Alzheimer’s disease treatment: Synthesis, quantum-chemical characterization, molecular docking, and biological evaluation. Bioorg Chem 2020; 94:103387. [DOI: 10.1016/j.bioorg.2019.103387] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
38
|
Vyalyh JV, Suzdalev KF, Lisovin AV, Kletskii ME, Burov ON, Kurbatov SV. From 3-Acyl-2-methylindoles to γ-Carbolines: Li-Promoted Cycloaddition Reaction and Its Quantum Chemical Study. J Org Chem 2019; 84:13721-13732. [DOI: 10.1021/acs.joc.9b01926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Julia V. Vyalyh
- Department of Chemistry, Southern Federal University, Rostov-on-Don 344090, Russia
| | | | - Anton V. Lisovin
- Department of Chemistry, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Mikhail E. Kletskii
- Department of Chemistry, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Oleg N. Burov
- Department of Chemistry, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Sergey V. Kurbatov
- Department of Chemistry, Southern Federal University, Rostov-on-Don 344090, Russia
| |
Collapse
|
39
|
Overview of novel multifunctional agents based on conjugates of γ-carbolines, carbazoles, tetrahydrocarbazoles, phenothiazines, and aminoadamantanes for treatment of Alzheimer's disease. Chem Biol Interact 2019; 308:224-234. [DOI: 10.1016/j.cbi.2019.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023]
|
40
|
Multi-target design strategies for the improved treatment of Alzheimer's disease. Eur J Med Chem 2019; 176:228-247. [DOI: 10.1016/j.ejmech.2019.05.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
41
|
Chan YC, Wu CS, Wu TC, Lin YH, Chang SJ. A Standardized Extract of Asparagus officinalis Stem (ETAS ®) Ameliorates Cognitive Impairment, Inhibits Amyloid β Deposition via BACE-1 and Normalizes Circadian Rhythm Signaling via MT1 and MT2. Nutrients 2019; 11:nu11071631. [PMID: 31319549 PMCID: PMC6683278 DOI: 10.3390/nu11071631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/15/2022] Open
Abstract
The prevalence of cognitive impairments and circadian disturbances increases in the elderly and Alzheimer’s disease (AD) patients. This study investigated the effects of a standardized extract of Asparagus officinalis stem, ETAS® on cognitive impairments and circadian rhythm status in senescence-accelerated mice prone 8 (SAMP8). ETAS® consists of two major bioactive constituents: 5-hydroxymethyl-2-furfural (HMF), an abundant constituent, and (S)-asfural, a novel constituent, which is a derivative of HMF. Three-month-old SAMP8 male mice were divided into a control, 200 and 1000 mg/kg BW ETAS® groups, while senescence-accelerated resistant mice (SAMR1) were used as the normal control. After 12-week feeding, ETAS® significantly enhanced cognitive performance by an active avoidance test, inhibited the expressions of amyloid-beta precursor protein (APP) and BACE-1 and lowered the accumulation of amyloid β (Aβ) in the brain. ETAS® also significantly increased neuron number in the suprachiasmatic nucleus (SCN) and normalized the expressions of the melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2). In conclusion, ETAS® enhances the cognitive ability, inhibits Aβ deposition and normalizes circadian rhythm signaling, suggesting it is beneficial for preventing cognitive impairments and circadian rhythm disturbances in aging.
Collapse
Affiliation(s)
- Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Ci-Sian Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Tsai-Chen Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Yu-Hsuan Lin
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
42
|
Makhaeva GF, Rudakova EV, Kovaleva NV, Lushchekina SV, Boltneva NP, Proshin AN, Shchegolkov EV, Burgart YV, Saloutin VI. Cholinesterase and carboxylesterase inhibitors as pharmacological agents. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2507-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Saleem U, Raza Z, Anwar F, Ahmad B, Hira S, Ali T. Experimental and Computational Studies to Characterize and Evaluate the Therapeutic Effect of Albizia lebbeck (L.) Seeds in Alzheimer's Disease. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E184. [PMID: 31117312 PMCID: PMC6572470 DOI: 10.3390/medicina55050184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 01/08/2023]
Abstract
Background and Objectives: Alzheimer's disease (AD) is a neurodegenerative disorder that deteriorates daily life due to loss of memory and cognitive impairment. It is believed that oxidative stress and cholinergic deficit are the leading causes of AD. Disease-modifying therapies for the treatment of AD are a challenging task for this century. The search for natural and synthetic agents has attracted the attention of researchers. The objective of this study was a scientific approach to search for most suitable remedy for AD by exploiting the potential of Albizia lebbeck (L.) seeds. Materials and Methods: Hydromethanolic extract of Albizia lebbeck seeds (ALE) was prepared by maceration. The plant was characterized by physico-chemical, phyto-chemical, and high-performance liquid chromatography (HPLC). Thirty-six Wistar albino rats were used in this study and divided into six groups (n = 6). Group I: normal control; Group II: disease control (AlCl3; 100 mg/Kg); Group III: standard control (galantamine; 0.5mg/Kg); Groups IV-VI were treated ALE at 100, 200 and 300 mg/Kg dose levels, respectively. All the treatments were given orally for 21 consecutive days. Y-maze, T-maze, Morris water maze, hole board, and open field behavioral tests were performed to analyze the cognitive impairment. Biochemical, histological, and computational studies were performed to support the results of behavioral tests. Results: HPLC analysis indicated the presence of quercetin, gallic acid, m-coumaric acid, and sinapic acid. ALE significantly improved the memory and cognitive impairments. Endogenous antioxidant stress biomarker levels and histopathological outcomes supported the therapeutic potential of A. lebbeck in AD. Cholinergic deficits were also ameliorated by ALE co-administration, possibly by the inhibition of hyperactive acetylcholinesterase (AChE). Docking studies supported the potential of ALE against AD. Conclusions: The data suggested that ALE has neuroprotective potential that can be exploited for beneficial effects to treat AD.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad-38000, Pakistan.
| | - Zohaib Raza
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad-38000, Pakistan.
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical sciences, Riphah International University, Lahore-54000, Pakistan.
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical sciences, Riphah International University, Lahore-54000, Pakistan.
| | - Sundas Hira
- Riphah Institute of Pharmaceutical sciences, Riphah International University, Lahore-54000, Pakistan.
| | - Tahir Ali
- Riphah Institute of Pharmaceutical sciences, Riphah International University, Lahore-54000, Pakistan.
| |
Collapse
|
44
|
Conjugates of methylene blue with γ-carboline derivatives as new multifunctional agents for the treatment of neurodegenerative diseases. Sci Rep 2019; 9:4873. [PMID: 30890752 PMCID: PMC6424957 DOI: 10.1038/s41598-019-41272-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
We studied the inhibitory activity of methylene blue (MB) γ-carbolines (gC) conjugates (MB-gCs) against human erythrocyte acetylcholinesterase (AChE), equine serum butyrylcholinesterase (BChE), and a structurally related enzyme, porcine liver carboxylesterase (CaE). In addition, we determined the ability of MB-gCs to bind to the peripheral anionic site (PAS) of Electrophorus electricus AChE (EeAChE) and competitively displace propidium iodide from this site. Moreover, we examined the ability of MB-gCs to scavenge free radicals as well as their influence on mitochondrial potential and iron-induced lipid peroxidation. We found that MB-gCs effectively inhibited AChE and BChE with IC50 values in the range 1.73–10.5 μM and exhibited low potencies against CaE (9.8–26% inhibition at 20 μM). Kinetic studies showed that MB-gCs were mixed-type reversible inhibitors of both cholinesterases. Molecular docking results showed that the MB-gCs could bind both to the catalytic active site and to the PAS of human AChE and BChE. Accordingly, MB-gCs effectively displaced propidium from the peripheral anionic site of EeAChE. In addition, MB-gCs were extremely active in both radical scavenging tests. Quantum mechanical DFT calculations suggested that free radical scavenging was likely mediated by the sulfur atom in the MB fragment. Furthermore, the MB-gCs, in like manner to MB, can restore mitochondrial membrane potential after depolarization with rotenone. Moreover, MB-gCs possess strong antioxidant properties, preventing iron-induced lipid peroxidation in mitochondria. Overall, the results indicate that MB-gCs are promising candidates for further optimization as multitarget therapeutic agents for neurodegenerative diseases.
Collapse
|
45
|
Wang T, Liu XH, Guan J, Ge S, Wu MB, Lin JP, Yang LR. Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer's disease. Eur J Med Chem 2019; 169:200-223. [PMID: 30884327 DOI: 10.1016/j.ejmech.2019.02.076] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
Complex diseases (e.g., Alzheimer's disease) or infectious diseases are usually caused by complicated and varied factors, including environmental and genetic factors. Multi-target (polypharmacology) drugs have been suggested and have emerged as powerful and promising alternative paradigms in modern medicinal chemistry for the development of versatile chemotherapeutic agents to solve these medical challenges. The multifunctional agents capable of modulating multiple biological targets simultaneously display great advantages of higher efficacy, improved safety profile, and simpler administration compared to single-targeted agents. Therefore, multifunctional agents would certainly open novel avenues to rationally design the next generation of more effective but less toxic therapeutic agents. Herein, the authors review the recent progress made in the discovery and design processes of selective multi-targeted agents, especially the successful application of multi-target drugs for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Tao Wang
- School of Biological Science, Jining Medical University, Jining, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xiao-Huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jing Guan
- School of Biological Science, Jining Medical University, Jining, China
| | - Shun Ge
- School of Biological Science, Jining Medical University, Jining, China.
| | - Mian-Bin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Zhejiang Key Laboratory of Antifungal Drugs, Taizhou, 318000, China
| | - Jian-Ping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Li-Rong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
46
|
Kumar S, Srivastav S, Fatima M, Giri RS, Mandal B, Mondal AC. A Synthetic Pro-Drug Peptide Reverses Amyloid-β-Induced Toxicity in the Rat Model of Alzheimer's Disease. J Alzheimers Dis 2019; 69:499-512. [PMID: 30958369 DOI: 10.3233/jad-181273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent neurodegenerative disorder, involves the formation of the extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles. The current therapies against AD are symptomatic with limited benefits but associated with major side effects. Inhibition of self-aggregation of Aβ peptides into higher order cross-β structure is one of the potential therapeutic approach which may counter oligomerization of Aβ peptide. OBJECTIVE The present study aimed to evaluate the neuroprotective and anti-inflammatory potential of a synthetic Pro-Drug type peptide (PDp) against Aβ-induced toxicity in rat model of AD. METHODS Intra-hippocampal microinjection of toxic Aβ40 (IHAβ40) by stereotaxic surgery was performed in the male Sprague-Dawley rats to generate an Aβ-induced AD model. Sub-chronic toxicity of synthetic PDp using hematological, biochemical, and histopathological parameters was investigated. Evaluation of PDp on Aβ-induced neurodegeneration and neuroinflammation was performed. RESULTS PDp inhibits plaque formation with increase in Nissl granule staining in the rat hippocampus. Aβ-induced toxicity associated imbalance in reactive oxygen species and antioxidant enzymes activity such as superoxide dismutase and catalase in the rat brain was overcome by PDp treatment. Tau protein hyperphosphorylation was normalized with PDp treatment. Also, the neuroinflammatory response was suppressed with PDp treatment. CONCLUSION The present study depicts the potential neuroprotective role of PDp against Aβ-induced toxicity in rat. PDp inhibits plaque formation thereby normalizing oxidative stress, inhibiting tau protein hyperphosphorylation, and suppressing neuroinflammatory responses. Future studies done in this direction will pave way for new therapeutic strategies.
Collapse
Affiliation(s)
- Sourav Kumar
- Neuroscience Research Unit, Department of Physiology, RPM College, Uttarpara, Hooghly, West Bengal, India
| | - Saurabh Srivastav
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mahino Fatima
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajat Subhra Giri
- Laboratory of Peptide Research, Department of Chemistry, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, India
| | - Bhubaneswar Mandal
- Laboratory of Peptide Research, Department of Chemistry, Indian Institute of Technology Guwahati (IITG), North Guwahati, Assam, India
| | - Amal Chandra Mondal
- Neuroscience Research Unit, Department of Physiology, RPM College, Uttarpara, Hooghly, West Bengal, India
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
47
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
48
|
Synthesis and biological activity of 5-vinyl- and 5-allyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indoles. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Makhaeva GF, Boltneva NP, Kovaleva NV, Rudakova EV, Lushchekina SV, Aksinenko AY, Sokolov VB. Influence of the γ-carboline and carbazole pharmacophore moieties on anticholinesterase and antiradical activity of multifunctional agents for the treatment of neurodegenerative diseases. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2282-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Dai J, Dan W, Zhang Y, Wang J. Recent developments on synthesis and biological activities of γ-carboline. Eur J Med Chem 2018; 157:447-461. [PMID: 30103193 DOI: 10.1016/j.ejmech.2018.08.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/28/2018] [Accepted: 08/04/2018] [Indexed: 11/28/2022]
Abstract
γ-Carboline alkaloids are a family of natural and synthetic agents that have diverse bioactivities including antiviral, antibacterial, antifungal, antiparasitic, antitumor, anti-inflammatory, neuropharmacological activities and so on. They constitute an important class of pharmacologically active scaffolds that exhibit biological activity via diverse mechanisms. This review provides an update on the recent developments (2010-2017) in the synthesis and biological activities of these compounds. In cases where sufficient information is available, the mechanism and the structure-activity relationship (SAR) of biological activity are presented, and based on our expertise in the field and careful analysis of the recent literature, for the potential of γ-carboline alkaloids as medicinal drugs is proposed.
Collapse
Affiliation(s)
- Jiangkun Dai
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenjia Dan
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yunyun Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Junru Wang
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, China.
| |
Collapse
|